Understanding Essential Tools and Techniques for Power Conversion Efficiency Testing
Understanding Essential Tools and Techniques for Power Conversion Efficiency Testing

Introduction
Wherever electrical power is generated, transmitted, or consumed, it has to go through at least one power conversion process. Whether the application involves stepping voltages up or down, converting from AC to DC or DC to AC, or converting power in some other way, ensuring the efficiency of these processes is essential. This guide outlines the latest tools and techniques for testing the power conversion efficiency of a wide variety of components, subassemblies, and systems.

Table of Contents
Selecting the Right Power Conversion Device ...3
High Resolution, High Accuracy DC Measurements for Component Selection and Characterization4
SourceMeter® Source Measure Unit (SMU) Instruments Selector Guide ..6
High Accuracy AC Measurements for Power Conversion Design Characterization ..7
Design Characterization: Switching Measurements ...7
Design Characterization: Magnetics Measurements ..8
Design Characterization: Power Line Measurements ..9
Tektronix Oscilloscopes for Challenging Converter Designs ..10
Oscilloscope Selector Guide ...11
Verifying Overall Power Conversion Performance ...12
Power Analyzer Selector Guide ..13

Speaking the Language of Power Conversion
Power conversion products are typically made up of the same six building blocks: power factor correction circuits, rectifiers, filters, switching transistors, transformers, and feedback loops. The power factor correction circuit shapes the input current to maximize the real power available from the AC line by aligning the voltage and current phase to make power delivery more efficient and minimize loss on the grid. The rectifier converts a sine wave to a pulsating wave. A filter smooths the wave to DC, at which point it passes through a switching transistor that creates a square or pulse wave. The pulse wave is often passed through a transformer, which provides filtering and isolation and can shift voltage level. At that point, the signal is filtered again to achieve a flat DC signal. Finally, a feedback loop adjusts the output voltage to align with a reference voltage.

Other important power converters include:
- An inverter converts DC power to AC power so it can be used by an electrical/electronic circuit or fed into the power grid.
- A DC-DC converter converts DC power to a different DC voltage/current level.
- A cycloconverter/frequency converter converts AC electricity to a different frequency (often lower) AC wave. It's also used to convert from three-phase to single-phase power, and vice versa.
Selecting the Right Power Conversion Device

The first step in power conversion design is selecting the right components for the application. Although component specification sheets typically specify performance at a few distinct current and voltage levels, they often don’t match the conditions of the design under consideration. You may need to choose from multiple vendors or assess normal component-to-component variations from a single vendor. Many designs have variations in the power levels provided to individual components, which demand stress testing of the component under consideration to assess the impact of these variations. Keeping components within temperature limits for each design requires applying known power levels to the component while evaluating its safe operating area parameters.

You can’t resolve these questions by reading a specification sheet; you need precision DC tools capable of characterizing a potential component’s operation at the actual design power levels and in the environment in which they’ll be used. Source measure unit (SMU) instruments have proven their usefulness for characterizing and selecting components because they integrate all the source and measure functions necessary to validate that components under consideration perform as specified and to characterize their operation under final design conditions:

- Current-voltage (I-V) curves
- Device characteristics (device gain, leakage, on resistance, off resistance, forward voltage, reverse voltage, etc.)
- Input power/output power (module)
- Line and load regulation
- Stress test for reliability and failure analysis (thermal profiling, safe operating area, breakdown voltage)

Diodes & Rectifiers
- Forward Voltage (Vf)
- Reverse Voltage (Vr)
- Reverse Leakage (Ir)

Bipolar Transistor & IGBTs
- Saturation Voltage (Vcesat)
- Family of Curves (Vce-lc)
- Breakdown Voltages (Vceo, Vebo, Vcbo)
- Leakage Currents (ices, lebo)
- DC Current Gain (hfe)

MOSFETS & JFETS
- Family of Curves (Vds-id)
- Transfer characteristics (Vgs-id)
- On-resistance (Rdson)
- Breakdown voltages (BVdss, BVdgg)
- Leakage Currents (Idss, Igss)

Get advice on optimizing your power conversion test applications.
Send us your question or join the discussion on our application forum.
High Resolution, High Accuracy DC Measurements for Component Selection and Characterization

The Model 2450 Advanced Touchscreen SourceMeter® SMU Instrument is the latest addition to Keithley's rapidly expanding SMU instrument line. An intuitive Touch, Test, Invent® design means you can learn faster, work smarter, and invent easier. Its combination of a five-inch, full-color, high resolution touchscreen and simple icon-based menu structure speeds measurement configuration.

- Combines the capabilities of analyzers, curve tracers, and I-V systems at a fraction of their cost
- Five-inch color touchscreen display
- Source and measure up to 2000V/1A
- 0.012% basic measure accuracy with 6½-digit resolution
- Enhanced sensitivity with 10nV and 10fA resolution
- Four “Quickset” modes for fast setup and measurements

Keithley’s Series 2600B System SourceMeter® SMU Instruments offer single- and dual-channel models that combine the capabilities of a precision power supply, true current source, 6½-digit digital multimeter (DMM), arbitrary waveform generator, pulse generator, and electronic load — all into one tightly integrated instrument. Because these instruments have fully isolated channels that do not require a mainframe, they can be easily reconfigured and re-deployed as new test applications evolve.

- Family of models offers industry’s widest dynamic range: 10A pulse to 0.1fA and 200V to 100nV
- Built-in, Java-based test software enables true plug & play I-V characterization and test through any browser
- Test script processor (TSP®) technology embeds complete test programs inside the instrument for best-in-class system-level throughput
- TSP-Link® expansion technology for multi-channel parallel test without a mainframe
- USB 2.0, LXI-C, GPIB, RS-232, and digital I/O interfaces
- Optional ACS-Basic semiconductor component characterization software

Get advice on optimizing your power conversion test applications.

Send us your question or join the discussion on our application forum.
High Resolution, High Accuracy DC Measurements for Component Selection and Characterization

Model 2651A High Power/High Current System SourceMeter® Instrument simplifies characterizing high current components with unprecedented power, precision, speed, flexibility, and ease of use. Its unique ability to generate sub-100μs pulses at 2000W enables precise characterization of power semiconductors without the typical self-heating issues that can distort results or destroy devices.

- Source or sink 2,000W of pulsed power (±40V, ±50A), 200W of DC power (±10V@±20A, ±20V@±10A, ±40V@±5A)
- Easily connect two units (in series or parallel) to create solutions up to ±100A or ±80V
- 1pA resolution enables precise measurement of very low leakage currents
- 1μs per point (1MHz), 18-bit digitizing A-to-D converter accurately characterizes transient behavior
- Combine with Model 2657A High Power/High Voltage System SourceMeter Instrument, Model 8010 Test Fixture, and ACS Basic Software for a complete characterization system

Model 2657A High Power/High Voltage System SourceMeter® Instrument adds high voltage to Keithley’s SMU instrument solutions. The Model 2657A has the unique ability to source, sink, and measure up to 3kV/1fA for precise characterization of a wide variety of power semiconductors.

- Source or sink up to 3000V @ 20mA or 1500V @ 120mA to capture important parametric data that other equipment can’t
- 1fA measurement resolution for characterizing the low leakages of next-generation devices
- 1μs per point (1MHz), 18-bit digitizing A-to-D converter accurately characterizes transient behavior
- Combine with Model 2651A High Power/High Current System SourceMeter Instrument, Model 8010 Test Fixture, and ACS Basic Software for a complete characterization system

To learn more about what Keithley SMU instruments can offer your component characterization and selection process, download:

- Maximize Speed and Throughput for Semiconductor Measurements application note
- Optimizing Reliability Testing of Power Semiconductor Devices and Modules application note
- Choosing the Optimal Source Measurement Unit Instrument white paper

Get advice on optimizing your power conversion test applications. Send us your question or join the discussion on our application forum.
SourceMeter® SMU Instruments Selector Guide

Feature 6430 Low I SourceMeter

<table>
<thead>
<tr>
<th>Feature</th>
<th>6430 Low I SourceMeter</th>
<th>2430 High Power SourceMeter Instrument</th>
<th>2410 High V SourceMeter Instrument</th>
<th>2420 / 2425 / 2440 High I SourceMeter Instruments</th>
<th>2400 / 2401 Low Power SourceMeter Instruments</th>
<th>2450 Advanced Touchscreen SourceMeter Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Max / Min</td>
<td>105mA / 10A</td>
<td>10.5A pulse/100pA</td>
<td>1.05A / 100pA</td>
<td>5.25A/100pA</td>
<td>1.05A / 10pA</td>
<td>1.05A/100mA</td>
</tr>
<tr>
<td>Voltage Max / Min</td>
<td>200V / 1uV</td>
<td>200V / 1uV</td>
<td>1100V / 1uV</td>
<td>100V / 1uV</td>
<td>200V / 1uV</td>
<td>200/100mV</td>
</tr>
<tr>
<td>Power</td>
<td>2W</td>
<td>1100W</td>
<td>22W</td>
<td>110W</td>
<td>22W</td>
<td>20W</td>
</tr>
<tr>
<td>Max readings / sec</td>
<td>256</td>
<td>2,000</td>
<td>2,000</td>
<td>2,000</td>
<td>2,000</td>
<td>3,100</td>
</tr>
<tr>
<td>Connectors</td>
<td>Triax</td>
<td>Banana (front / rear)</td>
<td>Banana (front / rear)</td>
<td>Banana (front / rear)</td>
<td>Banana (front / rear)</td>
<td>Banana (front / Triax)</td>
</tr>
</tbody>
</table>

Feature 6430E / 6435B / 6436B

<table>
<thead>
<tr>
<th>Feature</th>
<th>6434E / 6435B / 6436B</th>
<th>6420B / 6412B Dual Channel</th>
<th>2601B / 2611B Single Channel</th>
<th>2604B / 2614B Dual Channel Benchtop</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Channels</td>
<td>1 (optional expansion to 32 via TSP-Link)</td>
<td>2 (optional expansion to 64 via TSP-Link)</td>
<td>1 (optional expansion to 32 via TSP-Link)</td>
<td>2</td>
</tr>
<tr>
<td>Current Max / Min</td>
<td>261A: 50A pulse/100fA</td>
<td>2634B: 10A pulse/100fA</td>
<td>2601B: 10A pulse/100fA</td>
<td>2</td>
</tr>
<tr>
<td>Voltage Max / Min</td>
<td>261A: 40V/100mV</td>
<td>2634B: 200V/100mV</td>
<td>261B: 40V/100mV</td>
<td>2</td>
</tr>
<tr>
<td>System-Level Automation</td>
<td>Digital I/O, TSP-Link, Contact Check</td>
<td>Digital I/O, TSP-Link, Contact Check</td>
<td>Digital I/O, TSP-Link, Contact Check</td>
<td>N/A</td>
</tr>
<tr>
<td>Max readings / sec</td>
<td>38,500</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Computer Interface</td>
<td>GPIB, LAN (LXI), RS-232</td>
<td>GPIB, LAN (LXI), RS-232, USB 2.0</td>
<td>GPIB, LAN (LXI), RS-232, USB 2.0</td>
<td>GPIB, LAN (LXI), RS-232, USB 2.0</td>
</tr>
<tr>
<td>Connectors/Cabling</td>
<td>2651A: Screw terminal, adaptors for banana 2657A: HV triax, SHV</td>
<td>Triax</td>
<td>Screw terminal, adaptors for banana or triax</td>
<td>Screw terminal, adaptors for banana or triax</td>
</tr>
</tbody>
</table>

Feature 6450 Advanced Touchscreen SourceMeter Instruments

<table>
<thead>
<tr>
<th>Feature</th>
<th>6450 Advanced Touchscreen SourceMeter Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Max / Min</td>
<td>105mA / 10A</td>
</tr>
<tr>
<td>Voltage Max / Min</td>
<td>200V / 1uV</td>
</tr>
<tr>
<td>Power</td>
<td>2W</td>
</tr>
<tr>
<td>Max readings / sec</td>
<td>256</td>
</tr>
<tr>
<td>Interface</td>
<td>GPIB, RS-232, Digital I/O, Trigger Link, Trigger Bus</td>
</tr>
<tr>
<td>Connectors</td>
<td>Triax</td>
</tr>
</tbody>
</table>

UNDERSTANDING ESSENTIAL TOOLS AND TECHNIQUES FOR POWER CONVERSION EFFICIENCY TESTING

![Image](image-url)
High Accuracy AC Measurements for Power Conversion Design Characterization

Design Characterization: Switching Measurements

Once you've completed the component selection process, you'll need higher-frequency tools to characterize these power semiconductor devices further and optimize your overall power conversion designs. Oscilloscopes, high performance probes, and power analysis software are the AC tools of choice for characterizing components at high frequencies, analyzing the performance of a power conversion design, and understanding the source of problems.

With the right probe and an oscilloscope equipped with power analysis software, you can easily measure parameters like switching losses (turn-on, turn-off, and conduction) and characterize the device's operating region (safe operating area). Precise timing between voltage and current waveforms is crucial to maintain measurement accuracy, so the power analysis software should provide automated de-skew.

See pages 10-12 for recommended Tektronix design characterization solutions.
Design Characterization: Magnetics Measurements

Magnetic components are an important part of any power supply system. Both switch-mode and linear power supplies employ inductors and transformers as energy storage devices and filters. Given their important role in the system, it's essential to characterize these magnetic components to determine the stability and overall efficiency of the power supply. Required test capabilities include voltage and magnetizing current and magnetic power loss. These applications also require the ability to calculate complex magnetic properties such as input number of turns, magnetic length, and cross-sectional area, as well as maximum magnetic flux density, remanence flux density, permeability, coercive force, and B-H plots.

See pages 10-12 for recommended Tektronix design characterization solutions.
High Accuracy AC Measurements for Power Conversion Design Characterization

Design Characterization: Power Line Measurements

Accurate power line measurements are essential to characterize the interaction of the supply and its service environment. These applications require the ability to measure and/or calculate both power quality (true power, reactive power, apparent power, power factor, crest factor, THD) and current harmonics (for comparing harmonics and THD to industry standards like EN61000-3-2).

See pages 10-12 for recommended Tektronix design characterization solutions.
Tektronix Oscilloscopes for Challenging Converter Designs

Today's integrated designs need an oscilloscope that is just as integrated - such as the MDO3000 Mixed Domain Oscilloscope Series. It's the ultimate 6-in-1 oscilloscope that includes an integrated spectrum analyzer, arbitrary function generator, logic analyzer, protocol analyzer, and digital voltmeter/counter. The built-in spectrum analyzer helps pinpoint radiated noise sources, and the MSO3PWR application module provides power and switching measurements.

With the MSO/DPO4000B Mixed Signal Oscilloscope Series, you can analyze up to 20 analog and digital signals with a single instrument to find and diagnose problems quickly. Sample rates up to 5GS/s and record length of 20MS provide high detail on power waveforms. DPO4 PWR automated power analysis software provides power and switching measurements.

The MDO4000B Mixed Domain Oscilloscope Series has the same features as the MSO/DPO4000B Series but also integrates a built-in spectrum analyzer. It lets you see frequency domain spectra and time domain waveforms, synchronized by triggers in either domain. This ability makes the MDO4000B the tool of choice for correlating signal problems with noise sources.

Offering up to 2GHz bandwidth, 10GS/s sample rate, and up to 250MS record length, the MSO/DPO5000B Mixed Signal Oscilloscope Series features affordable, yet powerful Windows®-based models. With more than 25 different application software packages available, you can test many different applications with a single instrument. The PWR option provides power measurements and switching measurements. It also includes magnetics measurements. Exclusive Tektronix features such as FastAcq with DPX® technology and a superior suite of triggers let you find intermittent events quickly that other oscilloscopes miss.

With the DPO7000C Digital Phosphor Oscilloscope Series, you can analyze analog and serial bus signals with a single instrument to find and diagnose problems in complex designs quickly. Bandwidths up to 3.5GHz and sample rates up to 40GS/s ensure the performance you need to see fast-changing signal details.

Want the rest of the story on Tektronix oscilloscopes?
Watch our product demos:
- MDO3000 Mixed Domain Oscilloscope
- MSO/DPO4000B Mixed Signal Oscilloscope
- MDO4000B Mixed Domain Oscilloscope
- MSO/DPO5000B Mixed Signal Oscilloscope
- DPO7000C Digital Phosphor Oscilloscope

Get advice on optimizing your power conversion test applications.
Send us your question or join the discussion on our application forum.
Oscilloscope Selector Guide

Specifications

<table>
<thead>
<tr>
<th></th>
<th>MDO3000 with MDO3PWR Module</th>
<th>MSO/DPO/MD04000B with DPO4PWR Module</th>
<th>MSO/DPO5000B with PWR Option</th>
<th>DPO7000C with PWR Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>100 MHz to 1 GHz</td>
<td>350 MHz to 1 GHz</td>
<td>350 MHz to 2 GHz</td>
<td>500 MHz to 3.5 GHz</td>
</tr>
<tr>
<td>Record Length</td>
<td>Up to 10 M</td>
<td>Up to 20 M</td>
<td>Up to 250 M</td>
<td>Up to 500 M</td>
</tr>
<tr>
<td>Sample Rate</td>
<td>Up to 5 GS/s</td>
<td>Up to 5 GS/s</td>
<td>Up to 10 GS/s</td>
<td>Up to 40 GS/s</td>
</tr>
<tr>
<td>Maximum Input Voltage</td>
<td>300 VRMS CAT II</td>
<td>300 VRMS CAT II</td>
<td>300 VRMS CAT II</td>
<td>150 V</td>
</tr>
</tbody>
</table>

Special Features

- Integrated Spectrum Analyzer
- TekVPI™ Probe Interface
- Automated De skew
- Windows OS and Desktop
- Automated Report Generator
- VRMS, IRMS
- True, Reactive, Apparent Power
- Power, Crest Factor, Phase
- Harmonics, THD
- EN61000-3-2 Pre-Compliance
- MIL-STD-1399 Pre-Compliance
- Line Ripple
- Switching Noise
- Switching Loss Measurements
- Safe Operating Area
- Pd_svg, dv/dt, ds/dt
- Modulation Analysis
- Magnetic Power Loss
- Flu* Density
- B-H Plots

Want to learn more?

Tektronix probes and accessories are perfectly matched to our oscilloscopes. TekVPI probes communicate with the oscilloscopes listed in the selector guide to simplify scaling, degaussing, and de-skewing for fast, accurate power measurements. With more than 100 choices available, finding the one that best fits your needs is simple:

- High voltage probes to 40kV
- Current probes to 2000A
- High voltage differential probes to 6kV
Verifying Overall Power Conversion Performance

During product design, it’s important to confirm that overall energy-efficiency goals are being met. Once individual switching component level performance has been optimized, a precision power analyzer is used to confirm the overall power performance of products with a high degree of certainty. This helps the designer save time by focusing on elements of the design that are necessary to achieve goals for power loss, efficiency, standby power, harmonics, and power factor.

- High-accuracy power measurements: V, I, VA, VAR, watts, PF, phase angle, Harmonics, W-Hr, etc.
- Three-phase or single-phase product testing
- Overall power conversion losses and efficiency

Ensure Superior Power Measurement Accuracy with Tektronix Power Analyzers

Tektronix power analyzers provide accurate measurements on the complex real-world waveforms of power supplies and inverters, as well as on the home, office, and industrial electrical products that contain them. They’re invaluable in evaluating the performance of a power conversion design and validating that it will meet industry standards. The PA series of power analyzer/wattmeter instruments provides precise measurements of power (watts), power factor, harmonics, and efficiency via PWRVIEW PC software, as well as on their color graphics displays.

PA1000 Power Analyzer Series
- Single-phase power measurements
- Dual Spiral Shunt™ system for 0.05% basic accuracy
- Color graphics display including waveforms and harmonics
- USB, Ethernet LAN, GPIB interfaces
- Application-based measurement modes and PC software

PA4000 Power Analyzer Series
- One to four input modules allow several configurations to match your application
- High measurement accuracy of 0.01% (basic voltage & current accuracy) for demanding test requirements
- Dual internal current shunts for each module maximize accuracy for high- and low-current measurements
- Unique Spiral Shunt™ design maintains stability over variations in current, temperature, etc.
- Proprietary frequency detection algorithms ensure rock-solid frequency tracking, even on noisy waveforms
- Application-specific test modes simplify instrument setup

Want to learn more?
Watch our “Fundamentals of Testing Power Conversion Efficiency” webinar to discover techniques for measuring conversion efficiency and other performance parameters accurately using a precision power analyzer.
Power Analyzer Selector Guide

<table>
<thead>
<tr>
<th>Product Series</th>
<th>Channels</th>
<th>Basic Accuracy (V & I) Range</th>
<th>Max Voltage Input Range</th>
<th>Max Current Input Range</th>
<th>Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA1000</td>
<td>1</td>
<td>0.05% reading + 0.05% range</td>
<td>600 VRMS</td>
<td>20 ARMS</td>
<td>Vrms, Irms, watts, VA, VAr, freq, power factor, crest factor, harmonics, THD, phase angle, Vpeak, Ipeak, W-Hr, VA-Hr, A-Hr</td>
</tr>
<tr>
<td>PA4000</td>
<td>Choose 1, 2, 3, or 4</td>
<td>0.01% reading + 0.04% range</td>
<td>1000 VRMS</td>
<td>30 ARMS</td>
<td>Vrms, Irms, watts, VA, VAr, power factor, crest factor, harmonics, THD, TIF, phase angle, Vpeak, Ipeak, W-Hr, VA-Hr, A-Hr</td>
</tr>
</tbody>
</table>

Get advice on optimizing your power conversion test applications.

Send us your question or join the discussion on our application forum.

Want to learn more?

Download our Fundamentals of AC Power Measurements or Fundamentals of Three-Phase Power Measurements application notes or take the virtual tours of the PA1000 and PA4000 Power Analyzer Series.
Want to learn more?

Contact us by phone, fax, mail, or email:

KEITHLEY CORPORATE HEADQUARTERS
Keithley Instruments
28775 Aurora Road
Cleveland, Ohio 44139
Phone: 440-248-0400
Toll-free: 800-552-1115
Fax: 440-248-6168
info@keithley.com

Consult with a Keithley applications engineer and learn how to get the most from your Keithley products

WORLDWIDE HEADQUARTERS
Within the USA: 1-888-534-8453
Outside the USA: + 1-440-248-0400
Email: applications@keithley.com
Additional contact information at www.keithley.com

WORLDWIDE HEADQUARTERS
EUROPE
Germany: (+49) 89 849 307 40

ASIA
China: (+86) 10 8447 5556
Japan: (+81) 3 6714 30 70
Korea: (+82) 2 574 7778
Taiwan: (+886) 3 572 9077

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

Tektronix and Keithley maintain a comprehensive, constantly expanding collection of application notes, technical briefs, and other resources to help engineers stay on the cutting edge of technology. For further information, please visit www.tektronix.com or www.keithley.com.

Copyright © Tektronix, Inc. All rights reserved. Tektronix and Keithley products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.