Color Correction for Video -
Scene Matching

Application Note
One of the color grading tasks that takes some real experience and skill to deal with is matching scenes. Lots of footage from dramatic TV shows, indie features and even corporate and marketing projects require making two shots in a scene look like they belong together even if they were shot by different cameras or at different times of day. Tektronix Waveform Monitors have a fantastic feature that makes this common-but-difficult task much easier.

Normally, colorists save a still of one image that they’re trying to match and will then cut rapidly back and forth between the reference scene and the scene they’re correcting. This is the time-tested method for matching used by most of the colorists.

But, with a Tektronix waveform monitor, there is an amazing little trick that will save time and will get your footage to match very quickly with much less effort.

To demonstrate, we’ll match these two shots (Figures 1 and 2). One is color corrected fairly faithfully — maybe a little warm — and the other is mis-white-balanced towards blue. Note the colors of the images and the way they’re represented on the Tektronix RGB Parade Waveform monitors (Figures 3 and 4). Specifically, not the different levels of red, green and blue in each shot as seen in the waveform monitors.
The first step will be to pick the shot closest to the final image and manipulate it in primary color correction to a satisfactory result. There’s no sense taking the bluish shot too warm, for example. In this example, the warm piano image was chosen as the “hero” shot. The tonal range was spread at both ends using the shadow and highlight controls (Figures 5 and 6). This increased the contrast. Always take corrections a bit PAST where you believe they should go and then come back to the “sweet spot.” It’s a little like focusing a camera. You don’t really know if it’s in focus until you’ve focused a little too close and a little too far, first. With the outer limits of my tonal range set, manipulate the gamma or mid-tones of the image to create a nice rich, well-exposed look.
Now that the tonal range is set the image should be balanced. It’s a little warm. The warmth is indicated by the elevated levels in the red channel compared to the others (Figure 9). You can also see the warmth in the vectorscope, as the trace leans toward the red vector towards the top left of the vectorscope (Figure 7). You can even see this warm balance in the diamond display (Figure 8). If the trace in the bottom diamond leans toward the right – with this RED indicator here – then the image is warm. This warmth is not a bad thing. Since there is a lot of wood and there are flesh tones, the image should be fairly warm.

To the right in the top diamond indicates a blue balance. Balance out some of that warmth using the trackballs or color wheels by pulling the center of the color wheel down towards the blue vector. To eliminate a cast, move the color wheel in the opposite direction of that cast. The diamond display shows black levels and balance at the intersection of the diamonds. White levels or highlights are indicated at the top of the top diamond and the bottom of the bottom diamond. Midtones are indicated across the center of both diamonds at their widest point.

Use the RGB parade waveform to set the balance. Though you can and should look at more than one display as you work. This is very easy to do on the WFM5200, which can show two trace displays side by side. The 7000 and 8000 series Tektronix scopes are capable of showing four trace displays at the same time. Having multiple views of different waveform displays is critical to the way most colorists work.
Color Correction for Video - Scene Matching

To find a white and black point use Tektronix’s exclusive Luma Qualified Vectorscopes (LQV) (Figure 10). The LQV displays are like regular vectorscopes, except for one important distinction. LQV displays allow you – through menus or presets – to restrict the display of the trace so that it only shows you a specific portion of the tonal range. For example, you can set the LQV display to only show you the shadows, or only the highlights. Create a preset with side by side LQV displays (or download the presets from the Tektronix website) with one displaying just the shadows and one displaying just the highlights. Then use your color wheels to dial the trace right into the center of the display for an easy color balance.

In the RGB Parade, look at the bottom of the three cells – R, G and B (Figure 11) – in the waveform and adjust the individual R, G and B shadow levels in your color correction software. The trace in each color channel should barely touching the 0 line. No higher, no lower. This means the blacks are balanced. In most images, if the shot was balanced, the tops of each channel in red, green and blue would also basically match, but there is so much skin tone and matching warm wood tone, that the red channel should be elevated, and there’s a lot of yellow in wood and skin, so the red and green should both be higher than blue, which is the opposite of yellow, so this angle between red, green and blue is actually perfect and indicates a good skin tone and warmth (Figure 11).

www.tektronix.com/5200learn
Compare the corrected “hero” shot (Figure 12) to the “cool” shot (Figures 13 and 14). The discrepancies are pretty obvious.

Before starting the matching correction, capture the corrected “hero” image as a reference on your Tektronix waveform monitor. On the WFM5200 – and on MOST Tektronix Waveform Monitors - there is a Capture button on the face of the instrument (Figure 15). Pressing that button will cache or store that image in the waveform monitor (Figure 16). This is better than a still frame in your color correction software because the WFM 5200 can now overlay the LIVE feed from your system on TOP of the captured still. No need for a switcher or special software or rapidly punching back and forth. You can simply see the captured image as a GOLD trace on the waveform display while the LIVE display is layered on top of it as a green trace (Figure 17).
When you combine the gold trace with the green trace, the combined brightness can be a little high, so you might want to create a preset for this where you lower the trace brightness (Figure 18). Then save that setup as a preset, name it, and you can call it up very quickly next time you want to use this technique. Pretty cool.

The captured reference image is saved and the live image is layered on top. With the images superimposed, matching them is pretty simple. Use the RGB lift, gamma and gain controls in your color correction software, or use Curves, to adjust the levels of each color channel so that the green and gold trace in each color channel basically lines up. Find some shapes in the trace that you can match in each color channel (Figure 19). At the end of the balance, look at the split between the two (Figure 20).

Contact a local Tektronix representative or distributor and give this a try. This can transform your color correction process. Be sure to check out the on-line demo of the Tektronix WFM5200 and the rest of the videos on Color Correction on the Tektronix web site at www.tektronix.com/5200learn.

Figure 18. Note that the levels between the red, green and blue channels of the gold trace and the green trace match quite closely.

Figure 19. Match the green live trace to the gold captured trace.

Figure 20. This is a split screen between the two original shots, Figure 1 and 2, after using the Capture button to compare the RGB Waveforms of the two images and correct them.