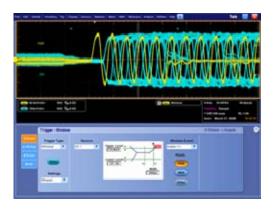
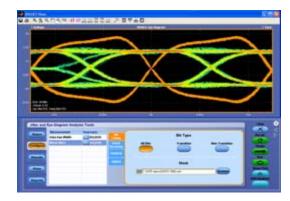
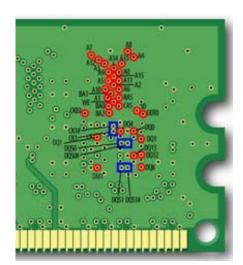

DDR Verification Approaches

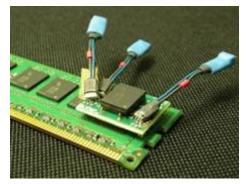


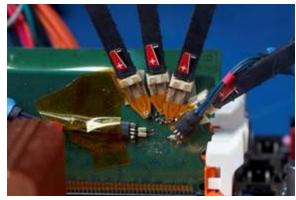


DDR Test Challenges

- Signal Access & Probing
 - Easy-to-use / reliable connections
 - Bandwidth & Signal Integrity
 - Affordable
- Isolation of Read/Write bursts
 - Triggering or Post-Processing (ASM)
- Complexity of JEDEC Conformance Tests
 - Vref / Vih / Vil
 - **Derating**
- Results Validity / Statistics
- Effective Reporting / Archiving
- **Advanced Analysis**
 - Characterization
 - Debug



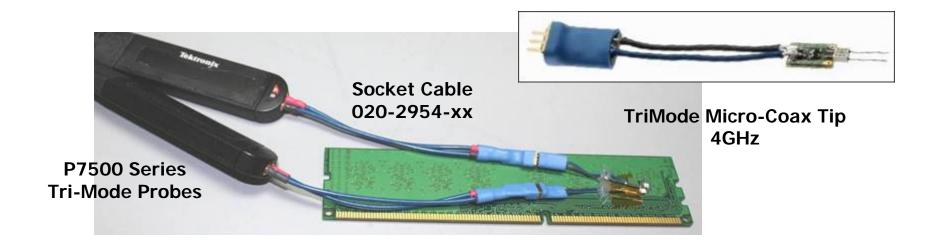



Challenge 1: Probing DDR Memory

- Computer Systems use standardized DIMM's for which several probing solutions are available
- Memory in Embedded Designs is usually directly mounted on the PCB
- All DDR2 & DDR3 Components use BGA Packages
- Probing a BGA package is Difficult
 - Unable to probe at the Balls of the Device
- Signal Access Solutions
 - Component Interposers
 - Direct Probing
 - Analog Probing
 - DQ, DQS, Clock
 - Digital Probing
 - Address
 - Command
 - Power, Reset, and Reference

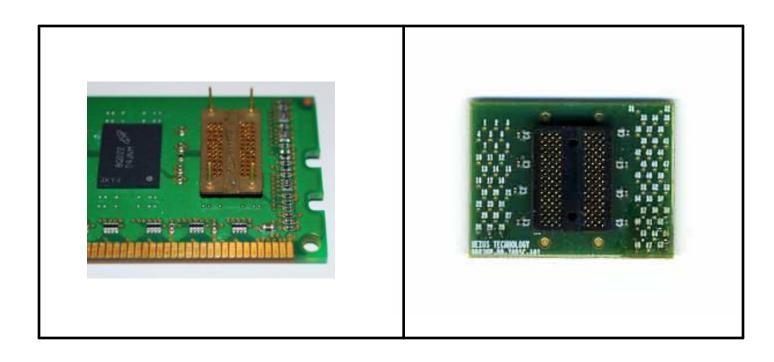
Component Interposer

Analog and Digital Probing



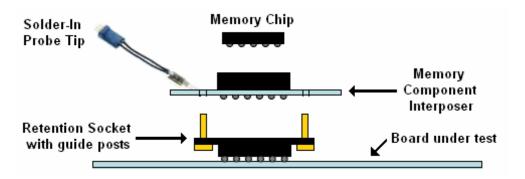
Direct Probing

^{*}Courtesy Micron Technologies


Analog Solder-In Probing Solutions for DDR

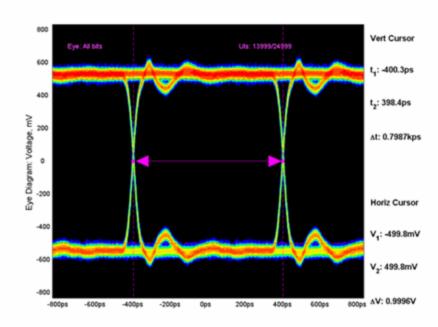
Nexus DDR3 BGA Chip Interposers For Oscilloscopes

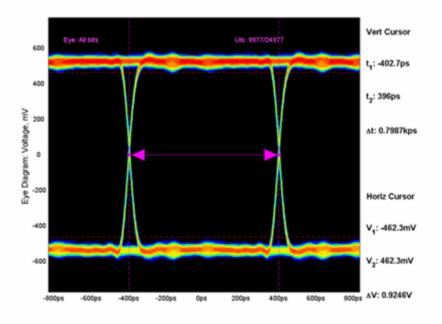
Retention Socket


BGA Chip Interposer

BGA Chip Access For DDR2, DDR3

- Unique, reusable socket design allows for multiple chip exchanges
- Able to use both analog and digital probes
- Nexus DDR Interposers sold by Tektronix
 - DDR2 and DDR3 versions
 - X4/x8, x16 pins
 - Socket and solder models (See MSR for details)



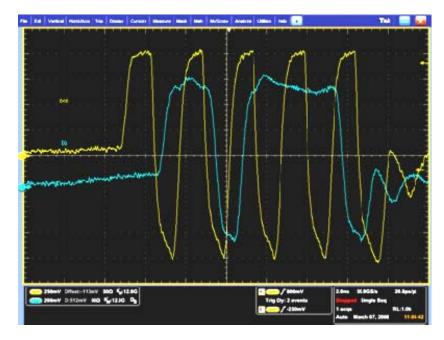


BGA Chip Interposer – Signal Fidelity

- Filters are available to de-embed analog effects
 - Library of filters is provided with the interposer
 - Filters were developed based on the actual S-parameters of the interposer + probe tip
 - Available for DPO/DSA/MSO70000 and DPO7000 scopes

Eye - unfiltered

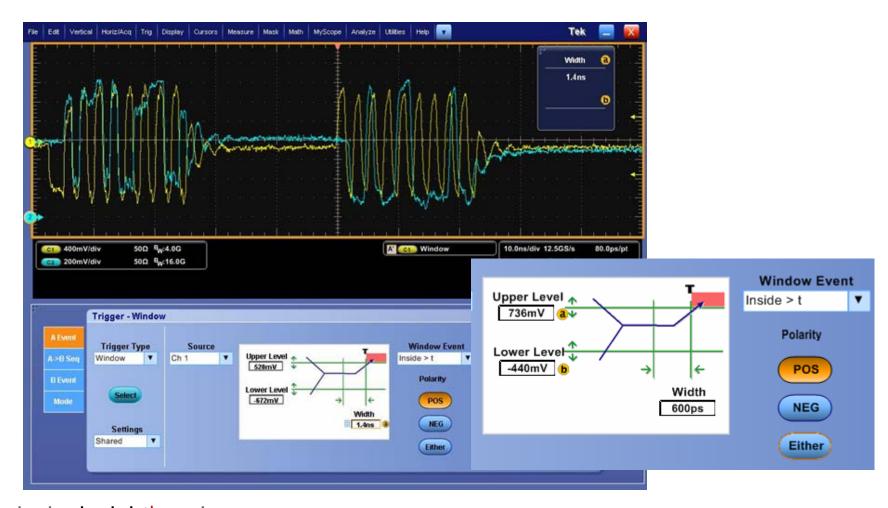
Eye – with filter



Challenge 2: Burst Identification

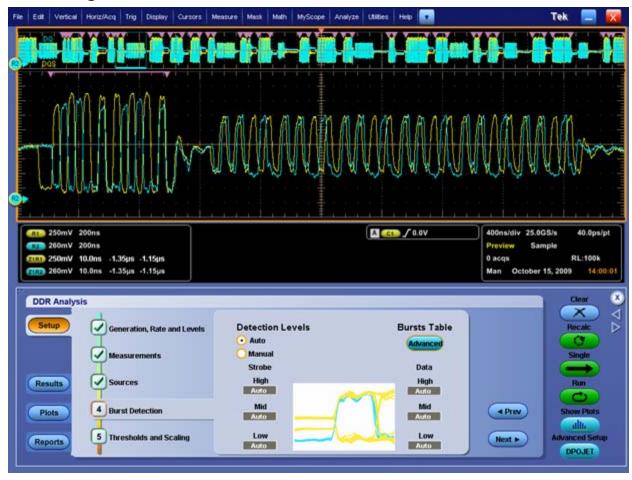
- Locate the right kind of bursts (read vs write)
- Locate the precise edges of each burst
- Refine burst identity based on other criteria (rank, secondary bus state, etc)

DDR3 Read Burst



DDR3 Write Burst

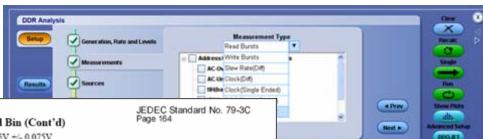
HW Triggering on DDR Reads / Writes


- Window Trigger useful for real-time DDR read /write isolation
 - DQS goes high for writes, low for reads (DDR3)

Advanced Search & Mark (ASM) and Long Records


- Easily identify & measure all Read / Write bursts in the acquisition
 - Based on the Advanced Search & Mark feature
 - Scroll through marked reads / writes across the entire waveform record

Burst Identification on an MSO


- Using bus state, specific transactions can be isolated
 - For example, locate only Reads from a specific memory rank
 - Advanced Search & Mark is used for fine burst positioning

Challenge 3: Measurement Setup

 JEDEC Standards specify measurements & methods

Notes

13, g

13, 14, f 13, 14, f

d, 17

Table 65 — Timing Parameters by Speed Bin (Cont'd)

- 217

- 224

- 231

- 237

- 242

0.38

25

Max

217

224

231

237

242

150

ERR(nper)min = $(1 + 0.68\ln(n)) * JIT(per)min$ ERR(nper)max = $(1 + 0.68\ln(n)) * JIT(per)max$

DDR3-1333

193

200

210

Min

- 193

- 200

- 210

- 215

0.38

NOTE: The following general notes from page 170 apply to Table 65: Note a. VDD = VDDQ = 1.5V +/- 0.075V

		DDR3-800		
Parameter	Symbol	Min	Max	
Cumulative error across 8 cycles	tERR(8per)	- 241	241	
Cumulative error across 9 cycles	tERR(9per)	- 249	249	
Cumulative error across 10 cycles	tERR(10per)	- 257	257	
Cumulative error across 11 cycles	tERR(11per)	- 263	263	
Cumulative error across 12 cycles	tERR(12per)	- 269	269	
Cumulative error across n = 13, 14 49, 50 cycles	tERR(nper)			
Data Timing				
DQS, DQS# to DQ skew, per group, per access	tDQSQ		200	
DQ output hold time from DQS, DQS#	tQH	0.38	-	
DQ low-impedance time from CK, CK#	tLZ(DQ)	- 800	400	
DQ high impedance time from CK, CK#	tHZ(DQ)		400	
Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels	tDS(base)	75		
Data hold time from DQS, DQS# referenced to Vih(dc) / Vil(dc) levels	tDH(base)	150		
DQ and DM Input pulse width for each input	tDIPW	600	-	
Data Strobe Timing				
DQS,DQS# differential READ Preamble	tRPRE	0.9	Note 19	
DQS, DQS# differential READ Postamble	tRPST	0.3	Note 11	
DQS, DQS# differential output high time	tQSH	0.38	-	
DQS, DQS# differential output low time	tQSL	0.38	-	
DQS, DQS# differential WRITE Preamble	tWPRE	0.9		
DQS, DQS# differential WRITE Postamble	tWPST	0.3	-	
DQS, DQS# rising edge output access time from rising CK, CK#	tDQSCK	- 400	400	

8.1 AC and DC Logic Input Levels for Single-Ended Signals

DDR3-1600

Max

169

175

180

188

100

225

Units

рs

рs

ps.

ps

ps.

ps.

tCK(avg)

Min

- 169

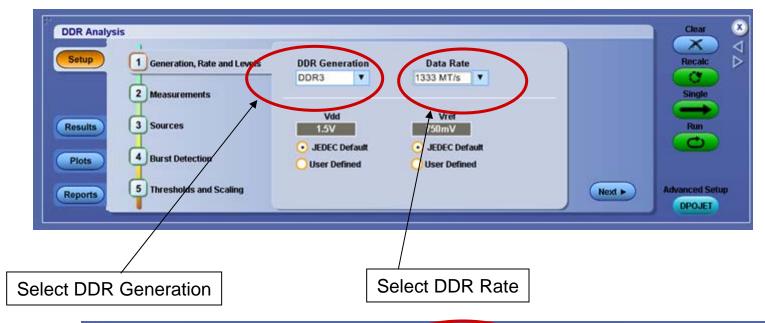
- 175

- 184

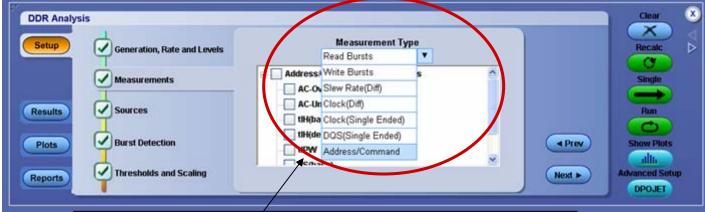
- 188

0.38

8.1.1 AC and DC Input Levels for Single-Ended Command and Address Signals


Table 24 — Single-Ended AC and DC Input Levels for Command and Address

	Symbol	Parameter	DDR3-800/1066/1333/1600		Unit	Notes
			Min	Max	Cmit	Notes
	VIH.CA(DC)	DC input logic high	Vref + 0.100	VDD	V	1
	VIL.CA(DC)	DC input logic low	VSS	Vref - 0.100	V	1
	VIH.CA(AC)	AC input logic high	Vref + 0.175	Note 2	V	1, 2
	VIL.CA(AC)	AC input logic low	Note 2	Vref - 0.175	V	1, 2
	VIH.CA(AC150)	AC input logic high	Vref + 0.150	Note 2	V	1, 2
	VIL.CA(AC150)	AC input logic low	Note 2	Vref - 0.150	V	1, 2
	V _{RefCA(DC)}	Reference Voltage for ADD, CMD inputs	0.49 * VDD	0.51 * VDD	V	3, 4



Ease of Use - DDRA Wizard

Step #1

Step #2

Choose measurements (Read / Write / CLK / Addr & Command)

designinsight|seminar

Comprehensive Measurement Support

Option DDRA supports a broad range of JEDEC-specified measurements for DDR, DDR2, DDR3, LP-DDR

- Example measurements list for DDR2 :
 - tCK(avg)
 - tCK(abs)
 - tCH(avg)
 - tCH(abs)
 - tCL(avg)
 - tCL(abs)
 - tHP
 - tJIT(duty)
 - tJIT(per)
 - tJIT(cc)
 - tERR(02)
 - tERR(03)
 - tERR(04)
 - tERR(05)
 - tERR(6 10 per)
 - tERR(11 50 per)
 - tDQSH

- tDS diff (base)
- tDS SE (base)
- tDS -diff DERATED
- tDS -SE DERATED
- tDH diff (base)
- tDH SE (base)
- tDH -diff DERATED
- tDH -SE DERATED
- tDIPW
- tAC diff
- tDQSCK -diff
- tDQSCK SE
- tDQSQ diff
- tDQSQ SE
- tQH
- tDQSS
- tDSS
- tDSH

- tIPW
- tIS (base)
- tIH (base)
- tIS DERATED
- tIH DERATED
- Vid diff (AC)
- Vix (AC) DQS
- Vix (AC) CLK
- Vox (AC) DQS
- Vox (AC) CLK
- Input Slew-Rise (DQS),
- Input Slew-Fall (DQS),
- Input Slew-Rise (CLK),
- Input Slew-Fall (CLK),
- AC Overshoot Amplitude diff
- AC -Undershoot Amplitude diff
- AC Overshoot Amplitude SE
- AC Undershoot Amplitude SE
- Data Eye Width

Measurement De-rating

- JEDEC stipulates de-rating of DDR2 and DDR3 pass / fail limits for Setup & Hold measurements based on signal slew rate*
- Option DDRA automatically calculates slew rates and applies the appropriate de-rating values to the measurement limits.
 - tDS diff (base)
 - tDS -diff DERATED
 - tDS SE (base)
 - tDS -SE DERATED
 - tDH diff (base)
 - tDH -diff DERATED
 - tDH SE (base)
 - tDH -SE DERATED
 - tIS (base)
 - tIS DERATED
 - tlH (base)
 - tIH DERATED

JEDEC Standard No. 79-3C Page 176

13 Electrical Characteristics and AC Timing (Cont'd)

13.3 Address / Command Setup, Hold and Derating (Cont'd)

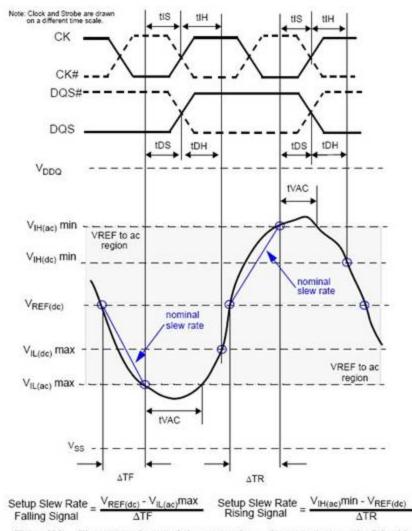
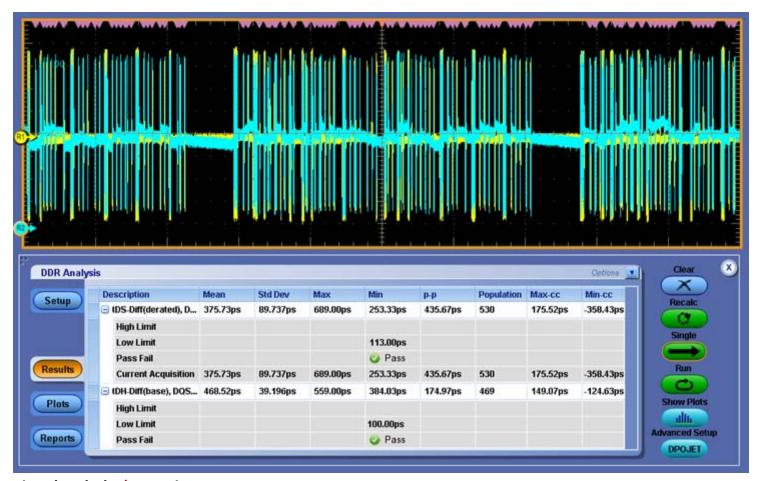
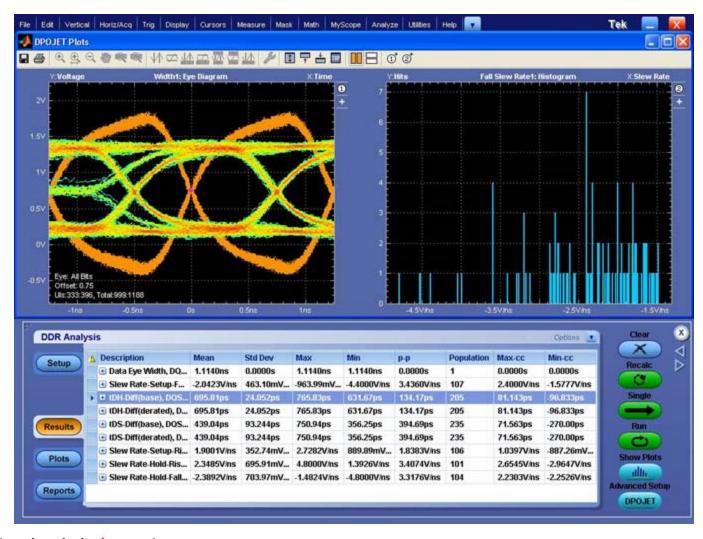



Figure 110 — Illustration of nominal slew rate and t_{VAC} for setup time t_{DS} (for DQ with respect to strobe) and t_{IS} (for ADD/CMD with respect to clock).

Challenge 4: Results and Statistical Validity

- To have confidence in your test results, you need 100's, 1000's or even more observations of each measurement
- As a practical matter, measurement throughput is essential


Challenge 5: Reporting and Archiving

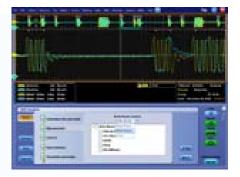
Challenge 6: Advanced Analysis and Debug

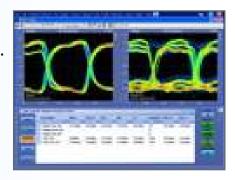
DDRA has access to all plotting & debug tools in DPOJET

DDR Analog Validation & Debug – Tektronix Solutions

Signal Access - Probing

- P7500 TriMode Probing
 - Single probe for diff, CM and single-ended measurements
 - Up to 20 GHz bandwidth to the probe tip
- P6780 Logic Probe
 - 16 channel Active Differential probe with 2.5 GHz bandwidth
- Socketed BGA interposers for multiple exchanges


Signal Acquisition


- Automatically trigger and capture DDR signals
 - Identify and trigger directly on DQ, DQS in real-time to isolate Reads/Writes
 - Command Bus triggering with user-defined decode files
- Capture long time duration at high resolution
 - Direct connection to DPOJET for signal analysis
 - Time trend view for analysis of low frequency effects

Signal Analysis

- DDRA Automated setup, read/write burst detection, JEDEC pass/fail meas.
- DPOJET The most powerful Jitter, Eye and Timing analysis tool
 - Time, Amplitude, Histogram, measurements
 - Advanced Jitter, Eye diagram measurements and Pass/Fail testing
 - Many display and plotting options
 - Report generator

Resources

- Tektronix Knowledge Center: <u>www.tektronix.com/memory</u>
- DDR Application Note: <u>www.tektronix.com/ddr</u>

