

Cypress Semiconductor USB3.0 Solution

Ken Higashiyama June 13, 2012

Cypress Semiconductor

USB 3.0 Ecosystem

446 USB 3.0 SUPERSPEED PRODUCTS CERTIFIED TO DATE

USB 3.0 Interface

USB 3.0 has two pairs of differential signals in addition to USB 2.0 signals

USB 3.0 Applications

FX3 Overview: Target Applications

CONSUMER CAMERAS GAMING INDUSTRIAL CAMERAS MEDICAL IMAGING

SURVEILLANCE VIDEO CONFERENCING

HD VIDEO CAPTURE DATA ACQUISITION

SCANNERS

BIOMETRICS

INSERT YOUR DESIGN HERE

AUDIO MIXER

PARTNERSHIPS TO HELP YOU SUCCEED

1. BUILDING STRONG USB 3.0 REPUTATION

Microsoft USB Test Tool (MUTT) using FX3

2. WORKING WITH DISTRIBUTION AND PARTNERS

Avnet Kintex 7 Board Using FX3*

Arrow/Nuvation Board Using FX3*

Tokyo Electron Devices Board Using FX3*

3. BROADENING EVALUATION CHOICES

4. CREATING REFERENCE DESIGNS

* ORDER BOARDS DIRECTLY FROM DISTRIBUTOR, SUPPLIER

Enclustra FX3 Xilinx Adapter Board*

Aptina "Demo 3" using FX3*

Net Vision SVI-06 Image Sensor A**dapter Board***

What is FX3?

Add USB3.0 capability to any system

 General Programmable Interface (GPIF[™] II) to any processor/ASIC

Enable fast data processing and customization

 Fully accessible 32-bit ARM9 core with 512kB of embedded SRAM

Feature	EZ-USB FX2LP	EZ-USB FX3
USB Controller	USB 2.0	USB 3.0 USB 2.0 OTG
Data Processing Capability	8051	ARM926
GPIF – General Programmable Interface	16-bit	32-bit
Clock Rate	48 MHz	100 MHz
No. of States Supported	8	256
Programmability	GPIF Designer	GPIF Designer II

10x Performance, With The Same Familiar Architecture

FX3 Booting

- FX3 can be the main processor or co-processor in a system
- PMODE[2:0] Configures the booting options
- FX3 booting options

PMODE[2:0]	Boot Option
F00	Sync ADMUX (16-bit)
F01	Async ADMUX (16-bit)
F11	USB Boot
F0F	Async SRAM (16-bit)
F1F	I ² C* (on failure, USB Boot)
1FF	I ² C* Only
0F1	SPI (on failure, USB Boot)

* If EEPROM is used for I^2C booting, 1 kOhm pull up resistors should be placed on the SCL and SDA lines for 1 MHz EEPROM communication.

FX3 SDK Components

Customer Software
Cypress provided Software
Third Party Software

Available Today!

http://japan.cypress.com/?rID=57990

GPIF II Hardware: Overview

Following diagram depicts the concept of internal and external inputs/outputs of the GPIF II Engine

GPIF II Hardware: Overview

GPIF II Hardware: Signal Types

Alphas

- •Outputs that depend on the transition
- •8 alphas (4 user defined)
- •Example: sample_din

Betas

- •Outputs that depend on the state
- •31 Betas (4 user defined)
- •Example: data_count_incr

Lambdas

- Inputs that go into transition equations
- •32 Lambdas (16 user defined)
- •Can use 4 per transition
- •Example: data_comp

GPIF II Hardware: Control signals

•OE: Output Enable

 Provides control over the output drivers that determine if the bus is driven or tristate

WE: Write Enable

•Disables output drivers

DLE: Data Latch Enable

•Allows control over latching data from the data bus

Normally combined with WE

ALE: Address Latch Enable

Allows control to latch address values

DRQ: DMA Request

 Provides a DMA request output that is controlled by state machine and responds to DACK signal

DACK: DMA Acknowledge

Not a separate function but is used to control behaviour of DRQ

Triggered by INTR_CPU action and other GPIF events

Handled in firmware with callback function

• Void CyFxGpifCB (CyU3PGpifEventType event,uint8_t currentState)

INTR_CPU generates a CYU3P_GPIF_EVT_SM_INTERRUPT event

Passes a currentState parameter which indicates the state of the State Machine

•State numbers are assigned to state names from GPIF II designer in H file

- Implemented in GPIF II hardware
- Can be reset or updated by state machine
- Can generate limit or match signals as a trigger

Address Counter

•Can check if the counter matches the current address

Control Counter

•Can check if the counter matches the current control inputs

Data Counter

•Can check if counter matches current data

GPIF II Designer: Design Work Flow

- **1.** Design State Machine
- 2. Setup GPIF II interface in GPIF II Designer
- **3.** Create State Machine in GPIF II Designer
- 4. Build design into C header file
- 5. Simulate State Machine
- 6. Integrate design into C firmware application code

GPIF II Designer: Supplied interfaces

•7 Cypress supplied interfaces

Even with supplied interface it is still flexible

GPIF II Designer: Interface Settings

Peripherals

- Enabling I2C, SPI, UART, and I2S will have effect on GPIF II port
- The peripheral selection is only used by the tool to calculate the available pin count. User is responsible for setting up the FX3 I/O Matrix in the firmware application code.

Master and Slave

Initiate transfer or respond to a transfer

Interface clocking

- Synchronous or Asynchronous
- Internal or External

Control Signals and GPIOs

- GPIF II state machine inputs/output
- Unused control signals can be override by firmware

DMA flags

• Special hardware flags controlled by DMA engine not GPIF II

 State machine canvas allows you to drag and drop states and transitions

 Transition based upon internal GPIF II signals as well as user defined signals

Actions are macros that simplify GPIF II outputs

GPIF II Designer: Actions

Actions control internal and external outputs

Relevant actions

LOAD_DATA_COUNT

- •Sets up a hardware counter
- •Can be configured in a variety of ways
- •We will use it to keep track of data in our buffer

COUNT_DATA

•Increment data counter

IN_DATA

•Sample data from data bus and send it to a socket or register

INTR_CPU

•Generates CPU interrupt to alert FX3

•FX3 can query which state the GPIF is in when it receives the interrupt

Details about more actions can be found in the GPIF II guide

GPIF II Designer: API Calls

CyU3PGpifLoad

•Load GPIF II waveform descriptor into FX3 memory

CyU3PGpifSMStart

•Start GPIF II from initial state

CyU3PGpifSMSwitch

•Transitions state machine into a new state without stopping the machine

CyU3PGpifSMControl

•Pause and Resume GPIF II

GPIF II Designer: Simulation

State Machine Path:

The path that is followed through the state machine due to a series of inputs

ERE Create Scenar	io							
Scenario Name:	READ							
Current Thread:	Thread0	~						
Select START state:	START	~						
Define state navigation path:								
START								
READ_WAIT READ_WAIT READ_WAIT READ_DONE IDLE								
READ_START READ_WAIT READ_WAIT READ_WAIT READ_WAIT								
► READ_WAIT ► READ_WAIT ► READ_WAIT								
► READ_DONE → IDLE								
					ОК	Cancel		

GPIF II Designer: Simulation

- Define State Machine Path not inputs
- •GPIF II Designer creates input signals based on path
- Displays output signals
- Determines Current State

Tour completed outside of powerpoint

http://www.cypress.com/?rID=62036

Lab 1 : Objectives

- Setup IO configuration in GPIF II Designer
- Layout complex state machine in GPIF II Designer
- Run timing simulation in GPIF II Designer
- Build GPIF II Designer project
- Integrate GPIF II header file into FX3 firmware

Lab 1: Physical Interface

3 inputs

•Handled by GPIF II so no firmware intervention necessary on these signals

Data bus

•Goes directly into DMA through the GPIF II Hardware

I output

•Handled in firmware not GPIF descriptor

I2C control lines

Control image sensor configuration

Handled in firmware

Lab 1: Timing Diagram

- Frame valid (FV) high during active frame
- Line valid (LV) high during active line
- Pixel Clock (PCLK) always running
- PCLK can be used as clock source for GPIF II
- Data only valid when LV and FV are both high
- Data latched on positive clock edge of PCLK

Lab 1: Design Considerations

Lab 1: Interface Definition

- I2C enabled for communications
- FX3 is in a slave role
- Synchronous because we will be using a clock
- External Clock source since clock is coming from image sensor
- Data format is little endian out of image sensor
- •8 bit data bus width from image sensor with no address lines
- 2 input: FV, LV
- I output: nReset

Lab 1: State Machine

FX3 Data Sheet

Application Notes

- AN68914 EZ-USB FX3 I2C Boot Option
- AN73150 Booting EZ-USB FX3 over High-Speed USB
- AN73304 Booting EZ-USB FX3 over Synchronous ADMux Interfaces
- AN70193 EZ-USB FX3 SPI Boot Option
- AN70707 EZ-USB FX3 Hardware Design Guidelines and Schematic Checklist
- AN65974 Designing with the EZ-USB FX3 Slave FIFO Interface
- AN68829 Slave FIFO Interface for EZ-USB FX3: 5-Bit Address Mode
- AN75705 Getting Started with FX3
- AN75432 USB 3.0 EZ-USB FX3 Orientation
- AN76348 Migrating from EZ-USB FX2LP Based Design to EZ-USB FX3 Based Design

Videos

- Cypress EZ-USB FX3 Technology Overview
- EZ-USB FX3 Maximum Throughput Demo
- GPIF II Designer Introduction

Software Development Kit

