Fundamentals of Switch-Mode Power Supply Testing

Practical Tips & Techniques

Power supplies are driving to a level of efficiency never seen before, requiring design engineers to perform numerous specialized power measurements that are time-consuming and complex. With the right oscilloscope and the tips outlined in this poster, learn how to better ensure the reliability, stability, compliance, and safety of your switch-mode power supply (SMPS) design.

Power Quality
- Power Quality Issues
 - To determine the effect of the insertion of a power supply, voltage and current parameters must be measured directly on the input power line.
 - Power quality measurements include:
 - True, Apparent or Reactive Power
 - Power Factor/Crest Factor
 - Pre-compliance Testing to EN61000-3-2 Standards
 - Total Harmonic Distortion (THD)
- Apparent Power = \(V_{\text{rms}} \times I_{\text{rms}} \)
- True Power = \(V_{\text{rms}} \times I_{\text{rms}} \sin \phi \)
- Power Factor = \(\frac{V_{\text{rms}}}{I_{\text{rms}}} \)
- Crest Factor = \(\frac{V_{\text{peak}}}{V_{\text{rms}}} \)

Output Analysis
- Ripple is the periodic AC component
 - On top of the DC voltage output
 - Ripple frequency is related to:
 - Line frequency:
 - ~120 Hz in countries with 60 Hz power
 - ~100 Hz in countries with 50 Hz power
 - Switching frequency:
 - Typically > 100 kHz

Tektronix Oscilloscopes
- 100 MHz to 5.5 GHz models
- Up to 4 analog and 16 digital channels
- Comprehensive Probing Solutions
 - TekVPI™ interface for easy probe connectivity
 - Differential probes to make floating measurements
 - High-voltage with high bandwidth for accurate characterization of fast edges
- Integrated Power Analysis Software
 - Automated power measurements including switching loss, ripple, power quality, current harmonics and modulation analysis
 - Measure core loss and BH curves on magnetic components
 - Quickly deskew voltage/current probes with built-in automation
 - Generate customized reports

Probing Considerations
Probes and probing techniques affect the quality of a measurement. Loading and skew between probes can introduce error and distortion in power measurements.

Tip: Eliminate skew between current and voltage probes. Since power is the product of voltage and current accurate measurements are made with time-aligned voltage and current waveforms. Tektronix oscilloscopes with the TekVPI interface simplify measurement setup with automated deskew.

Tip: Remove voltage offset by using the built-in DC offset adjustment controls on differential probe. Additionally run the oscilloscope self-calibration routine as often as necessary to ensure accurate voltage measurements.

Tip: A TekVPI current probe has a Degauss/AutoZero button on the probe body. Depressing the AutoZero button will remove any DC offset error present in the measurement system as a result of any residual magnetic field.

Switching Loss Measurements
- Switching-Mode Device
 - Compared to resistive and linear-mode devices, transistors dissipate very little power in either the On or Off status, achieving high efficiency with low heat dissipation.
 - Transistor switch circuits often dissipate the most energy during transitions because circuit parasitics prevent the device from switching instantaneously.
 - For the most part, the switching device determines the overall performance of an SMPS.

Power Loss Overview
- Turn-on Loss
 - Energy losses when the switching device changes from its non-conducting state to its conducting state
- Conduction Loss
 - Losses in the switching device when it is in saturation
- Turn-off Loss
 - Energy losses when the switching device changes from its conducting state to its non-conducting state.

Magnetics Analysis
- Inductors
 - Used in power supplies as a filter or energy storage device
 - \(L = \frac{\sqrt{\frac{V}{I}}}{A} \)
 - Where:
 - \(L \) is the inductance (Henry).
 - \(V \) is the voltage across the inductor.
 - \(I \) is the current through the inductor.
 - \(A \) is the rate of change in a signal, the slew rate.

- Transformers
 - Multiple-winding inductor or transformer used for stepping voltages up or down with the same net power level
 - Two types of power losses are associated with magnetic elements:
 - Core Loss: Composed of hysteresis loss and eddy current loss. The hysteresis loss is a function of the frequency of operation and the AC flux swing.
 - Copper Loss: Due to the resistance of the copper winding wire.

Learn more about Tektronix power measurement and analysis solutions at: www.tektronix.com/power