PCI Express 3.0 – Physical Layer Solutions
Sarah Boen
PCI Express 3.0 Technology Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>0.5</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>0.71</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
</tbody>
</table>

- **Estimated Date**
- **Released Date**

Base Spec
- 0.5 Release
- 0.7
- 0.9
- 1.0

CEM Spec
- 0.5 Release
- 0.7
- 0.9
- 1.0

Test Spec
- 0.3 Release
- 0.5
- 0.7
- 0.9
- 1.0

- **Integration Phase**
 - Product Development
 - PCI-SIG Tool Development
 - CEM Spec Development

- **Deployment Phase**
 - FYI Testing
 - 6 Month FYI Testing

All information in this presentation is based on 1.0 Base Specification

Tektronix Involved in PCIe EWG, CEM, and SEG Working Groups
PCI Express 3.0

Trends and Implications

Industry/Technology Trends

- 8GB/s using the same board material (FR4) and connectors results in increased channel loss.
- Probing access at the transmitter pins is typically not available.
- Receiver equalization can only compensate for channel loss.
- Receiver Testing is a requirement and is critical to ensure system interoperability.
- Energy efficiency (Lower mW/ Gb/s).

Implications

- Link Analysis - de-embedding, embedding, and RX equalization is required post process.
- Closed data eyes requiring new techniques for transmitter and receiver equalization.
- Higher data rate signals have less margin - requires de-embedding for base specification measurements.
- New Jitter Separation Measurements are required.
- Back channel negotiation to equalize the receiver.
- Link training and power management continue to be the most difficult logic layer challenges.
Transmitter PHY Layer Analysis for PCIe 3.0
PCIe 3.0 Transmitter Compliance Testing

- Compliance testing is based on the Compliance Test Specification, which is under development
- New compliance 128b/130b data pattern
- Three Tests
 - Electrical: Eye Height and Width must pass one pre-set value
 - Preset Test: all Pre-sets are tested to be within their limits
 - Transmitter Equalization Test: Verify the transmitter will respond to equalization change requests
- Measurements are taken after the Compliance channel and RX Equalization using the Compliance Base or Load Board
Transmitter Equalization For Compliance

- Transmitter equalization now requires pre-shoot in addition to de-emphasis to compensate for channel loss
- Transmitters must support all defined presets and a subset for low swing devices
- Presets are toggled on the CLB or CBB the same way as Gen 2 CLB/CBB

<table>
<thead>
<tr>
<th>Preset Number</th>
<th>Preshoot (dB)</th>
<th>De-emphasis (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>P1</td>
<td>0.0</td>
<td>-3.5 ± 1 dB</td>
</tr>
<tr>
<td>P0</td>
<td>0.0</td>
<td>-6.0 ± 1.5 dB</td>
</tr>
<tr>
<td>P5</td>
<td>3.5 ± 1 dB</td>
<td>0.0</td>
</tr>
<tr>
<td>P6</td>
<td>3.5 ± 1 dB</td>
<td>-3.5 ± 1 dB</td>
</tr>
<tr>
<td>P7</td>
<td>3.5 ± 1 dB</td>
<td>-6.0 ± 1.5 dB</td>
</tr>
<tr>
<td>P6</td>
<td>1.9 ± 1 dB</td>
<td>0.0</td>
</tr>
<tr>
<td>P6</td>
<td>2.5 ± 1 dB</td>
<td>0.0</td>
</tr>
<tr>
<td>P3</td>
<td>0.0</td>
<td>-2.5 ± 1 dB</td>
</tr>
<tr>
<td>P2</td>
<td>0.0</td>
<td>-4.4 ± 1.5 dB</td>
</tr>
<tr>
<td>P10</td>
<td>0.0</td>
<td>See Note 2</td>
</tr>
</tbody>
</table>
Transmitter Compliance Preset Test

- Validate Vb, De-Emphasis and Preshoot for each Preset are within spec limits
Add-In Card Compliance Signal Acquisition and Processing

Signal Acquired from Compliance Board

Embed the Add-In Card Compliance Channel

Closed Eye due to the Channel

Apply the Base Specification CTLE + DFE for Long Channel

Open Eye for Measurements

System Board Eye Limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TXS}</td>
<td>50</td>
<td>1200</td>
<td>mV</td>
</tr>
<tr>
<td>V_{TXS_d}</td>
<td>50</td>
<td>1200</td>
<td>mV</td>
</tr>
<tr>
<td>T_{TXS}</td>
<td></td>
<td>41.25</td>
<td>ps</td>
</tr>
</tbody>
</table>

Add-In Card EyeLimits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{TXA}</td>
<td>50</td>
<td>1200</td>
<td>mV</td>
</tr>
<tr>
<td>V_{TXA_d}</td>
<td>50</td>
<td>1200</td>
<td>mV</td>
</tr>
<tr>
<td>T_{TXA}</td>
<td></td>
<td>41.25</td>
<td>ps</td>
</tr>
</tbody>
</table>

1 Measurement Limits Under CEM Review
Serial Data Link Analysis for PCIe Compliance Measurements

- De-embed cables / fixtures
- Embed the effects of the channel
- Equalize the waveform using CTLE, FFE, and/or Dfe
Embed Compliance Channel

- Verify the channel attenuation
 - Based on the PCIe 3.0 Add-In Card Compliance Channel, 10dB attenuation is expected on high frequency bits (4Ghz for PCIe Gen 3)
Validate Channel Embedding on Scope Waveform

- Based on the Insertion Loss Plot, we expect a 10dB loss at the fundamental frequency of 4Ghz.
 - This equates to approx. 68% reduction in the high frequency content of the signal (\(\text{lin} = 10^{\frac{\text{db}}{20}}\), so \(10^{\frac{-10}{20}} = .316\))

- This can be easily verified on the scope waveform by doing a quick check using cursor measurements
Validate Channel on Scope Waveform

- Next measure the vertical amplitude after the channel (approx. 140mV)
- SDLA has automatically applied the channel filter to Math 4
Receiver Equalization

- PCIe reference equalizer is CTLE and 1 Tap DFE
 - CTLE – one Zero and Two Poles
 - DFE – 1 Tap (-30/30mV tap value)
- Equalizer is optimized on the CTLE + DFE tap value that results in the best eye area
 - 7dB Adc settings are shown in the example below
Automated Receiver Optimization

- Manually optimizing over 7 CTLE settings is time consuming
- Optimization is automated with SDLA
- Optimization is done on a short record across all settings, the setting with the best eye opening is then computed and measurements can be taken
Verifying Effects of RX Equalizer

- Low frequency bits are attenuated based on the optimal CTLE setting
- Example below shows plot of -8dB Adc
 - Low frequency bits should be attenuated by ~60%
- DFE will result in an increase of eye opening based on the tap value setting
Validate Equalizer: Analyze Raw Waveform

- On the scope, use cursors to measure the low frequency content of the signal on the acquired waveform (Math 1)
- In this example the low frequency content of the waveform is approx. 615mV
Validate Equalizer: Analyze Waveform After CTLE

- Based on the CTLE that was applied, we expect a 60% attenuation in the low frequency content after the CTLE.
- This can quickly be verified, note the low frequency amplitude is approx. 240mV.
Validate Equalizer: Analyze DFE

- The DFE will open the eye by twice the tap value
- PCIe uses a 1 tap DFE, meaning that the previous bit will determine if change of the current bit.
- The table below outlines the change based on the 20mV Tap

<table>
<thead>
<tr>
<th>Previous Bit</th>
<th>Current Bit</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>20mV</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-20mV</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>No Change</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>No Change</td>
</tr>
</tbody>
</table>
Validate Equalizer: Analyze DFE

- DFE will open the eye by approx 2 times the tap value
- High frequency signal before DFE is 126mV and after 166mV, which is 2 times the tap value of 20mV
CEM Measurements with Optimized RX Settings

- CEM measurements can be quickly done with pre-defined setup files in DPOJET
- Simultaneous assessment of the signal at each point during the post processing stage
Testing Beyond Compliance

- What happens if a measurement fails SigTest?
- Could it be the channel?
 - Measurements can be taken before the channel to evaluate results
 - Different channel models can be created using Serial Data and Link Analysis
- How does the optimized RX setting compare to other settings?
 - Easily compare the results of multiple Equalization settings
- Does deeper analysis of the waveform need to be done?
 - PCIe specific measurements can be taken in Tektronix' measurement system DPOJET
 - Determine if data dependent, uncorrelated or pulse width jitter is in spec
 - Measurements filters and settings can be adjusted to get to root cause, but remember you must pass SigTest to be certified for compliance
- Is the TX compliant?
 - NEW PCIe 3.0 base spec measurements are available to verify TX compliance
Base Specification Transmitter Measurements

- Base Specification Measurements are defined at the pins of the transmitter
- Signal access at the pins is often not assessable
- De-embedding is required to see what the signal look liked at the pins of the TX, without the added effects of the channel
- Sparameters are acquired on the replica channel
De-embedding Considerations

- De-embedding amplifies high frequency noise, thus requiring a bandwidth filter
 - This also impacts the required bandwidth for a RT Scope
 - Bandwidth is dependent on board material

- Successful de-embedding starts with good quality board design and S-Parameter data
 - Matched impedance, low loss structures
 - No gain, significant resonances, or large dips

- Quality of de-embedding
 - Eye height and jitter
 - Signal to Noise Ratio
Verification of De-embedding Results

- Best to have original signal at the TX pins
- Embed the sparameter representing the test fixture
- De-embed the sparameter representing the test fixture
- Compare the waveform as acquired from the DUT directly with the fixture embedded in the original waveform
 - Captured Waveform (White), Channel Embedded in Direct Waveform (Yellow)
De-Embedding Results

- Good correlation is shown below- verify rise time, pre-shoot/under-shoot, ripples
- Signal at TX pins – white
- Signal at TP1 – blue
- Signal after de-embedding from TP1 – Red
Further Analysis on Gen 3 Measurements

- Acquired Signal (Left)
- De-embedded Signal (Center)
- Signal at TX Pins (Right)
- All Gen 3 Base Spec Measurements done on de-embedded waveform
NEW PCI Express Base Specification Measurements

- Voltage
- Package Loss
- Transmitter Equalization
- Jitter
Transmitter Equalization Measurements

VTX-BOOST-FS / VTX-BOOST-RS

- What’s new for Gen 3.0
 - De-Emphasis (Va) and pre-shoot (Vc)
 - Transmitters must support 11TX equalization pre-sets

- The high frequency nature of 8.0 GT/s signaling makes measurement of single UI pulse heights impractical due to attenuation by the package and breakout channel
 - Amplitude measurements are taken on low frequency waveforms (64 ones/ 64 zeros in the compliance pattern) using last few UI of each half period
 - Va and Vc values are obtained by setting the DUT to a different preset value where the desired Va or Vc voltage occurs during the Vb interval.

<table>
<thead>
<tr>
<th>Preset Number</th>
<th>Preshoot (dB)</th>
<th>De-emphasis (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>P1</td>
<td>0.0</td>
<td>-3.5 \pm 1 dB</td>
</tr>
<tr>
<td>P0</td>
<td>0.0</td>
<td>-6.0 \pm 1.5 dB</td>
</tr>
<tr>
<td>P9</td>
<td>3.5 \pm 1 dB</td>
<td>0.0</td>
</tr>
<tr>
<td>P8</td>
<td>3.5 \pm 1 dB</td>
<td>-3.5 \pm 1 dB</td>
</tr>
<tr>
<td>P7</td>
<td>3.5 \pm 1 dB</td>
<td>-6.0 \pm 1.5 dB</td>
</tr>
<tr>
<td>P5</td>
<td>1.9 \pm 1 dB</td>
<td>0.0</td>
</tr>
<tr>
<td>P6</td>
<td>2.5 \pm 1 dB</td>
<td>0.0</td>
</tr>
<tr>
<td>P3</td>
<td>0.0</td>
<td>-2.5 \pm 1 dB</td>
</tr>
<tr>
<td>P2</td>
<td>0.0</td>
<td>-4.4 \pm 1.5 dB</td>
</tr>
<tr>
<td>P10</td>
<td>0.0</td>
<td>See Note 2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preset Number</th>
<th>De-emphasis (dB) (20 \log_{10}(Vb/Vb(i)))</th>
<th>Preshoot (dB) (20 \log_{10}(Vb/Vb(i)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>P1</td>
<td>P1/P4</td>
<td>N/A</td>
</tr>
<tr>
<td>P0</td>
<td>P0/P4</td>
<td>N/A</td>
</tr>
<tr>
<td>P9</td>
<td>N/A</td>
<td>P4/P9</td>
</tr>
<tr>
<td>P8</td>
<td>P8/P6</td>
<td>P3/P6</td>
</tr>
<tr>
<td>P7</td>
<td>P7/P5</td>
<td>P2/P7</td>
</tr>
<tr>
<td>P5</td>
<td>N/A</td>
<td>P4/P5</td>
</tr>
<tr>
<td>P6</td>
<td>N/A</td>
<td>P4/P6</td>
</tr>
<tr>
<td>P3</td>
<td>P3/P4</td>
<td>N/A</td>
</tr>
<tr>
<td>P2</td>
<td>P2/P4</td>
<td>N/A</td>
</tr>
<tr>
<td>P10</td>
<td>P10/P4</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Transmitter Voltage Measurements

VTX-EIEOS-FS / VTX-EIEOS-RS

- **Launch Voltage of Electrical Idle Exit Ordered Set**
- **Required to ensure that the RX can properly detect an exit from electrical idle**
- **Taken on a pattern of eight ones followed by eight zeros repeated 128 times included in the compliance pattern**
 - Taken on the middle five UI to reduce attenuation effects of the channel
- **VTX-EIEOS-FS - Full Swing Signaling**
 - Measured by Preset 10
- **VTX-EIEOS-RS – Reduced Swing Signaling**
 - Measured by Preset 1
Package Loss Measurements

PS21

- Can be taken at TP1 while capturing silicon package loss and drive characteristics, but due to the high frequency content of the 1010 pattern the measurement must be de-embedded back to the TX pins
- Measured by comparing 64 zeros and 64 ones PP voltage against a 1010 pattern
- Measured with de-emphasis and pre-shoot set to 0 at the end of each interval to minimize ISI and low frequency effects
Transmitter Jitter Measurements

- Necessary to take transmitter jitter measurements with all lanes operating in order to capture crosstalk effects
- Measurements are taken at TP1 and de-embedded back to the pins of the TX
- Necessary to separate uncorrelated and data dependent jitter in order to ensure that jitter that can be recovered is not budgeted as uncorrelated jitter

<table>
<thead>
<tr>
<th>Jitter measurements</th>
<th>Data Dependent Jitter</th>
<th>Uncorrelated Jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause</td>
<td>Due to package loss and reflections (dynamics in the channel, ISI)</td>
<td>Uncorrelated - PLL jitter, crosstalk, noise conversion (amplitude to phase)</td>
</tr>
<tr>
<td>How to compensate</td>
<td>Can be reduced by equalization</td>
<td>Difficult to remove (better components, layout)</td>
</tr>
</tbody>
</table>
Transmitter Jitter Measurements: Data Dependent Jitter

TTX-DDJ

DDJ Measurement Process

- Measurement taken on multiple repeats of the compliance pattern using a 1st order CDR function representing a high pass filter
- A PDF is created for each edge crossing of the compliance pattern
- DDJ is calculated as the difference of the mean of each PDF and the recovered clock edge
- Measurement is defined as the absolute value of \(DDJ(\text{max}) - DDJ(\text{min}) \)
Uncorrelated Jitter Example

TTX-UTJ / TTX-UDJDD

- DDJ is removed from the PDF of each edge
- Data is converted to Q-Scale
- Uncorrelated Deterministic Jitter Dual Dirac (UDJDD)
 - Accounts for Periodic Jitter and Crosstalk
 Convert the PDF to Q-Scale
- Random Jitter is implied by subtracting UDJDD from UTJ

![Diagram of TTX-UTJ and TTX-UDJDD derivation](image)
Uncorrelated Total and Deterministic PWJ

TTX-UPW-TJ / TTX-UPW-DJDD

• Pulse Width Jitter
 – Addresses lone bits that are attenuated the most in lossy channel and could likely cause bit errors
• DDJ is removed to accurately quantify PWJ
• Calculate edge-to-edge jitter
• Construct Q-scale PDF curve and Extrapolate to BER = 10^{-12} (Q= 7.03) to determine Uncorrelated Pulse Width Jitter (containing F/2 or Odd/Even Jitter) and Deterministic Pulse Width Jitter
• Final measurements are calculated by looking at the left hand side of the PDF curve
Tektronix Solutions for PCI Express 3.0 Measurements

• Visibility
 – Tektronix is the only scope vendor that provides visibility of the link at multiple test points.
 – Unlike other solutions Tektronix provides a complete set of Base Specification measurements with associated plots for characterization, debug, and analysis
 – Complete insight into all possible equalization settings for comparison and debug

• Flexibility
 – Customers can quickly verify their measurements with different configuration settings, unlike other solutions
 – Other solutions are targeted at compliance, however, with DPOJET customers can quickly debug root cause of problems in a standard specific environment

• Compliant
 – Equalization follows the requirements in the specification, unlike other vendors who have a single methodology for applying a DFE
Receiver PHY Layer Analysis for PCIe 3.0
Tektronix BSA85C Bit Error Rate Tester
Agenda

1. Introduction

2. Stressed Eye
3. Beyond Compliance
4. Receiver Test Demonstration

PCI Express is a trademark of PCI-Sig, www.pcisig.com
USB is a trademark of USB-IF, www.usb.org
Introduction

- Latest Generation Computer Standards have some **common trends**.
- We’ll use **PCI Express Gen 3** as our main example.
- **Similar themes** are emerging in other new standards such as IEEE 100GbE etc.
Introduction - Basics

At the simplest level, receiver testing is composed of:

1. Send **impaired signal** to the receiver under test.

2. The **receiver decides** whether the incoming bits are a one or a zero.

3. The chip **loops back** the bit stream to the transmitter.

4. The **transmitter sends out** exactly the bits it received.

5. An **error counter** compares the bits to the expected signal and looks for mistakes (errors).

- Pattern Generator
- Stress
- Error Counter
PCI Express 3.0 Equipment Setup

- Product: Silicon, Host, and AIC solutions from the BERTScope portfolio
- Industry Knowledge: Participation in standards meetings
- Technical Expertise: Plugfest, Intel testing events

Host Testing

Add-in Card Testing

OEM Host Equipment List

- BSA85C
- DFF125B
- CR125A
- DM Interference Combiner
- CLB/CBB
- RT Scope with latest SGTEST version
- Repeater board for long channel Tx
- SMA-SMP right angle cables (Rosenberger L71-456-102-3808)
Agenda

1. Introduction

2. Stressed Eye
 - Changing Test Signal Recipes
 - Channel Considerations
 - Calibration Challenges

3. Beyond Compliance
Receiver Testing (a.k.a “Jitter Tolerance”) Review

- Test receiver for error free operation (0 BER) while stressed with input jitter/impairments.
- Calibrated jitter/stress is added to Pattern Generator (PG), output is increased until receiver experiences bit errors, or test limit is reached.
- Test often repeated at another jitter frequency, results are plotted.
Test receiver for error free operation (0 BER) while stressed with input jitter/impairments.

Calibrated jitter/stress is added to Pattern Generator (PG), output is increased until receiver experiences bit errors, or test limit is reached.

Test often repeated at another jitter frequency, results are plotted.

- Stress recipe varies by standard. In theory it emulates the system impairments for the expected use.
- Higher data rates mean closed eyes and crosstalk are bigger issues.
PCI Express Gen 3 uses a long circuit board channel that closes the eye, and two forms of vertical eye closure ("Interference").

(Taken from PCI Express Base Spec, Figure 4-71)
PCle Gen 3 Stress Recipe
- Channel

- Depending upon Host or Add-in Card, different test fixtures/combinations are used.

- ISI is large enough to mean the Eye is closed at the receiver.
PCIe Gen 3 Stress Recipe
- Calibration

Post-processing by software. Several complex elements are accommodated in software including the IC package and elements within the IC including the equalizer.

This is still in flux – Correlation work ongoing between simulation and direct measurement and analysis techniques. Being refined at Plugfests.
PCIe Gen 3: Example Add-In Card Stress Calibration

To RT Scope for calibration

Last Cal. details being refined. This setup being successfully used at Plugfests.
Base Spec calibration recommendation

- SigTest or DPOJET
 - PCI-SIG group methodology
 - Repeatable
 - Easy to understand
 - Used for Tx testing
Loopback – PCIe 3

• PCIe 3 loopback is more complicated.
 1. **Speed negotiation** – natively 2.5GT/s, needs to negotiate up to 8GT/s
 2. **Equalization negotiation** – receiver controls transmitter pre-emphasis and find optimum Tx & Rx settings – 500ns compliance response time limit
 3. **Setting of device into Loop**
 • Initially “brute force” with static patterns
 • Now **compliant state machine**

• Feedback from Plugfests is that Add-In Card manufacturers aren’t implementing equalization negotiation yet. Instead test with limited number of pre-emphasis presets (3)
Agenda

1. Introduction
2. Stressed Eye

3. Beyond Compliance

When a Device Fails… What Next?
Beyond Compliance
BERTScope = Debug/Characterization

1. Click a control button in the UI
2. Adjust
3. Changes happen instantly

- You may need to try lots of different signal conditions
- May want to monitor BER while changing stress conditions on the fly
Beyond Compliance
The BERTScope Analysis Tools

- Besides being a BERT, the BERTScope’s “Scope” functionality brings benefits that complement those of the Tektronix scopes
- Analysis tools are full featured and easy to use
 - Frees up the scope for other tasks
 - Eye diagram for quick diagnosis of synchronization and BER failure issues
 - Debug challenging signal integrity problems
 - Error Location Analysis
 - Pattern Capture
 - Jitter Map
 - BER Contour
Summary

- Higher speeds on cheap channel materials causing closed eyes from ISI and crosstalk

- Increased use of equalization forcing changes in testing: speed, equalization negotiation & Tx control

- Test signal is changing:
 - Vertical eye closure
 - Closed eye
 - Calibration is evolving

- Attaining Loopback is often problematic.

- Returned signal is often also a closed eye, meaning eye needs opening before error counting
Extensive application information at:

www.tek.com

PCI Express : PCI-Sig, www.pcisig.com
Important Resources

• **Complete Solutions Available on** www.tek.com
 - Solutions available today for PCIe 1.0, 2.0, 3.0 Transmitter, Receiver, PLL Loop bandwidth and Protocol Testing

• **Support & Resource Links**
 - Recommended Equipment Configurations

 www.tek.com/serial_data
 - Access to new PCE3 Software Downloads & Free Trial

 www.tek.com/software (search for PCE3)
 - PCI Express Base Specification (members only)
