Choosing the Optimal Source Measurement Unit Instrument for Your Test and Measurement Application

by

Mark A. Cejer, Marketing Director
Jonathan L. Tucker, Sr. Marketing Manager
Lishan Weng, Applications Engineer
Keithley Instruments, Inc.

Stated in the simplest possible terms, a source measure unit (SMU) instrument integrates the capabilities of a precision power supply (PPS) with those of a high-performance digital multimeter (DMM) in a single instrument. For example, SMU instruments can simultaneously source or sink voltage while measuring current, and source or sink current while measuring voltage (Figure 1). They can be used as stand-alone constant voltage or constant current sources, as stand-alone voltmeters, ammeters, and ohmmeters, and as precision electronic loads. Their high performance architecture also allows using them as pulse generators, as waveform generators, and as automated current-voltage (I-V) characterization systems.

![Figure 1. Basic SMU instrument topology.](image)

The real benefit of SMU instruments for test and measurement applications comes from their ability to source and measure signals simultaneously. When compared with using separate instruments to handle each function, SMUs’
simultaneous operation provides for faster test times, simplified connections, improved accuracy, less complex programming, and a lower cost of ownership (COO). Their tight integration lets them protect the device under test (DUT) from damage due to accidental overloads, thermal runaway, and other dangers. It also makes SMU instruments ideal for characterizing and testing semiconductors and other non-linear devices and materials.

SMU vs. Power Supply

Given that an SMU instrument integrates the functions of a power supply with a digital multimeter, how exactly does the performance of an SMU’s source differ from that of a typical power supply?

- *Greater speed and precision:* SMUs are optimized for both speed and precision, so they can offer significantly faster rise times and much lower measurement uncertainty than power supplies. SMUs’ settling times are measured in microseconds compared to the milliseconds that power supplies require to settle on their programmed value. Similarly, an SMU’s measurement uncertainty is measured in nanoamps vs. microamps for typical power supplies.

- *Wider operating range and better resolution:* Because of their outstanding low current capability, SMUs typically offer much wider operating ranges with greater resolution than power supplies, so they are suitable for a wider range of test and measurement applications.

- *Four-quadrant rather than two-quadrant operation:* As illustrated in Figure 2, a typical power supply can only source voltage and/or current. In other words, it provides only two-quadrant operation (in quadrants I and III), but an SMU can provide full four-quadrant operation because it’s capable of sourcing and sinking power, acting as both power supply and an electronic load. During source or sink operation, the SMU can simultaneously measure voltage, current, and resistance. This operating flexibility can be especially valuable when characterizing batteries, solar cells, or other energy-generating devices.
4 Quadrant Operation

2602B SourceMeter Instrument

Typical Power Supply

Source + Sink

Source Only

II

III

IV

Figure 2. A power supply (right) offers only two-quadrant operation; an SMU instrument (left) can source and sink power in all four quadrants.

- **Built-in sweep capabilities**: The various sweep capabilities SMUs offer can simplify programming a test’s source, delay, and measure characteristics, significantly boosting testing productivity. All sweeps can be configured for single-event or continuous operation to simplify the process of capturing the data needed to characterize and test a wide range of devices. Sweeps can also be used in conjunction with other throughput-enhancing features like Hi-Lo limit inspection and digital I/O control to create high speed production test systems.

 - **A fixed level sweep** outputs a single level of voltage or current with multiple measurements. This is typically done to bias or stress devices. Various types of fixed level sweeps can be generated, depending on the needs of the application.

 - **Linear/Log sweeps** are used to ramp up or ramp down a level of voltage or current from a starting level, changing in equal linear steps, or on a logarithmic scale until the stopping source level is reached. Linear sweeps are routinely used for testing devices like resistors, transistors, diodes, and much more.

 - **Pulsed sweeps** are often used to limit the amount of power that goes into a material sample or device over time and to minimize self-heating effects that could otherwise damage semiconductors and light emitting diodes (LEDs), experimental materials such as graphene, or other fragile nanotechnology-based devices.

 - **Custom sweeps** simplify creating application-specific waveforms.

SMU vs. DMM

Because of its built-in sourcing capabilities, an SMU can minimize overall measurement uncertainty in many applications. The first diagram in Figure 3 shows the basic voltmeter configuration for the SMU. Here, the built-in current source can be used to offset or suppress
any system-level leakage currents (such as cable noise) that could cause unwanted errors in voltage measurement applications.

For current measurements, the SMU’s built-in source and “feedback ammeter” design work together to keep voltage burden low and enable low current measurements to sub-picoamp levels. DMMs do not have the built-in source and typically have “shunt ammeter” designs that typically limit low current capabilities to microamp or nanoamp levels.

Finally, for resistance measurements, the SMU architecture offers full flexibility over the amount of current or voltage sourced to the DUT. DMMs have fixed current source values that are dependent on the range being used to measure resistance. SMUs offer fully programmable source values for measuring resistance. This can be valuable for protecting DUTs or for measuring extra high or extra low resistances. For high resistance measurements, the source voltage method is preferred; for low resistance measurements, the source current method is best. Some SMUs have a six-wire ohms feature that “guards out” the effects of unwanted parallel resistance paths in the circuit.

SMU Measurement Terminology

One of the first considerations in choosing an SMU instrument must be the quality of the measurements it produces. Poor measurement integrity can cause those using the data produced to draw incorrect conclusions about the performance of a given DUT. In R&D, this can mean an imperfect understanding of a device’s operating parameters, leading to unnecessary rework and costly time-to-market delays. In production test, inaccurate measurements can result in rejection of good parts (false failures) or acceptance of bad ones, either of which can cause poor yields, customer dissatisfaction, and other problems.

When considering an SMU instrument’s measurement integrity, keep several key terms in mind: accuracy, repeatability or stability, resolution, sensitivity, and integration time.
Accuracy is defined as the closeness of agreement between the result of a measurement and its true value or accepted standard value. Imagine you are shooting arrows at a target: the accuracy of your shots would be defined by how close the arrows come to the bullseye.

Repeatability refers to the closeness of agreement between successive measurements carried out under the same conditions. Although repeatability is not typically specified on an instrument’s data sheet, it can usually be easily determined during an instrument demonstration or evaluation. Figure 4 illustrates the concepts of accuracy vs. repeatability.

![Accuracy vs. Repeatability](image)

Figure 4. In the target on the left, the shooter had high accuracy but poor repeatability. The target on the right shows high repeatability but poor accuracy.

Resolution is defined as the smallest portion of the signal that can be observed. The resolution of an instrument is determined by the number of digits it can display on the front panel or send to a PC over the communication bus. This can often be changed by pressing a front panel button or by sending a programming command to the instrument. In Figure 5, the user can select between 3, 4, 5, and 6 digits on the display.

![Adjusting Resolution](image)

Figure 5. Adjusting the Model 2450 SMU instrument's resolution.

An SMU instrument’s usable maximum resolution depends on its overall accuracy and the resolution of its analog-to-digital converter (ADC). For example, no one would produce a 6½-digit instrument with an 8-bit ADC and 5% accuracy because most of the digits being
displayed would be meaningless. In general, however, the higher the resolution is, the higher the bit count on the ADC and the higher the accuracy will be.

The sensitivity of a measurement is the smallest change in the measured signal that can be detected. The ultimate sensitivity of an instrument depends both on its maximum resolution and its lowest measurement range. For example, a 6½-digit SMU with a bottom range of 1μA would have 1pA sensitivity. However, depending on that instrument’s accuracy, that sensitivity might not be particularly useful.

Measurement instruments employ either (or both) of two basic types of analog-to-digital converters: integrating ADCs and digitizing ADCs. In general, an integrating ADC will offer higher accuracy because it cancels out the unwanted effects of AC noise from the power line. The instrument’s integration rate, which is specified in NPLC (Number of Power Line Cycles), is adjustable. To reject AC noise, the NPLC must be equal to or greater than 1. Integrating the measurement over multiple power line cycles will reject this noise still further and thereby provide a more accurate measurement. However, this noise rejection capability comes at the expense of reading speed; one power line cycle takes 16.7ms at 60Hz or 20ms at 50Hz. Setting the NPLC to a fraction of a line cycle will provide faster measurements at the expense of more noise or lower accuracy (Figure 6).

![Figure 6. ADC integration time comparison (NPLC).](image)

That means the reading rate and measurement speed of a highly accurate instrument like an SMU are determined by its NPLC setting. However, an ADC’s reading rate is only one of many factors that affects an SMU instrument’s true speed; other factors that can affect overall throughput include function and range change times, trigger in and out times, settling times, and program execution times.
Key Considerations for Selecting an SMU Instrument

When evaluating a specific SMU instrument for a specific application, it’s essential to consider some key characteristics:

- Ease of use
- System-level speed/throughput
- Source resolution vs. stability
- Measurement settling time, offset error, noise
- Cabling and connections

Let’s examine each of these characteristics in depth.

- **Ease of use.** In other words, how we interact with the instrument. Instrumentation users are accustomed to learning the front panel of their measurement tools through the use of plain text, buttons, and keys. Complex instruments could take from days to weeks to learn how to use the instrument in a way that best serves their application. Learning curves could be extensive, resulting in reduced productivity and efficiency, especially for those individuals who are not necessarily first time users of SMUs.

 With advances in touchscreen technology, capacitive touchscreen graphical user interfaces (GUI) on bench instrumentation can significantly reduce the learning curve. But above all, touchscreen GUIs significantly improve an instrument’s ease of use for an instrument.

![Figure 7. Advanced capacitive touchscreen GUI on Keithley's Model 2450 SourceMeter SMU Instrument.](image)
The use of touchscreen technology is also beneficial in reducing the working space of the instrument, such that the display can provide larger numerical values, more details about the measurement, or even graphing capabilities, something that is difficult with single- or dual-line displays. Additionally, because GUI systems highly leverage software to define what is displayed, screens can be quickly changed as required for different applications.

Reaching out for what you want is an instinctive gesture. Using touch is just as simple: you simply point at what you want. Although with pushbutton-based instruments, some users may still hesitate to push a button if the front panel has too many buttons to push and it is unclear what the button will do. With a touchscreen approach, users feel comfortable that they cannot "do anything wrong"; they instinctively understand how to use the interface. Touchscreen systems make everyone an "expert user" from the first touch, whether a new instrument user or the most experienced user.

Touch technology is intuitive and highly learnable. Compared to traditional training methods, using touchscreens can drastically reduce training time, increase operator accuracy, and improve overall operational efficiencies. This helps to drive down costs.

- **System-level speed** or **throughput**. In other words, how quickly can you get a final measurement or set of measurements (such as a suite of current vs. voltage parameters) back to the PC controller? For example, let’s consider a typical diode or LED test, which will consist of three measurements—forward voltage, reverse voltage, and reverse current—each of which is typically compared to upper and lower limits. The part is considered “bad” if any one parameter fails. The objective is to test this part as quickly as possible without sacrificing accuracy in order to minimize the cost of test.

 The challenge is that all the source and measure values are different. Although the readings/second specification is important, a range or function change must occur before a reading can be taken. This type of test isn’t about taking multiple readings of the same value repeatedly; it’s about taking single-point measurements at different source-measure levels. Therefore, the speed of the ADC (the NPLC spec) alone won’t be a good indication of how quickly the instrument can test this part. One should also consider a variety of other operating parameters, including trigger in time, range change time, function change time, source settling time, trigger out time, and command transfer, processing, and execution time.

 Figure 8 shows a comparison of the actual test results from a Keithley Series 2600B System SourceMeter® instrument with that of another brand of SMU instrument. The data shows the number of diodes tested per second, so the higher the number the higher the speed. This is a true measure of test throughput.
<table>
<thead>
<tr>
<th></th>
<th>1 NPLC</th>
<th>0.1 NPLC</th>
<th>0.01 NPLC</th>
<th>0.001 NPLC</th>
<th>0.00048 NPLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Keithley SMU instrument</td>
<td>8.1</td>
<td>12.4</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Keithley Series 2600B</td>
<td>13.3</td>
<td>33.2</td>
<td>37.8</td>
<td>38.2</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Most accurate — Least accurate

Figure 8. Test results: parts per second

Recall that the larger the NPLC is, the more accurate the measurement will be (corresponding to lower speed). Note how reducing the NPLC setting to less than 0.1 NPLC does not make a significant difference in overall test time per part. In typical applications in which multiple parameters are being tested, the speed of other characteristics, such as range or function change time, triggering time, bus communication time, or program execution time, start to dominate. Even at 1 NPLC, these other characteristics, if not optimized by the SMU instrument manufacturer, can have a big impact on overall test throughput. The Keithley Series 2600B System SourceMeter instrument in this example can test over 60% more parts per second at 1 NPLC and close to 3x more parts at the other NPLC settings.

Although range and function change times are important, it’s also possible to obtain major breakthroughs in system throughput by embedding then executing the majority of the test program within the SMU instrument itself. This eliminates most of the communications bus traffic, speeds up triggering, and optimizes command processing time. Using this type of feature is a major reason an SMU instrument running at 0.1 NPLC can be as much as four times faster and much more accurate than an SMU running at 0.00048 NPLC in real-world applications.

Keithley’s Series 2600B System SourceMeter and the Model 2450 Advanced Touchscreen SourceMeter instruments employ a feature known as Test Script Processing, or TSP® technology. TSP technology optimizes command transfer, command processing, and command execution times by embedding the actual test program (or script) into the instrument’s non-volatile memory. However, TSP technology goes far beyond simply storing and executing a sequence of standard SCPI commands. TSP technology is based on Lua, a powerful BASIC-like scripting language. Functions like “do” loops, variables, If-Then-Else statements, and more are all supported in Lua. Therefore, TSP scripts are just as powerful as traditional test programs residing in PCs but with the advantage of actually being embedded in the instrument to optimize overall test speed.
• An SMU instrument’s *sourcing resolution* and *output stability* are also key to its overall performance. Let’s look at the relationship between *source resolution* and *output stability*.

When evaluating the performance of an SMU instrument’s source, it’s important to look beyond the specification sheet and the instrument’s source readback display. The source’s actual output performance may be very different from its specified resolution or from its displayed value, which may require instrument specifiers to do their own testing to verify it.

Based solely on an SMU instrument’s specification sheet, one might conclude that the SMU instrument with the greatest programming resolution is the most accurate. The programming resolution determines the output’s “fineness” of adjustment. In *Figure 9*, note that the non-Keithley SMU offers 50 times greater programming resolution than the Model 2450 SourceMeter instrument.

<table>
<thead>
<tr>
<th>Programming Resolution 20V Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Keithley 6½-digit SMU instrument</td>
</tr>
<tr>
<td>Keithley Model 2450</td>
</tr>
</tbody>
</table>

Figure 9. Programming resolution based on specification sheet.

Furthermore, based on the SMU’s “source readback” value displayed on the front panel or over the bus (*Figure 10*), one might conclude that the SMU showing readback values closest to the programmed values is the most stable and therefore the better choice. In this example, note that the non-Keithley SMU shows 0µV of peak-to-peak variation when sourcing a 10.001V signal, while the Model 2450 shows 29.6µV.

<table>
<thead>
<tr>
<th>Source Value = 10.001 V</th>
<th>Source Readback Displayed Value (pk-pk of variation)</th>
<th>Actual Measured Value of Source Output (pk-pk of variation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Keithley 6½-digit SMU instrument</td>
<td>0.0 µV</td>
<td>438.7 µV</td>
</tr>
<tr>
<td>Keithley Model 2450</td>
<td>29.6 µV</td>
<td>29.0 µV</td>
</tr>
</tbody>
</table>

Figure 10. Actual output stability.

However, the picture changes dramatically when we measure the actual source output using a separate instrument. To obtain the data in the right-most column of *Figure 9*, we chose Keithley’s Model 2002 8½-digit digital multimeter to measure the source output of each SMU directly. The Model 2002 is one of the most accurate...
DMMs available on the market and is used by many calibration labs, which makes it a good choice for high accuracy applications of this type.

To view the stability of the source outputs, we made 100 measurements using the Model 2002 at 10 NPLC to ensure maximum accuracy. We observed that the non-Keithley 6½-digit SMU (*Figure 11a*) actually has almost 0.5mV peak-to-peak variation when sourcing a 10.001V signal. This is very different from the 0μV variation its source readback display indicates. In addition, this error is more than 40 times greater than the 10μV programming resolution. The Keithley Model 2450 SourceMeter Instrument (*Figure 11b*) actually has more than 15 times better output stability than the non-Keithley 6½-digit SMU (29.0μV vs. 438.7μV).

Figure 11a. Actual source performance: programming resolution vs. stability for non-Keithley 6½-digit SMU.
Figure 11b. Actual source performance: programming resolution vs. stability for Keithley Model 2450 SourceMeter instrument.

For the non-Keithley SMU, note that the readback voltage is exactly the same as the programmed voltage. However, the actual measured voltage is quite different from the readback voltage or the programmed voltage. The SMU readback indicates the output voltage to be exactly 10.001V; in reality, the output voltage is somewhere between 10.0014V and 10.0018V. This is a significant amount of error that the user would not normally see indicated on the SMU display. In addition, the fineness of adjustment of the programming resolution (10μV) is overwhelmed by the inherent error of the source, so this level of resolution is unrealizable.

In contrast, for the Keithley Model 2450 SourceMeter instrument, note that the readback voltage closely tracks the actual voltage measured at the output terminals. You’ll also see that the readback voltage differs from the programmed voltage. One would expect to see a difference, given the source’s accuracy specs. These kinds of results should give you confidence that the voltage actually being delivered to the DUT is that which is expected. In addition, with the Model 2450, the source error does not overwhelm the programming resolution, as it does for the non-Keithley SMU. That means users can have the confidence to take full advantage of the fineness of adjustment of the programming resolution.

As this comparison shows, an SMU instrument’s programming resolution specification is not a good indication of its stability and overall performance. It also shows that the source readback results can be highly questionable. Therefore, when evaluating an SMU for your application, be sure to do some testing for yourself.
• **Measurement settling time, offset error, and noise** can have a big impact on an SMU instrument’s performance, particularly in low current applications. The example illustrated in **Figure 12** shows the results of two SMU instruments sourcing 200V with nothing connected to the input terminals while measuring the resulting current using each instrument’s built-in ammeter feature. This comparison offers a good indication of each instrument’s fundamental low current performance, and it’s an easy test to recreate on the test bench.

![Open circuit offset current at 200V, 1nA range](chart)

Figure 12. Comparison of measurement settling time, offset error, and noise.

Note that the non-Keithley 6½-digit SMU (the blue line) settles to its specified offset error of 50pA in about four seconds. The “bumpiness” of the data curve indicates measurement noise. In contrast, the Keithley Model 2636B (the red line) settles to its specified offset error of 0.12pA (120fA) in about half a second. The smooth data curve indicates a distinct lack of measurement noise. So, based on the data, it’s obvious the Model 2636B will deliver a better measurement faster. In fact, at the point when the Model 2636B is settled and capable of providing in-spec sub-picoamp measurements, the non-Keithley SMU still has nanoamp-level errors. In addition, if you were to take a series of measurements over time, the Model 2636B would provide more consistent results due to its fast, flat, and noise-free settling.
Note that, in either case, when measuring low current, the settling times drive overall test time. This is due to R-C time constants inherent in the overall architectural design of any SMU instrument. Therefore, an ADC running at sub-line cycle integration (for example, at 0.001 NPLC) won’t provide a faster measurement.

Low current performance is very important for many semiconductor and optoelectronic applications, as well as in materials research applications such as nanoscale devices, graphene, etc. To understand the true measurement performance of an SMU instrument, it’s important to look beyond “headline” terms like 6½ digits or 10fA resolution. Figure 13 offers another comparison of the low current performance of the Model 2636B with the non-Keithley 6½-digit SMU.

<table>
<thead>
<tr>
<th>SMU</th>
<th>Lowest range</th>
<th>Total accuracy*</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Keithley</td>
<td>10nA</td>
<td>±(0.10% + 50pA)</td>
<td>10fA</td>
</tr>
<tr>
<td>Keithley 2636B</td>
<td>100pA</td>
<td>±(0.15% + 120fA)</td>
<td>1fA</td>
</tr>
</tbody>
</table>

*Total accuracy = Gain accuracy (%) + Offset accuracy

The non-Keithley SMU is specified as having 6½ digits and 10fA resolution. However, a closer look at the manufacturer’s specs shows that its bottom current range is 10nA and its offset accuracy is 50pA. The total accuracy of most instruments is calculated as the gain accuracy plus offset accuracy. Gain accuracy is typically given in % of signal, and offset accuracy is usually a fixed amount.

The Model 2636B is specified as having 1fA resolution. The spec table in Figure 13 shows that it has a 100pA range and 120fA of offset accuracy. Obviously, although both the Keithley and non-Keithley SMU instruments can appear similar when looking at the “headline” specs, the Model 2636B actually has 400 times better offset accuracy, so it has much better sensitivity, and is capable of far more accurate low current measurements.
• **Cabling.** Using triaxial cables rather than the more common coaxial cables is essential to achieving optimal low current measurement performance. Triaxial cables have an extra shield that coaxial ones don’t, which ensures lower current leakage, better R-C time constant response, and greater noise immunity. In addition, the better R-C response allows for faster settling when measuring higher levels of current.

Figure 14 illustrates how a triaxial cable works with the SMU instrument’s driven guard to prevent the leakage resistance of the cable from degrading the low current measurements. In the circuit on the top, the leakage resistance of the coaxial cable is in parallel with the device under test, creating an unwanted leakage current. This leakage current will degrade low current measurements.

Coax Cable
a) Unguarded Circuit

\[R_L = \text{Coax Cable Leakage Resistance} \]
\[I_L = \text{Leakage Current} \]
\[R_{DUT} = \text{Resistance of Device Under Test} \]
\[I_M = I_{DUT} + I_L \]

Triax Cable
b) Guarded Circuit

\[R_{L1} = \text{Triax Cable Inside Shield Leakage Resistance} \]
\[R_{L2} = \text{Leakage Resistance Between Shields} \]
\[R_{DUT} = \text{Resistance of Device Under Test} \]
\[I_M = I_{DUT} \]

Figure 14. Cable and connection considerations.
In the circuit on the bottom, the inside shield of the triaxial cable is connected to the guard terminal of the SMU instrument. Now this shield is driven by the SMU’s unity-gain, low impedance amplifier (Guard). The difference in potential between the Force/Output Hi terminal and the Guard terminal is nearly 0V, so the leakage current is eliminated.

Due to their high level of performance, triaxial cables can be expensive, so when specifying your final test configuration or comparing price quotations from various manufacturers, make certain they are included with the SMU instrument. If they are considered an optional accessory instead, you could be in for a costly surprise. In addition, some SMU instruments require optional adapters to convert more common input connectors, like banana jacks, to use triaxial cables. Again, be sure to understand and specify your cabling carefully, because it can easily add more than $2000 to the total cost of an SMU instrument.

Conclusion

The integrity of the measurements an SMU instrument produces must always be a primary selection consideration. Poor measurement integrity can produce costly errors in both R&D and production test applications, leading to expensive rework, time-to-market delays, poor yields, customer dissatisfaction, and other problems. A careful evaluation of an SMU’s accuracy, repeatability, resolution, sensitivity, and integration time is critical. Other key considerations when selecting an SMU instrument include system-level throughput, source stability, measurement settling time, offset error, and noise, and finally, cabling and connection issues.

Biographical Notes

Mark A. Cejer is a marketing director for Keithley Instruments, Inc., which is part of the Tektronix test and measurement portfolio. He joined Keithley in 1991. During his tenure, he has served in a variety of positions, including marketing engineer, product/marketing manager, regional sales manager, and business manager. In his work, he has helped define and launch a number of Keithley’s most popular instruments, including many of the company’s SourceMeter® instruments, digital multimeters (DMMs), and datalogging products. Before joining Keithley, he served in several project management and electrical engineering positions in the electronics industry with emphasis on aerospace/defense. He holds a BSEE from the University of Akron (Akron, Ohio) and an MBA from Case Western Reserve University (Cleveland, Ohio.) His technical interests include compound semiconductors for power, LED, and energy efficiency applications, as well as optical devices, sensors, and discrete semiconductors.
Jonathan Tucker is a senior marketing and product manager for Keithley Instruments, which is part of the Tektronix test and measurement portfolio. He joined Keithley in 1987. During his tenure, he has served in a variety of positions, including manufacturing test engineer, applications engineer, applications manager, product manager, and business development manager. He holds a BSEE from Cleveland State University (Cleveland, Ohio) and an MBA from Kent State University (Kent, Ohio). He was a 2007 recipient of the Nano Science and Technology Institutes (NSTI) Fellow Award for outstanding contributions towards the advancement of the Nanotechnology, Microtechnology, and Biotechnology community. Jonathan is a Senior Member of IEEE and was recently the IEEE Nanotechnology Council Standards Committee Chairman. His technical interests include nanotechnology, LED and energy applications, software defined radio technology, and JAVA/HTML web programming.

Lishan Weng is an applications engineer at Keithley Instruments, Inc. in Cleveland, Ohio, which is part of the Tektronix test and measurement portfolio. Weng is interested in new measurement instruments/techniques related to graphene. She holds master's degrees in both electrical engineering and physics from Purdue University, where her research focused on graphene devices and p-type GaAs/AlGaAs heterostructures. Her previous research also includes carbon nanotube based nanolithography and tunable graphene oxidation, as well as quantum transport measurement and a specialization in AFM lithography.