MIPI[®] M-PHY

MIPI® M-PHY* Measurements & Setup Library Methods of Implementation (MOI) for Verification, Debug, Characterization, Conformance and Interoperability Test

077-051800

www.tektronix.com

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its suppliers and are protected by United States copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX, TEK and RT-Eye are registered trademarks of Tektronix, Inc.

Contacting Tektronix

Tektronix, Inc. 14200 SW Karl Braun Drive or P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Table of Contents

INTRODUCTION	5
LINE STATE	6
Termination	6
Swing	6
References	6
TX TIMERS AND SIGNALING	7
GROUP 1: M-TX REQUIREMENTS	7
Test 1.1.1 – Differential DC Output Voltage Amplitude	7
Test 1.1.2 – Differential AC Output Voltage Amplitude	11
Test 1.1.3 – Common Mode Output Voltage (VCM_TX)	16
Test 1.2.1: Rise Time and Fall Time measurement	20
Test 1.1.5 – HS-TX Slew Rate (SRDIF_TX) Measurement	24
APPENDIX A – RESOURCE REQUIREMENTS	28
APPENDIX B – DUT CONNECTION	29

MODIFICATION RECORD

SI no	Version	Date	Modification	Page affected
1	0.1 Draft	07/13/2010	First Release with two measurements	
2	0.2 Draft	07/13/2010	First Release with two measurements and Test procedure	
3	0.3 Draft	08/10/2010	Removed all PWM and SYS measurements, ready with 10 setup files	
4	0.4 Draft	09/28/2010	Updated screen short for slew rate	

ACKNOWLEDGMENTS

Document has been created by Ramesh P.E & Gejendra Patro, Tektronix, Inc.

INTRODUCTION

Designed to support the DIGIRF V32 protocol, MPHY enables faster data transfer rates with the help of an embedded clock. M PHY is capable of transmitting signals both in the burst mode and in the differential mode of data transfer. Different data rates can be achieved at low speeds and fixed data rates can be achieved at high speeds. M PHY works either with an independent clock embedded at the Transmitter and the Receiver or with a single clock as reference.

The length of the optical fiber converter varies from 10 cm to 1 meter, which operates at faster speed depending on the data rate. Multiple lanes in each direction are incorporated at both Transmitter (TX) and Receiver (RX), which results in a link achieving the required data rate.

A block diagram of a typical link is as shown below:

A LANE consists of a Single TX, RX and line that connect TX and RX using a differential wire corresponding to two signaling wires DP and DN.

Specifications are defined at the PINS of the M-TX and M-RX. The transmission lines between the two points are called TX lines. A line may contain a converter for other media such as Optical fiber.

For advanced configuration, module and media converters supported are as follows:

An interface based on M-PHY technology shall contain at least one LANE in each direction; there is no symmetry requirement from an M-PHY prospective.

All lanes in a signal link are called SUB links. Two sub links of opposite directions provide bi-directional transport and additional LANE management called LINK. A set of M-TX and M-RX in a device that composes one interface port is denoted as M-Port.

LINE state

Positive differential voltage driven by M-TX is denoted by LINE state DIF-P, a negative differential voltage driven by M-TX is denoted by LINE state DIF-N, and a weak zero differential voltage is maintained by M-RX.

Differential LINE Voltage	M-TX Output Impedance	M-RX Input Impedance	LINE State Set by	LINE State Name
Positive	Low	Any	M-TX	DIF-P
Negative	Low	Any	M-TX	DIF-N
Zero	High	Medium	M-RX	DIF-Z
Unknown or floating	High	High	None	DIF-Q

Table 1: Line state

Termination

M-TX terminates both wires with characteristic impedance during any DIF-P or DIF-N state. M-RX does not terminate the LINE and does so optionally. The option of Terminating or not terminating with characteristic impedance is interchangeable in case of M-RX.

Swing

M-TX supports two drive strengths. One supports 400 mv PK NT (roughly 200 mVPKRT), while small amplitude is 240 mV_NT (120mVPK-RT). Drivers will support bottom if both are supported, default will be large amplitude.

References

[1] DRAFT MIPI Alliance Specification for M-PHY, Version 0.80.00 r0.04 - 12 April 2010

TX TIMERS AND SIGNALING

Overview

The tests provided in this section verify various TX signaling and timing requirements of M-PHY transceivers (M-PHY TX signaling), defined in the M-PHY Specification.

GROUP 1: M-TX REQUIREMENTS

Status

The test descriptions contained in this section are in the draft stage. Additional modifications to both the test descriptions and implementations are expected.

Pay Load

Typical D30.3 pattern:

10 bit pattern consist of the following bits sequence:

1000011100

0111100011

Table 2: Typical M-PHY Signal

Stall	Prepare	Sync Default	Pay Load (D30.3 or CRPAT)	Closure of Burst
-------	---------	-----------------	---------------------------------	---------------------

Note:

- 1. Most of the Measurements are done using Gated Cursor with the Cursor placed in between the payload region.
- 2. Refer to the MPHY specification version .88.

Test 1.1.1 – Differential DC Output Voltage Amplitude

Purpose

To verify the Differential DC Output Voltage Amplitude ($V_{DIF_DC_xx_xx_TX}$) of the DUT's transmitter is within the conformance limits, for both Large and Small Amplitudes, and for both terminated and un-terminated cases.

References

[1] M-PHY Specification, Section 5.1.1.2, Line 296

[2] Ibid, Section 5.1.1.6, Table 14

Resource Requirements: See Appendix A.1.

Last Modification: April 27, 2010

Discussion

Section 5 of the M-PHY Specification defines the Electrical Characteristic requirements for M-PHY devices. Included in these requirements is a specification for $V_{DIF_DC_TX}$, which is a device's Differential DC Output Voltage Amplitude.

			Reference	Confo	rmance
Parameter	Amplitude	Termination	Load	Min	Max
VDIF_DC_LA _RT_TX	Large	Terminated	RREF_RT	160mV	240mV
VDIF_DC_SA _RT_TX	Small	Terminated	RREF_RT	100mV	130mV

Table 3: DC Amplitude Parameter Summary

The specification states, "Separate AC and DC parameters are defined for VDIF_TX. The DC parameter VDIF_DC_TX is defined for an M-TX which drives a steady DIF-N or a steady DIF-P LINE state into a reference load RREF. An M-TX shall drive differential DC output voltage amplitude which meets the specified limits of VDIF_DC_TX." [1].

The specification actually defines four different DC amplitude specifications, for both the Large and Small Amplitude configuration cases, as well as the terminated and un-terminated states. These four parameters are defined individually in the specification [2], using separate names. A summary of the parameters is shown in Table 3.

In this test, the DUT's VDIF_DC_xx_xx_TX value will be measured using a high-speed, realtime DSO while the DUT is driving a steady DIF-N or a steady DIF-P LINE state into the specified reference load (RREF_RT, or RREF_NT).

DUT Set Up and Test Procedure:

- 1. Connect the DUT to the Test System (See Appendix B).
- 2. Using DUT vendor-specific techniques put the DUT into a state where it is transmitting a HS Burst (*See section on Terminated case*).
- 3. Launch DPOJET using the main menu \rightarrow Analyze/Jitter \rightarrow Eye Analysis. Or, launch the application MIPI ®M-PHY Essential from the Analyze menu.
- 4. Connect two single-ended probes to Ch1 and Ch2 and use Math1=Ch1-Ch2. If you use a differential probe, connect the probe to Ch1 and go to the Math setup and set Ch1=Math1.
- 5. Go to Trigger menu, change the trigger Type to Serial, Source to DIF-P (Ch1), Bit rate to 1.248 GB/s, Pattern length is 0111100011 (Binary) 10 bit. See Figure 1.

	Trigger - Serial F		A:Serial → Acquire				
A Event	Trigger Type	Clk Src	Data Src	Standard		Trigger On	
A->B Seq	Serial v	DIF-P	DIF-P 🔻	Custom V	Data Level	Pattern v	
B Event			Coding	Bit Rate			
Mode	Select		NRZ	1.248Gb/s			
		_					
	Settings				111 1000		
	Independent V			Format			

Figure 1: Trigger setup

Terminated case:

- 1. Connect the DUT to the test setup with $R_{REF_{RT}}$ terminated across the differential lane. If the signals are connected directly to the oscilloscope, the oscilloscope impedance, which is 50 Ohm, will act as termination.
- 2. Configure the DUT to transmit data with D30.3 character as payload.
- 3. Connect the High input impedance Differential probe to the terminated lane.
- 4. Measure the Mean value of $V_{DIF-DC-LA-RT-TX}$ using the Post analysis software on the D30.3 pattern.
- 5. Configure the DUT to transmit a constant DIF-P state using the Small Amplitude Terminated.
- 6. Measure $V_{DIF-DC-SA-RT-TX}$ using the DSO.

Unterminated case:

All terminated measurements are not covered at present.

Note: For demo, use AWG and HS_G1_A_Burst_RT.awg files on the AWG7102.

To perform the measurement for HS –TX

HS-TX RT-Termination Mode

- 1. Set the DUT to operate in HS-TX mode, set the Gear to Highest supported gear, Transmit the **Pattern D.30.3** either in continuous mode or burst mode, and operate on LA mode.
- 2. Recall the setup file "Test_111_VDIF_DC_LA_RT_TX" under HS-TX, using the main menu → File/Recall.../Setup or click on MIPI Setup.
- 3. Click on **Single Run** and verify the result as shown below in Figure 2.
- 4. Verify the DPOJET Measurement result for VDIF-DC-LA-RT-TX is between 160 mV and 240 mV for both DIF-P and DIF-N.

Note: The Gated Cursor must be adjusted if required and should be placed in between the payload region as shown in Figure 2.

Figure 2: VDIF_DC_LA_RT_TX Measurements

- 1. Set the DUT to operate in HS-TX mode, set the Gear to Highest supported gear, transmit the Pattern D.30.3 either in continuous mode or burst mode, and operate on SA mode.
- 2. Recall the setup file "Test_111_VDIF_DC_SA_RT_TX" under HS-TX, using the main menu → File/Recall.../Setup, or click on MIPI Setup.
- 3. Click on Single Run and verify the result as shown below in Figure 3.
- 4. Verify the DPOJET Measurement result for VDIF-DC-SA-RT-TX is between 100 mV and 130 mV for both DIF-P and DIF-N.

Jitter and	Eye	Diagram Analysis T	ools				10	Summon	Options 💽	Clear	× ♦
Select		Diverall lest result: Description	V Pass Pass/Fail	Mean	Std Dev	Max 132.80m\/	Min 94 200mV	p-p	Population	Recalc	>
Configure		High Limit Low Limit Current Acquisition	V Pass V Pass V Pass	130.00mV 100.00mV 110.84mV	6.8577mV	132.80mV R	91.200mV 🔍	41.600mV	390	Single Run	
Plots											
Reports											

Figure 3: VDIF_DC_SA_RT_TX Measurement

Test 1.1.2 – Differential AC Output Voltage Amplitude

Purpose

To verify the Differential AC Output Voltage Amplitude (VDIF_AC_xx_xx_TX) of the DUT's transmitter is within the conformance limits, for both Large and Small Amplitudes, and for terminated cases.

References

- [1] M-PHY Specification, Section 5.1.1.2, Line 297
- [2] Ibid, Section 5.1.1.6, Table 14
- [3] Ibid, Section 5.1.1.6, Table 14, Note 3
- [4] Ibid, Section 5.1.2.8, Line 343
- [5] Ibid, Section 5.1.2.11, Table 15

Resource Requirements

See Appendix A.1.

Last Modification

July 13, 2010

Discussion

Section 5 of the M-PHY Specification defines the Electrical Characteristic requirements for M-PHY devices. Included in these requirements is a specification for VDIF_AC_TX, which is a device's Differential AC Output Voltage Amplitude.

The specification states, "The AC parameter VDIF_AC_TX is defined for an M-TX which drives a test pattern into a reference load RREF, where the lower limit of VDIF_AC_TX is defined over the eye opening TEYE_TX as defined in Section 5.1.2.8. The upper limit of VDIF_AC_TX is defined as the maximum differential output voltage, when the M-TX drives a test pattern into a reference load RREF. An M-TX shall drive a differential AC output voltage signal which meets the specified limits of VDIF_AC_TX." [1].

Figure 4: Differential Transmit Eye Diagram

The EYE opening is measured when the DUT is transmitting the Specific CJPAT or CRPAT. The patterns are defined in the specification as part of note 3 table 14 of M-PHY Specification document.

The specification actually defines four different AC amplitude specifications, for both the Large and Small Amplitude configuration cases, as well as the terminated and un-terminated states. These four parameters are defined individually in the specification [2], using separate names. A summary of the parameters is shown below.

			Reference	Conformance			
Parameter	Amplitude	Termination	Load	Min	Max		
$V_{\text{DIF}_\text{AC}_\text{LA}_\text{RT}_\text{TX}}$	Large	Terminated	R _{REF_RT}	140mV	250m V		
$V_{DIF_AC_SA_RT_TX}$	Small	Terminated	R _{REF_RT}	80mV	140m V		

Table 4: AC Amplitude Parameter Summary

Unlike the DC specifications, which are defined with respect to static DIF-P and DIF-N states, the AC amplitude parameters limits are defined with the aid of a reference eye mask, and are defined to be measured while the DUT is transmitting specific bit patterns, namely CJTPAT and CRPAT[3]. The eye diagram mask is shown in Figure 4.

Note that while the AC amplitude specifications refer to the eye mask template, the template is merely a graphical representation of the written requirement (shown in Figure 4), which specifies that the absolute value of the AC signal must be greater than the lower limit of $V_{DIF_AC_xx_xx_TX}$ over the horizontal interval T_{EYE_TX} . (Note that the value of T_{EYE_TX} is defined in a different location in the specification [5], and is defined as a minimum of 0.2 UI_{HS}. Also, the horizontal position of the interval is not strictly defined, and is allowed to be shifted horizontally.)

In this test, the DUT's $V_{DIF_{AC_{xx_{xx_{TX}}}}}$ value will be measured using a DSO while the DUT is driving a continuous bit pattern (CJTPAT and CRPAT) into the specified reference load ($R_{REF_{RT}}$).

The values of $V_{DIF_{AC_{xx_{xx_{TX}}}}}$ for both the Large and Small Amplitude and terminated cases must be within the ranges specified above to be considered conformant.

Test Setup

See Appendix B.1.1.

DUT setup and Test Procedure

- 1. Connect the DUT to the Test System (See Appendix B).
- 2. Using DUT vendor-specific techniques, put the DUT into a state where it is transmitting a HS Burst. See section on Terminated case.
- 3. Launch DPOJET using the main menu → Analyze/Jitter → Eye Analysis or, launch the application MIPI ®M-PHY Essential from the Analyze menu.
- 4. Connect two single-ended probes to Ch1 and Ch2 and use Math1=Ch1-Ch2. If you use a differential probe, connect the Probe to Ch1, and go to Math setup, set Ch1=Math1.
- 5. Go to Trigger menu, change the trigger Type to Serial, Source to DIF-P (Ch1), Bit rate to 1.248 GB/s, Pattern length is 0111100011 (Binary) 10 bit. Shown as in Figure 4.

	Trigger - Serial F	A	x Serial \rightarrow Acquire			
A Event	Trigger Type	Clk Src	Data Src	Standard		Trigger On
A->B Seq	Serial V	R Clk 🔻	Ch 1 🔻	Custom 🔻	Data Level	Pattern 🔻
B Event Mode	Select		Coding NRZ T	Bit Rate 1.25Gb/s		
	Settings				111 1000	
	independent .			Format Binary 🔻	Edit	

Figure 4: Trigger setup for Differential AC Output Voltage Amplitude

Terminated case:

- 1. Connect the DUT to the test setup with $\mathbf{R}_{\text{REF}_{RT}}$ terminated across the differential lane. If the signals are connected directly to the Oscilloscope, the Oscilloscope impedance which is 50 Ohm will act as termination.
- 2. Configure the DUT to transmit a continuous CJTPAT pattern using the Large Amplitude and measure $V_{\text{DIF-AC-LA-RT-TX}}$ (CJTPAT).
- 3. Configure the DUT to transmit a continuous CRPAT pattern using the Large Amplitude and measure $V_{DIF-AC-LA-RT-TX (CRPAT).}$

MIPI- MPHY- MOI Measurements, Version 0.3 Draft

- 4. Configure the DUT to transmit a continuous CJTPAT pattern using the Small Amplitude and measure V_{DIF-AC-SA-RT-TX (CJTPAT).}
- 5. Configure the DUT to transmit a continuous CRPAT pattern using the Small Amplitude and measure V_{DIF-AC-SA-RT-TX (CRPAT).}

Unterminated case:

All Unterminated measurements are not covered at present

```
Note: For demo use AWG and Recall HS_G1_A_Burst_RT.awg files on the AWG7102
```

To perform the measurement for HS –TX

HS –TX RT-Termination Mode

- 1. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the CJTPAT or CRPAT Pattern, either in continuous mode or burst mode and operate on LA mode.
- 2. Recall setup file under SYS-TX folder "Test_112_VDIF_AC_LA_RT_TX", using the main menu \rightarrow File/Recall.../Setup or click on MIPI Setup.
- 3. Click on Single Run and Verify the result as shown below in the Figure 5 and Figure 6.
- 4. Verify the DPOJET Measurement result for V_{DIF-AC-LA-RT-TX} is between 140 mV and 250 mV for both the DIF-P and DIF-N cases.

File	Edit	Vertica	I Horiz/Ac	q Trig	Display	Cursors	Measure	Mask	Math	MyScope	Analyze	Utilities	Help	•			U\$0720	04B	Tek	_	X
	• • •	 							· ·	‡									a s. Marri		
													n ang a Na San San Na San San								
		ı DI	F†N , , ,																		
1																					
	C1	40.0mV 40.0mV 70.0mV	/div /div 4.0µs	50Ω 50Ω	B _W :16.0G B _W :16.0G		11 1.646 12 11.97 At 10.32 1/At 96.9k	us us us Hz				Hor	Di Seri: rz Dly:	al 6.0ns		4.0µ Stop 1 ac Aut	s/div 2 o <mark>ped</mark> qs o Augu	25.0GS/ Single ust 10, 3	Seq R 2010	40.0ps L:1.0M 13:3	/pt 3:21
8** 	Jitte	r and E	Eye Diagra	am Ana	alysis To	ools											Options		CI	lear	۲
	Sel	ect	Overall	Test R	lesult:	🕑 Pass							v	iew	Summary	۲	Collag	ose	Re	calc	\triangleleft
	Conf	igure	Descrip	tion _AC_LA	_RT, M	Pass/Fail	Mean 169.53	mV nV	Std De 0.0000	ev I	Max 169.53mV	Min 169	.53mV	p. 0.	p 0000V	Pop 1	ulation		Si	ngle	
	Res	ults	Low	Limit ent Acc	quisition	Pass	140.00n 169.53r	nV mV	0.000	DV -	169.53mV	169	1.53mV	0.	0000V	1			R	tun	
	Plo	ots	t UI, Mask	ath1 : Hits1, I	Math1	🤣 Pass	801.28 0.0000	ps	1.941	7ps l	8 10.16ps D.0000	791 0.00	.85ps 000	18	3.312ps	128 128	78 79		Show	v Plots	
	Rep	orts																			

Figure 5: VDIF_AC_LA_RT_TX Measurements

File Ed	iit Vertica	I Horiz/Acq Trig Dis	splay Cursors	Measure Mask	Math MyS	cope Analyze	Utilities Help	v	DE0720048	Tek 📃	X
🧈 DPC	JET Plots										
	€, 🚉 (२ १७ 💇 🔍 🗸	がななる] 🗕 🕂 🔟						
	Y:Voltage				Mask Hi	s1: Eye Diagram				X:Tirr	e
~~~											
200m V											
150m∀											
100-01/											
Toomy					-		-				
50m∀											-
ov	L.,		¥					¥			
			Λ					Λ			
-50mV			/ 💊	-				- / N			
-100m∀		and the same of the same of the				-					
150mV											
-130114	Eye: All Bi Offset: 0.1	ts 101.4855									
-200m∀	- Uls:3879:1	2879, Total:3879:12879									-
	800pe	-Grit-it 24enibpstrisk	.400ps			ne i i i i i i i i i i i i i i i i i i i	. i	400pe	600pe	800	
10.0	-000p3	-000005	-40000	-200p.	,		20093	40003			~ _ ]
Ji	tter and E	Eye Diagram Analysi	is Tools						Options 💽	Clear	×
	Select	Overall Test Resul	lt: 🥑 Pass				Vie	w Summary	Collapse	Recalc	⊲⊳
		Description	Pass/Fail	Mean	Std Dev	Max	Min	p-p	Population	( )	
Co	onfigure	VDIF_AC_LA_RT,	M 🥑 Pass	169.53mV	0.0000V	169.53mV	169.53mV	0.0000V	1	Single	
		High Limit	V Pass	250.00mV							
	esults	Current Acquisit	ion	169.53mV	0.0000	169.53mV	169.53mV	0.0000V	1	Run	
		UI. Math1		801.28ps	1.9417ps	810.16ps	791.85ps	18.312ps	12878	<b>C</b>	
	Plots	🕨 🗈 Mask Hits1, Math	1 🥑 Pass	0.0000		0.0000	0.0000		12879	Show Plots	
R	eports										
		_									

Figure 6: VDIF_AC_LA_RT_TX EYE Diagram

- 5. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the CJTPAT or CRPAT Pattern either in continuous mode or burst mode and operate on SA mode.
- 6. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the CJTPAT and CRPAT Pattern either in continuous mode or burst mode and operate on SA mode.
- 7. Recall setup file under-TX "Test_112_VDIF_AC_SA_RT_TX", using the main menu  $\rightarrow$  File/Recall.../Setup or click on MIPI Setup.
- 8. Click on **Single Run** and verify the result as shown below in Figure 7.
- 9. Verify the DPOJET Measurement Result for V_{DIF-AC-SA-RT-TX} is between 80mV and 140 mV for both the DIF-P and DIF-N cases.

File	Edit	Vertical	Horiz/Acq	Trig	Display	Cursors	Measure	Mask	Math	MyScope	Analyze	Utilities	Help				Tek		Х
minute	· ·	1 1  			1 1 		1 I I 1 I I 1 I I		1 1 				· · ·		-	· · ·		· ·	
41																			
								<u>, i</u>											
	C1 C2 M1	30.0mV/ 30.0mV/ 50.0mV	div div 4.0µs	50Ω ^Β ₩: 50Ω ^Β ₩:	:16.0G :16.0G		4.32µ 16.44 12.12 141 82.51	s µs µs kHz				A C1	Serial		4.0µs/di Stopped 1 acqs Man	iv 25.0G d Sing August 1	iS/s gle Seq RI 0, 2010	40.0ps/p L:1.0M 13:37	t 1:59
	Jitte Sel	r and E	ye Diagrai Overall	<mark>m Analy</mark> Test Res	sis Too ult: 🔇	Pass							View	Summary	Opti	ons 👤 Expand			X A
	Conf	igure	Descripti	ion \C_SA_R1 Limit	F, M 🔇	Pass/Fail Pass Pass	Mean 93.506r 140.00m	nV 1V	Std Dev 0.0000	/ N V 9	fax )3.506mV	Min 93.50	l6mV	p-p 0.0000V	Populat 1	tion	Sin	igle	r
	Res	ults	Low L Curre	.imit nt Acquis h1	sition	Pass	80.000m 93.506r 801.28t	nV nV ∋s	0.0000	v g ns f	)3.506mV )13.91ps	93.50 788.5	6mV 3ps	0.0000V 25.380ps	1		R		
	Plo	orts	⊕ Mask I	Hits1, Mat	th1 🔇	Pass	0.0000			(	0.0000	0.000	0		15124	_	Show	Plots	
	Cop					_		_											

Figure 7: VDIF_AC_SA_RT_TX Measurements



Figure 7 A: VDIF_AC_SA_RT_TX EYE Diagram Measurements

# Test 1.1.3 – Common Mode Output Voltage (VCM_TX)

# Objective

To measure the common mode voltage when the PHY is signaling data in differential mode and other ends are terminated.

# Reference

- [1] M-PHY specification 0.88 Table 14
- [2] Section 5.1.1.2
- [3] Equation 3

#### To performing the measurement for HX-TX

The common-mode output voltage signal  $V_{CM_TX}(t)$  is defined as the arithmetic mean value of the signal

Voltages VTXDP(t) and VTXDN(t) when the M-TX drives a test pattern into a reference load RREF.  $VCM_TX$  is

Defined as the amplitude of  $VCM_TX(t)$ .  $VCM_TX(t)$  can be calculated from the following equation:

$$V_{\rm CM_TX}(t) = \frac{V_{\rm TXDP}(t) + V_{\rm TXDN}(t)}{2}$$

Measurement	Amplitude	Termination	Load	Minimum	Maximum
	type			Value	Value
V _{CM_LA_TX}	Large Amplitude	R _{REF_RT}	50 Ohms	160mV	260mV
V _{CM_SA_TX}	Small Amplitude	R _{REF_RT}	50 Ohms	80mV	190mV

# **Probing Type**

Single ended and not differential probe

#### Pre requisite

Oscilloscope Deskew is done and define the math as A as per above equation 1

# **Acquisition Setup**

Based on the operating Data rate, acquire the waveform to occupy the 10000 unit interval.

# **DUT** setup

For all three modes (PWM, HS, SYS), program the DUT to send the Data burst that has more than 10000 UI.

Note: For demo, use HS_G1_A_Burst_RT.awg files on the AWG7102.

#### **PWM mode**

Will be available soon.

## Algorithm

Identify the start portion of the data payload, consider the record points that covers more than 10000 unit interval, Do math operation to get the Common mode voltage, Measure mean value of the common mode voltage as final value.

# **DUT setup and Test Procedure**

- 1. Connect the DUT to the Test System (See Appendix B)
- 2. Using DUT vendor-specific techniques put the DUT into a state where it is transmitting a HS Burst as mentioned in the section on Terminated case.
- 3. Launch DPOJET using the main menu → Analyze/Jitter → Eye Analysis or Launch the application MIPI ®M-PHY Essential from the Analyze menu.
- 4. Connect two single ended probes to Ch1 and Ch2.
- 5. Go to Trigger menu, change the Trigger Type to Serial, Source to (Ch1), Bit rate to 1.248Gb/s, Pattern length is 0111100011 (Binary). See Figure 8.



Figure 8: Trigger setup for Common Mode Output Voltage

# To perform the measurement for HS –TX

# HS –TX RT-Termination Mode

- 1. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the **D.30.3 Pattern**, either in continuous mode or burst mode and operate on LA mode.
- 2. Recall Setup file under HS-TX folder "Test_113_V_{CM-LA-TX} _TX", using the main menu  $\rightarrow$  File/Recall.../Setup or click on MIPI Setup.
- 3. Click on **Single Run** and verify the result as shown below in Figure 9 and Figure 10.
- 4. Verify the DPOJET Measurement Result for  $V_{CM-LA-TX is}$  between 160 mV and 260 mV for both the DIF-P and DIF-N cases.

Select	Overall Te	st Result: 🛛 🛛 🛛 🛛 🛛 s				Vie	w Summary	Collapse	Recalc
	Description	Pass/Fail	Mean	Std Dev	Max	Min	p-p	Population	
ofigure	VCM_LA_	_TX, Ch1, 🤣 Pass	197.53mV	0.0000V	197.53mV	197.53mV	0.0000V	1	Single
inigure	High Lim	nit 🥝 Pass	260.00mV						Single
	Low Lim	nit 🥑 Pass	160.00mV						
esults	Current	Acquisition	197.53mV	0.0000V	197.53mV	197.53mV	0.0000V	1	Run
Plots									

Figure 9: LA Common Mode Output Voltage

- 5. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the CJTPAT or CRPAT Pattern either in continuous mode or burst mode and operate on SA mode.
- 6. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the CJTPAT and CRPAT Pattern either in continuous mode or burst mode and operate on SA mode.
- 7. Recall Setup file under HS-TX "Test_113_VCM-SA-TX", using the main menu → File/Recall.../Setup or click on MIPI Setup.
- 8. Click on Single Run and Verify the result as shown below in the Figure 10.
- 9. Verify the DPOJET Measurement Result for VCM-SA-TX is between 80mV and 190 mV for both the SE-P and SE-N cases.

1 (1) (1) (1) (1) (1) (1) (1) (1	/div 50Ω ^B w:16.0 /div 50Ω ^B w:16.0	G DS C	72.0ns 936.0ns			A C1 Serial		400ns/div 25.00 Stopped Sin	38/s 40.0ps/pt gle Seq
			64.0ns					auua	RE. IOOK
Jitter and E Select	Eye Diagram Analysis 1 Overall Test Result:	Tools	1.157MHz			Vie	w Summary	Auto August 0 Options V V Collapse	15, 2010 16:00:57
Jitter and E Select Configure Results	Eye Diagram Analysis 1 Overall Test Result: Description V VCM_SA_TX, Ch1, High Limit Low Limit Current Acquisition	Cools Cools Pass/Fail Cools Pass/Fail Cools Pass Cools Pass Cools Pass Cools Pass Cools Pass Pass Cools Pass Pass Pass Pass Cools Pass Pass Pass Pass Cools Pass Pass Pass Cools Pass Pass Pass Cools Pass Pass Pass Cools Cools Pass Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cools Cool	1.157MHz Mean 99.466mV 190.00mV 80.000mV 99.466mV	Std Dev 0.0000V	Max 99.466mV 99.466mV	Vie Min 99.466mV 99.466mV	w Summary p-p 0.0000∨ 0.0000∨	Auto August 0 Options V Collapse Population 1	16:00:63

Figure 10: LA Common Mode Output Voltage

# Test 1.2.1: Rise Time and Fall Time measurement

# Objective

Perform the rise time and fall time measurement on differential signaling when the DUT is being operated in HS mode.

# References

[1] M-PHY specification 0.88 Table 15

[2] Section 5.1.2.1 Rise time and fall time

# Definition

The HS-TX rise and fall times  $T_{R_HS_TX}$  and  $T_{F_HS_TX}$ , respectively, are defined as transition times between the 20% and 80% signal levels of the differential HS-TX output signal, whose amplitude is defined by  $V_{DIF_DC_TX}$ , when driving a repetitive **D.30.3** symbol sequence into a reference load *R*_{REF}. The minimum limits of  $T_{R_HS_TX}$  and  $T_{F_HS_TX}$  shall be met by an HS-TX when operated in HS-GEAR1. The maximum Transition times are bounded by the HS-TX eye diagram specification.

# **Limit Values**

There is no Max limit specified, It should be interpreted from Eye diagram. According to Eye diagram, the opening of Center vertex is limited by Max RX jitter (See Table 20 of M-PHY specification), which is 0.52UI. It allows about 0.26 UI from the Center of Eye opening or 0.24UI from the Cross over

The Rise Time and Fall Time can be maximum of without failing the Eye diagram can be 0.48 UI.

The other dimension is slew rate limitation which will limit the rate of Rise of the signal. The minimum slew rate for Hs signal is 0.35V/nsec and Maximum is 0.9V/nsec.

The max and min voltage swing for 500mV for LA and 140mV for SA. So for the large swing from slew rate point of view, the max rise time is

$$0.5/0.35 = 1.4285$$
nsec

Minimum is 0.2 UI in HS speed Gear 1 (1457Mbps) is 137 psec, where as the max limit is 1.4285nsec. But according to Eye diagram, the max rise time is 0.48UI, so it will be 322 psec. So I think we have considered the Rise time limit value from the eye diagram as 322 psec.

Measurement	Amplitude type	Termination	Load	Min	Max
TF_HS_TX	Large	RREF_RT	50		0.48UI
	Amplitude/Sm		Ohms	0.2UI	
	all Amplitude				
TR_HS_TX	Large	RREF_RT	50		0.48UI
	Amplitude/Sm		Ohms	0.2UI	
	all Amplitude				

Note: The limit value are our opinion, this can be revisited.

# **DUT** setup

Set the DUT to operate at HS mode on the Gear that it is suppose to operate.(Gear1 or Gear 2). Send the Data payload as D30.3 pattern or CRPAT.

# Algorithm

Measure the DC differential voltage using the measurement 1.1.1, Calculate the 20% and 80% level, enter those values as part f High and Low configuration

If you are using D30.3 pattern, Use the Cursor to indicate start of the pay load and end of payload, enter the 20% and 80% as ref level for the measurement

Perform the RT and FT measurement using the oscilloscope Built in or DPOJET based measurement.

If the DUT is set to CRPAT, Find the location of D30.3 pattern in CPAT pattern, Measure the RT and FT on the Transition of D30.3 pattern filed.

# **DUT setup and Test Procedure**

- 1. Connect the DUT to the Test System (See Appendix B).
- **2.** Using DUT vendor-specific techniques put the DUT into a state where it is transmitting a HS Burst as mentioned in the section on Terminated case.
- 3. Launch DPOJET using the main menu  $\rightarrow$  Analyze/Jitter and Eye Analysis. Or launch the application MIPI ®M-PHY Essential from the Analyze menu.
- 4. Connect two single ended probes to Ch1 and Ch2 and use Math1=Ch1-Ch2, If Differential probe is used, connect the Probe to Ch1 and go to Math setup, make Ch1=Math1.
- 5. Go to Trigger menu, change the trigger Type to Serial, Source to DIF-P(Ch1), Bit rate to 1.248Gb/s, Pattern length is 0111100011 (Binary). See Figure 11.



Figure 11: Trigger setup for Rise Time and Fall Time measurement

# To perform the measurement for HS –TX

# HS –TX RT-Termination Mode

- 1. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the payload as D30.3 pattern or CRPAT Pattern, either in continuous mode or burst mode and operate on LA mode.
- 2. Recall Setup file under HS-TX folder "Test_121_RT_FT_LA_HS_TX", using the main menu → File/Recall.../Setup or click on MIPI Setup.
- 3. Click on Single Run and Verify the result as shown below in the Figure 12.
- 4. Verify the DPOJET Measurement Result for TF_HS_TX is between .02UI and .048UI for both the DIF-P and DIF-N cases.
- 5. Verify the DPOJET Measurement Result for TR_HS_TX is between .02UI and .048UI for both the DIF-P and DIF-N cases.



Figure 12: Rise Time and fall Time for LA signals

- 6. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the CJTPAT and CRPAT Pattern either in continuous mode or burst mode and operate on SA mode.
- 7. Recall Setup file under HS-TX "Test_121_RT_FT_SA_HS_TX", using the main menu → File/Recall.../Setup or click on MIPI Setup.
- 8. Click on Single Run and Verify the result as shown below in the Figure 13 and Figure 14.

- 9. Verify the DPOJET Measurement Result for TF_HS_TX is between .02UI and .048UI for both the DIF-P and DIF-N cases.
- 10. Verify the DPOJET Measurement Result for TR_HS_TX is between .02UI and .048UI for both the DIF-P and DIF-N cases.

Note:

- The typical UI value for Gear-1 data rate @ 1.248Gbps is 800ps. The below limit value are calculated based on the Gear-1 speed. For a Different data rate, a different limit file will be used.
- The Gated Cursor need to be adjusted if required and should be placed in between the payload region as shown in Figure 13.



Figure 13: Rise Time and fall Time for SA signals

# Test 1.1.5 – HS-TX Slew Rate (SRDIF_TX) Measurement

## Purpose

To verify that the Slew Rate  $(SR_{DIF_TX})$  of the DUT's HS transmitter is within the conformance limits

## References

[1] M-PHY Specification, Section 5.1.2.2, Line 317

[2] Ibid, Section 5.1.2.11, Table 15

## **Resource Requirements**

See Appendix A.1.

# Last Modification

April 27, 2010

### Discussion

Section 5 of the M-PHY Specification defines the Electrical Characteristic requirements for M-PHY products. Included in these requirements is a specification for  $SR_{DIF_TX}$ , which is the HS-TX Slew Rate.

The specification states, "The slew rate SRDIF_TX is defined as the ratio  $\Delta V/\Delta T$ , where  $\Delta V$  is the absolute value of the voltage difference of the differential HS-TX output signal voltage measured at the 20% and 80% levels of VDIF_DC_SA_RT_TX and  $\Delta T$  is the corresponding time difference when the HS-TX drives a reference load RREF with Small Amplitude. The specification limits of SRDIF_TX shall be met by an HS-TX that supports slew rate control and which is operated in HS-G1." [1].

## **Test Setup**

See Appendix B.1.1.

# **Test Procedure**

- 1. Connect the DUT to the Test Setup,
- 2. Observable Results:
- 3. Verify that the maximum  $\delta V/\delta t_{SR}$  is less than 150mV/ns across the entire edge, for each Data Lane.
- 4. Verify that the minimum  $\delta V/\delta t_{SR}$  is greater than 30mV/ns across the 400 to 930mV region, for each Data Lane.

## **Possible Problems**

None.

# **DUT setup and Test Procedure**

- 1. Connect the DUT to the Test System (See Appendix B)
- 2. Using DUT vendor-specific techniques, put the DUT into a state where it is transmitting a HS Burst.
- 3. Launch DPOJET using the main menu  $\rightarrow$  Analyze/Jitter  $\rightarrow$  Eye Analysis or launch the application MIPI ®M-PHY Essential from the Analyze menu.
- 4. Connect two single ended probes to Ch1 and Ch2 and use Math1=Ch1-Ch2, If Differial probe is used, connect the Probe to Ch1 and go to Math setup, make Ch1=Math1.
- 5. Go to Trigger menu, change the trigger Type to Serial, Source to DIF-P(Ch1), Bit rate to 1.248Gb/s, Pattern length is 0111100011 (Binary). See Figure 14.

	Trigger - Serial F	Pattern			A	Serial → Acquire	
A Event	Trigger Type	Clk Src	Data Src	Standard		Trigger On	
A->B Seq	Serial T	R Clk	Ch 1 🗸	Custom 🔻	Data Level	Pattern 🔻	
B Event	Select		Coding NRZ T	Bit Rate 1.25Gb/s			
Mode	_						
	Settings				01 1110 0011		
	Shared <b>T</b>			Format Binary <b>T</b>	Edit		

Figure 14: Trigger setup for Slew Rate Measurement

# To perform the measurement for HS -TX

## HS –TX RT-Termination Mode

- 1. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, Send the payload as D30.3 pattern or **CRPAT Pattern**, either in continuous mode or burst mode and operate on LA mode.
- 2. Recall Setup file under HS-TX folder "Test_115_SRDIF_LA_TX_Slew Rate", using the main menu → File/Recall.../Setup or click on MIPI Setup.
- 3. Click on Single Run and Verify the result as shown in Figure 15.
- 4. Verify the DPOJET Measurement Result for "SRDIF_LA_TX_Slew Rate" is between 647.5mV/ns to 1.665V/ns for both the DIF-P and DIF-N cases.

File	Edit	Vertical	Horiz/Acq	Trig	Display	Cursors	Measure	Mask	Math MySco	pe Analyze	Utilities	Help	T					Tek	_	X
			DIF-P	-				-	1 1 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1			• • • •				-				
			DIF-N ( )				· · ·													
				-			6 8 6 0 8 0 1 8 7													
	C1 5 C2 5 M1 8	50.0mV/d 50.0mV/d 80.0mV	liv ! liv ! 2.0µs	50Ω <mark>Ε</mark>	_W :16.0G _W :16.0G		4.58µs 2 6.1µs 1.52µs 657.9i	i l		+	A	Seria	1		2.0 Ste 1 a Au	μs/div pped cqs to Se	25.0G Sing ptembe	S/s le Seq er 28, 20	40.0ps RL:5001 010 16:	s/pt c 29:32
*	Jitter Sele	r and E	/e Diagran Overall T	n Anal est Re	ysis To sult: 🔇	ols 9 Pass			Chilber			Vi	ew S	ummar	y 🔻	Option Exp	is 💽	F	Clear	$\nabla \Delta $
	Confi Resi	igure ults ots	Descriptio	on LA_TX,	Math1	Pass/Fail	Mean 725.53n	iV/ns	Std Dev 107.66mV/ns	Max 1.1440V/ins	Min s 494	.50mV/n	p-p s 649	.48mV/	Pa ns 58	ipulatio	n		C Single Run	
	Rep	orts																		

Figure 15: LA Slew Rate Measurement

*Note: The Gated Cursor need to be adjusted if required and should be placed in between the payload region as shown in Figure 15.* 

- 5. Set the DUT to operate on HS-TX mode, set the Gear to Highest supported gear, send the CJTPAT and **CRPAT Pattern** either in continuous mode or burst mode and operate on SA mode.
- 6. Recall Setup file under HS-TX "Test_115_SRDIF_SA_TX_Slew Rate", using the main menu → File/Recall.../Setup or click on MIPI Setup.
- 7. Click on Single Run and Verify the result as shown in Figure 15.
- 8. Verify the DPOJET Measurement Result for "SRDIF_SA_TX_Slew Rate is between 350mV/ns to 900mV/ns for both the DIF-P and DIF-N cases.

File	Edit	Vertical	Horiz/Acq	Trig	Display	Cursors	Measure	Mask	Math	MyScope	e Analyze	Utilities	Help	•				3101/8	Tek		X
		1 1 1					1.1.1.		1 1	<u>i var</u> i						U. I				1	
										· · •											
1111										· · -											
			D.P.P			anner 188				1		Second Second	(Respectively)				wine and a	and in		-ingere	
in the																					
	And an an an						and the second second		-		datatere alanta					a contractor			-	and sector and	
			DIF-N			-	din ta marte														
MI																					
			4							and the second										ankrain ha eil	
	<u>1 I.</u>				1 1	<u> </u>	1. 1. 1.		4.1	‡		<u>, i </u>				1.1.	i.		, i	1: 1	
	C1	30.0mV/c	liv	50Ω E	16.0G		4 50.	~	7			A	Seria	al		2.0	us/div	25.00	S/s	40.0ps	Int
	-	20.0-1//-			16.00		4.304	8	_								parare	20.00	la Car		sipt
	C2	30.0mV/c 50.0mV	liv 2.0µs	50Ω E	w:16.0G		4.38µ 7.06µ 1 2.48µ	s s s	2							Pre 0 a	view cqs	Sing	gle Seq	RL:5001	k
L	C2	30.0mV/c 60.0mV	div 2.0µs	50Ω ^E	W:16.0G		4.36µ 2.48µ 403.2	s s 26kHz								Pre 0 a Au	cqs to S	Sing	gle Seq er 28, 2	RL:5001 010 16:	26:51
Ŧ	C2 M1	30.0mV/c 50.0mV	liv 2.0µs /e Diagran	50Ω [∎] n Ana	w:16.0G lysis To	ols	4.36р 7.06р 2.48р Ат 403.2	s s 26kHz								Pre 0 a Au	cqs to Si	Sing eptembe	gle Seq er 28, 2	RL:5001 010 16: Clear	x 26:51
Ŧ	C2 M1	30.0mV/c 50.0mV	iiv 2.0µs ye Diagran Overall 1	50Ω E n Ana fest Ri	w:16.0G lysis To esult:	ols 2 Pass	4.36μ 2.7.06μ 2.48μ Δατ 403.2	s s 26kHz					Vi	iew S	Summar	Pre 0 a Au	cqs to Si Optio	Sing eptember	gle Seq er 28, 2	RL:5001 010 16: Clear	26:51
Ŧ	C2 M1 Jitte Sel	30.0mV/c 50.0mV r and Ey	iiv 2.0µs ye Diagran Overall 1 Descripti	50Ω E n Ana Test Ro	w:16.0G lysis To esult:	ols 2 Pass Pass/Fail	4.36µ 7.06µ 2.48µ 403.2	s s 26kHz	Std Dev	1	Max	Min	Vi	iew ^S	Summar	Pre 0 a Au	cqs to Si Optio	Sing sptembo ms s pand	gle Seq er 28, 2	RL:5001 010 16: Clear Recalc	x 26:51
7	C2 M1 Jitte Sel	30.0mV/c 50.0mV r and Ey ect	iv 2.0µs ye Diagran Overall 1 Descripti → ♥ SRDIF	50Ω E n Ana Cest Ro Dn SA_TX	w:16.0G lysis To esult:	ols 2 Pass Pass/Fail 2 Pass	4.36µ 2.48µ 403.2 Меан 469.52t	s s 26kHz nV/ns	Std Der 81.226	v mV/ns	Max 730.49mV/r	Min is 323	Vi 53mV/r	iew S p-p is 401	Summar 5.96mV/r	Pre 0 a Au 9 Po 15 93	optio Optio Optio	sing sptemborns pand	gle Seq er 28, 2	RL:500 010 16: Clear Recalc	26;51
Ŧ	C2 M1 Jitte Sel Conf	30.0mV/c 50.0mV r and Ey ect	iv 2.0µs ve Diagran Overall 1 Descripti ■ C SRDIF	50Ω E n Ana est Ri on SA_TX	w:16.0G lysis To esult:	ols 2 Pass Pass/Fail 2 Pass	<ul> <li>4.36µ</li> <li>7.06µ</li> <li>2.48µ</li> <li>403.2</li> <li>403.2</li> <li>469.52r</li> </ul>	s s 26kHz n∀/ns	Std Der 81.226	v mV/ns	<mark>Max</mark> 730.49mV/r	Min as 323	Vi 53mV/r	iew S p-p ns 401	Summar 6.96mV#	Pre 0 a Au y V Po as 93	optio	sing sptembo ns pand	gle Seq	RL:5001 010 16: Clear Recalc	26:51
Ŧ	Jitte Sel	30.0mV/c 50.0mV r and Ey ect	liv 2.0µs ve Diagran Overall 1 Descripti ● SRDIF	50Ω E n Ana ēest Ru Dn SA_TX	w:16.0G lysis To esult:	ols 2 Pass Pass/Fail 2 Pass	4.36µ 7.06µ 2.48µ 403.2 Меал 469.52t	s s 26kHz nV/ns	Std Der 81.226	mV/ns	Max 730.49mV/t	Min as 323	Vi 53mV/r	iew S p-p is 40i	Summar 6.96mV/r	Pre 0 a Au	optio	sing eptemborns pand	er 28, 2	RL:5001 010 16: Clear Recalc Clear Run	×
37	Jitte Sel Conf Res	so.omV/c 50.0mV	ify 2.0µs /e Diagram Overall 1 Descripti Descripti	50Ω E	lysis To esult:	ols Pass Pass/Fail Pass	4.36µ 7.06µ ал 403.2 403.2 Меал 469.521	s s 26kHz nV/ns	Std Der 81.226	v mV/ns	Max 730.49mV/	Min as 323	Vi 53mV/r	iew S p-p Is 40	Summar 6.96mV/r	Pre 0 a Au 9 9 93	optio Optio Optio Ex pulatio	sing sptembo pand	er 28, 2	RL:5001 010 16: Clear Recalc	26:51
F	C2 M1 Jitte Sel Conf Ress Pld Rep	so.0mV/d 50.0mV	iv 2.0µs ve Diagram Overall 1 Descripti • • SRDIF	50Ω I ^b Test Ri on SA_TX	lysis To esult:	ols Pass Pass Pass Pass	Mean 469.521	s s 26kHz mV/ns	Std Der 81.226	√ mV/ns	Max 730.49mV/r	Min is 323	Vi 53mV/r	ew S p-p is 40	Gumman 5.96mV/r	Pre 0 a Au 9 Pc Pc 93	option Option Exputation	sing eptembor spand	er 28, 2	RL:5001 010 16: Clear Recale	×
F	C2 M1 Jitte Sel Confr Res Pld Rep	so.0mV/c 50.0mV	iv 2.0µs ve Diagram Overall 1 Descripti SRDIF	50Ω E n Ana rest Ra on SA_TX	lysis To esult:	ols Pass Pass/Fail Pass	Mean 469.521	s s 26kHz 26kHz nV/ns	Std Dev 81.226	₩ mV/ns	Max 730.49mV/	Min s 323	Vi 53mV/r	iew S P-P Iss 400	Summar 6.96mV/r	Prec 0 a Au 4u Pc Pc 93	optio	sing sptemborns pand on	gle Seq er 28, 2	RL:5000 010 16: Clear Recalc	x 26:51

Figure 16: SA Slew Rate Measurement

*Note:* The Gated Cursor need to be adjusted if required and should be placed in between the payload region as shown in Figure 16.

# Appendix A – Resource Requirements

The resource requirements include two separate sets of equipment.

A.1 Equipment for M-PHY* tests

- 1. Real-time Digital Oscilloscope (any one of the following instruments)
  - Preferred DSA/DPO70604/70804 (6 GHz and above bandwidth)
- 2. Software
  - DPOJET with MIPI M-PHY option
- 3. Two probes P7240 for DSA/DPO70K
- 4. (2) Cables 1 meter SMA cable
- 5. (2.) TCA-292MM or TCS-SMA

# Appendix B – DUT Connection

