PIO-INT and PCF-PIO-INT

User Guide

A - GREATER MEASURE OF CONFIDENCE

WARRANTY
Hardware

Keithley Instruments, Inc. warrants that, for a period of one (1) year from the date of shipment (3 years for Models 2000, 2001, 2002, 2010 and 2700), the
Keithley Hardware product will be free from defects in materials or workmanship. This warranty will be honored provided the defect has not been caused
by use of the Keithley Hardware not in accordance with the instructions for the product. This warranty shall be null and void upon: (1) any modification of
Keithley Hardware that is made by other than Keithley and not approved in writing by Keithley or (2) operation of the Keithley Hardware outside of the
environmental specifications therefore.

Upon receiving notification of a defect in the Keithley Hardware during the warranty period, Keithley will, at its option, either repair or replace such Keithley Hard-
ware. During the first ninety days of the warranty period, Keithley will, at its option, supply the necessary on site labor to return the product to the condition prior to
the notification of a defect. Failure to notify Keithley of a defect during the warranty shall relieve Keithley of its obligations and liabilities under this warranty.

Other Hardware

The portion of the product that is not manufactured by Keithley (Other Hardware) shall not be covered by this warranty, and Keithley shall have no duty of
obligation to enforce any manufacturers' warranties on behalf of the customer. On those other manufacturers’ products that Keithley purchases for resale,
Keithley shall have no duty of obligation to enforce any manufacturers’ warranties on behalf of the customer.

Software

Keithley warrants that for a period of one (1) year from date of shipment, the Keithley produced portion of the software or firmware (Keithley Software) will
conform in all material respects with the published specifications provided such Keithley Software is used on the product for which it is intended and other-
wise in accordance with the instructions therefore. Keithley does not warrant that operation of the Keithley Software will be uninterrupted or error-free and/
or that the Keithley Software will be adequate for the customer's intended application and/or use. This warranty shall be null and void upon any modification
of the Keithley Software that is made by other than Keithley and not approved in writing by Keithley.

If Keithley receives notification of a Keithley Software nonconformity that is covered by this warranty during the warranty period, Keithley will review the
conditions described in such notice. Such notice must state the published specification(s) to which the Keithley Software fails to conform and the manner
in which the Keithley Software fails to conform to such published specification(s) with sufficient specificity to permit Keithley to correct such nonconfor-
mity. If Keithley determines that the Keithley Software does not conform with the published specifications, Keithley will, at its option, provide either the
programming services necessary to correct such nonconformity or develop a program change to bypass such nonconformity in the Keithley Software.
Failure to notify Keithley of a nonconformity during the warranty shall relieve Keithley of its obligations and liabilities under this warranty.

Other Software

OEM software that is not produced by Keithley (Other Software) shall not be covered by this warranty, and Keithley shall have no duty or obligation to
enforce any OEM's warranties on behalf of the customer.

Other Items

Keithley warrants the following items for 90 days from the date of shipment: probes, cables, rechargeable batteries, diskettes, and documentation.

Items not Covered under Warranty

This warranty does not apply to fuses, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear or failure to follow
instructions.

Limitation of Warranty
This warranty does not apply to defects resulting from product modification made by Purchaser without Keithley's express written consent, or by misuse
of any product or part.

Disclaimer of Warranties

EXCEPT FOR THE EXPRESS WARRANTIES ABOVE KEITHLEY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUD-
ING WITHOUT LIMITATION, ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEI-
THLEY DISCLAIMS ALL WARRANTIES WITH RESPECT TO THE OTHER HARDWARE AND OTHER SOFTWARE.

Limitation of Liability

KEITHLEY INSTRUMENTS SHALL IN NO EVENT, REGARDLESS OF CAUSE, ASSUME RESPONSIBILITY FOR OR BE LIABLE FOR: (1)
ECONOMICAL, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, PUNITIVE OR EXEMPLARY DAMAGES, WHETHER CLAIMED
UNDER CONTRACT, TORT OR ANY OTHER LEGAL THEORY, (2) LOSS OF OR DAMAGE TO THE CUSTOMER'S DATA OR PROGRAM-
MING, OR (3) PENALTIES OR PENALTY CLAUSES OF ANY DESCRIPTION OR INDEMNIFICATION OF THE CUSTOMER OR OTHERS FOR
COSTS, DAMAGES, OR EXPENSES RELATED TO THE GOODS OR SERVICES PROVIDED UNDER THIS WARRANTY.

KEITHLEY

Keithley Instruments, Inc. 28775 Aurora Road ¢ Cleveland, Ohio 44139 « 440-248-0400 « Fax: 440-248-6168
1-888-KEITHLEY (534-8453) e www.keithley.com

Sales Offices: BELGIUM: Bergensesteenweg 709 « B-1600 Sint-Pieters-Leeuw 02-363 00 40 « Fax: 02/363 00 64
CHINA: Yuan Chen Xin Building, Room 705 ¢ 12 Yumin Road, Dewai, Madian ¢ Beijing 100029 « 8610-6202-2886 « Fax: 8610-6202-2892
FINLAND: Tietdjantie 2 « 02130 Espoo < Phone: 09-54 75 08 10 « Fax: 09-25 10 51 00
FRANCE: 3, allée des Garays * 91127 Palaiseau Cédex ¢ 01-64 53 20 20 « Fax: 01-60 11 77 26
GERMANY: Landsberger Strasse 65 « 82110 Germering * 089/84 93 07-40 « Fax: 089/84 93 07-34
GREAT BRITAIN: Unit 2 Commerce Park, Brunel Road ¢ Theale ¢ Berkshire RG7 4AB « 0118 929 7500 « Fax: 0118 929 7519
INDIA: Flat 2B, Willocrissa * 14, Rest House Crescent » Bangalore 560 001 ¢ 91-80-509-1320/21 « Fax: 91-80-509-1322
ITALY: Viale San Gimignano, 38 « 20146 Milano « 02-48 39 16 01 « Fax: 02-48 30 22 74
JAPAN: New Pier Takeshiba North Tower 13F ¢ 11-1, Kaigan 1-chome ¢ Minato-ku, Tokyo 105-0022 « 81-3-5733-7555 « Fax: 81-3-5733-7556
KOREA: 2FL., URI Building * 2-14 Yangjae-Dong ¢ Seocho-Gu, Seoul 137-888 « 82-2-574-7778 « Fax: 82-2-574-7838
NETHERLANDS: Postbus 559 « 4200 AN Gorinchem ¢ 0183-635333 « Fax: 0183-630821
SWEDEN: c/o Regus Business Centre » Frosundaviks Allé 15, 4tr « 169 70 Solna « 08-509 04 679 « Fax: 08-655 26 10
SWITZERLAND: Kriesbachstrasse 4 « 8600 Diibendorf ¢ 01-821 94 44 « Fax: 01-820 30 81
TAIWAN: 1FL., 85 Po Ai Street « Hsinchu, Taiwan, R.O.C. ¢ 886-3-572-9077+ Fax: 886-3-572-9031

4/02

MEIEMSY Safety Precautions

The following safety precautions should be observed before using
this product and any associated instrumentation. Although some in-
struments and accessories would normally be used with non-haz-
ardous voltages, there are situations where hazardous conditions
may be present.

This product is intended for use by qualified personnel who recog-
nize shock hazards and are familiar with the safety precautions re-
quired to avoid possible injury. Read and follow all installation,
operation, and maintenance information carefully before using the
product. Refer to the manual for complete product specifications.

If the product is used in a manner not specified, the protection pro-
vided by the product may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use
and maintenance of equipment, for ensuring that the equipment is
operated within its specifications and operating limits, and for en-
suring that operators are adequately trained.

Operators use the product for its intended function. They must be
trained in electrical safety procedures and proper use of the instru-
ment. They must be protected from electric shock and contact with
hazardous live circuits.

Maintenance personnel perform routine procedures on the product
to keep it operating properly, for example, setting the line voltage
or replacing consumable materials. Maintenance procedures are de-
scribed in the manual. The procedures explicitly state if the operator
may perform them. Otherwise, they should be performed only by
service personnel.

Service personnel are trained to work on live circuits, and perform
safe installations and repairs of products. Only properly trained ser-
vice personnel may perform installation and service procedures.

Keithley products are designed for use with electrical signals that
are rated Installation Category I and Installation Category II, as de-
scribed in the International Electrotechnical Commission (IEC)
Standard IEC 60664. Most measurement, control, and data I/O sig-
nals are Installation Category I and must not be directly connected
to mains voltage or to voltage sources with high transient over-volt-
ages. Installation Category II connections require protection for
high transient over-voltages often associated with local AC mains
connections. Assume all measurement, control, and data I/O con-
nections are for connection to Category I sources unless otherwise
marked or described in the Manual.

Exercise extreme caution when a shock hazard is present. Lethal
voltage may be present on cable connector jacks or test fixtures. The
American National Standards Institute (ANSI) states that a shock
hazard exists when voltage levels greater than 30V RMS, 42.4V
peak, or 60VDC are present. A good safety practice is to expect
that hazardous voltage is present in any unknown circuit before
measuring.

Operators of this product must be protected from electric shock at
all times. The responsible body must ensure that operators are pre-
vented access and/or insulated from every connection point. In
some cases, connections must be exposed to potential human con-
tact. Product operators in these circumstances must be trained to
protect themselves from the risk of electric shock. If the circuit is
capable of operating at or above 1000 volts, no conductive part of
the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits.
They are intended to be used with impedance limited sources.
NEVER connect switching cards directly to AC mains. When con-
necting sources to switching cards, install protective devices to lim-
it fault current and voltage to the card.

Before operating an instrument, make sure the line cord is connect-
ed to a properly grounded power receptacle. Inspect the connecting
cables, test leads, and jumpers for possible wear, cracks, or breaks
before each use.

When installing equipment where access to the main power cord is
restricted, such as rack mounting, a separate main input power dis-
connect device must be provided, in close proximity to the equip-
ment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any
other instruments while power is applied to the circuit under test.
ALWAYS remove power from the entire test system and discharge
any capacitors before: connecting or disconnecting cables or jump-
ers, installing or removing switching cards, or making internal
changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the com-
mon side of the circuit under test or power line (earth) ground. Always
make measurements with dry hands while standing on a dry, insulated
surface capable of withstanding the voltage being measured.

The instrument and accessories must be used in accordance with its
specifications and operating instructions or the safety of the equip-
ment may be impaired.

Do not exceed the maximum signal levels of the instruments and ac-
cessories, as defined in the specifications and operating informa-
tion, and as shown on the instrument or test fixture panels, or
switching card.

When fuses are used in a product, replace with same type and rating
for continued protection against fire hazard.

Chassis connections must only be used as shield connections for
measuring circuits, NOT as safety earth ground connections.

If you are using a test fixture, keep the lid closed while power is ap-
plied to the device under test. Safe operation requires the use of a
lid interlock.

5/02

If @ or ,-,7 is present, connect it to safety earth ground using the
wire recommended in the user documentation.

The A symbol on an instrument indicates that the user should re-
fer to the operating instructions located in the manual.

The A symbol on an instrument shows that it can source or mea-
sure 1000 volts or more, including the combined effect of normal
and common mode voltages. Use standard safety precautions to
avoid personal contact with these voltages.

The WARNING heading in a manual explains dangers that might
result in personal injury or death. Always read the associated infor-
mation very carefully before performing the indicated procedure.

The CAUTION heading in a manual explains hazards that could
damage the instrument. Such damage may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and
all test cables.

To maintain protection from electric shock and fire, replacement
components in mains circuits, including the power transformer, test
leads, and input jacks, must be purchased from Keithley Instru-
ments. Standard fuses, with applicable national safety approvals,
may be used if the rating and type are the same. Other components
that are not safety related may be purchased from other suppliers as
long as they are equivalent to the original component. (Note that se-
lected parts should be purchased only through Keithley Instruments
to maintain accuracy and functionality of the product.) If you are
unsure about the applicability of a replacement component, call a
Keithley Instruments office for information.

To clean an instrument, use a damp cloth or mild, water based
cleaner. Clean the exterior of the instrument only. Do not apply
cleaner directly to the instrument or allow liquids to enter or spill
on the instrument. Products that consist of a circuit board with no
case or chassis (e.g., data acquisition board for installation into a
computer) should never require cleaning if handled according to in-
structions. If the board becomes contaminated and operation is af-
fected, the board should be returned to the factory for proper
cleaning/servicing.

User Guide
for the

PIO-INT

Pattern Recognition Board

&

PCF_PIO-INT Language Drivers

New Contact Information

Keithley Instruments, Inc.
28775 Aurora Road, Cleveland, OH 44139

Technical Support: 1-888-KEITHLEY
Monday — Friday 8:00 a.m. to 5:00 p.m. (EST)
Fax: (440) 248-6168
http://www keithley.com

Revision B, - December 1990
Copyright © Keithley MetraByte Corp. 1990
Part Number: 24833

- iii -

Basic™ is a trademark of Dartmouth College.
IBMP® is a registered trademark of International Business Machines Corporation.

PC, XT, AT, PS/2, and Micro Channel Architecture® (MCA) are trademarks of International Business
Machines Corporation.

Microsoft® is a registered trademark of Microsoft Corporation.

Turbo C® is a registered trademark of Borland International.

- -

Contents

CHAPTER1 INTRODUCTION

1.1 Overview 1-1

Features 1-1

Applications 1-1

Functional Description 1-1
Specifications 1-3

Connector Pin Assignments 1-3
List Of Distribution Files 1-4

U I G [G -y
NOoO AW

CHAPTER2 INSTALLATION

2.1 General 2-1

2.2 Unpacking & Inspecting 2-1

23 Base Address Switch Settings 2-1
24 Hardware Installation 2-2

25 Utility Software Back Up 2-3

251 Single Floppy-Disk Drive 2-3
252 Dual Floppy-Disk Drive 2-3
253 Hard Disk Machines 2-4

CHAPTER3 CONFIGURATION & PROGRAMMING INFORMATION

3.1 Base Address, I/0 Map, & Interrupt Level Selection 3-1
3.2 Registers 3-2

3.21 8255 Registers 3-2

3.2.2 Interrupt Control Register 3-2

3.23 Global Interrupt Status Register 3-3

3.24 Mask Registers 3-3

3.25 Filter Register 3-4

3.2.6 Pattern Match Registers 3-4

3.27 Interrupt Status Registers 3-4

3.3 Programming 3-4

CHAPTER4 MODE CALL PROGRAMMING

4.1 Call Syntax 4-1

4.2 MODE 0: Initialize 4-1

43 MODE 1: Reasd Data From Ports 4-2

4.4 MODE 2: Write Data To All Ports 4-2

45 MODE 3: Write Data To One Port 4-3

4.6 MODE 4: Read Mask RWegisters 4-3

4.7 MODE 5: Write Mask Registers 4-4

4.8 MODE 6: Read Pattern Match Registers 4-4
49 MODE 7: Write Pattern Match Registers 4-5
4.10 MODE 8: Set Filter Response 4-6

4.11 MODE 9: Enable Interrupt 4-6

412 MODE 10: Disable Interrupt 4-7

4.13 MODE 11: Read Interrupt Status & Clear Interrupt 4-7
4.14 MODE 12: Return Configuration 4-8

CHAPTER 5 INSTRUCTIONS FOR RETURNS

APPENDIX A PCF_PIO-INT

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

The PIO-INT Pattern Recognition board is a high-current, 24-line, parallel, digital I/O interface board
with extended interrupt capabilities for IBM PC-XT /AT types of computers that are ISA- and EISA-
bus compatible.

1.2 FEATURES
e 24 TTL/DTL Digital I/O Lines.
¢ 16 lines with extensive interrupt capabilities.
¢ Bit change interrupt generation.
¢ Pattern match interrupt generation.
* Flexible digital I/O based on popular 8255 P.P.I.
e PC/XT/AT ISA and EISA bus compatible.
e Can use extended interrupt levels of PC/AT.
e Compatible with MetraByte's PIO-12 with extended interrupt capabilities.
e +12V and 5V Power available from PC bus.
* Programmable interrupt level selection.

¢ Programmable interrupt delay.

1.3 APPLICATIONS
¢ General purpose & Interrupt driven digital I/O.

¢ Contact or switch change monitoring.
* Bit pattern matching or comparison.

* Process activation on defined bit states or changes.

1.4 FUNCTIONAL DESCRIPTION

The PIO-INT consists of three separate byte-wide data ports, PA, PB, and PC provided directly from a
standard 8255 P.P.I. The PA and PB ports are monitored by additional circuitry capable of generating
interrupts either on the change of any bit in the port(s) or when a specific combination (pattern) of bits
appears at the port(s). The PC port can be divided into two nybble wide ports (PC upper and PC
lower) and is useful as an auxiliary I/O port although it is not monitored and has no interrupt
generating capabilities.

The PA, PB, PC upper and PC lower ports may be individually configured as input or output in any
combination by the 8255 control register and in this respect THE PIO-INT is identically functional in

1-1

PIO-INT USER GUIDE

digital I/O and programming to MetraByte's PIO-12, but has considerably enhanced interrupt
capabilities. All ports can always be read and written to as normal 8 bit I/O ports.

There are 2 types of interrupt operations for the PA and PB ports, as follows:

1. Bitinterrupts. A change of any un-masked bit either from 0 to 1 or 1 to 0 will generate an
interrupt. The bit(s) that changed can be read from the Interrupt Status register, reading this
register also clears the interrupt. Only bits that are activated by the interrupt Mask Registers (one
for each port) will generate an interrupt.

2. Patterninterrupts. An interrupt is generated on a given pattern of bits in a port. Only un-
masked bits (set by the mask register) can participate in a pattern match interrupt and they are
compared with a stored pattern of bits in the PIO-INT's Pattern Match Registers (one for each

port).

Two mode bits in the interrupt control register determine PIO-INT interrupt generation, as follows:

M1 MO INTERRUPT STATUS

0 0 Interrupts disabled
0 1 PA only

1 0 PA OR PB

1 1 PA AND PB

This gives a variety of conditions under which the PIO-INT will generate an interrupt, including bit
changes or pattern matches in only PA or either or both PA and PB ports or'ed or and'ed together. In
addition, by masking any port off (set all mask register bits to zero), interrupts can be suppressed
from that port allowing interrupts from single or multiple bits in the other port. This gives a large
variety of possible operating conditions such as:

* No interrupts at all (disabled) - simple I/O board.

* Interrupt on selected bit change(s) in one or both ports.

* Interrupt on selected bit change(s) in one port and/or a pattern match in the other port.

* Interrupt on pattern matches in either or both ports (independent 1-8 bit or full 1-16 bit matches)

In order to prevent spurious interrupts (for example, from transition states of bits in a pattern match
or noise glitches on an individual bit change), generation of an interrupt is delayed by a 2-stage digital
filter. The filter is clocked by a programmable discrete decade frequency ranging from 1Hz to 10MHz.
The effect of the filter is to allow actuation delays from 100-200ns to 1-2 seconds before an interrupt is
generated (that is, the interrupting condition must be maintained for at least the filter delay time). If
the interrupting condition (pattern or bit change) is not sustained for this programmable time interval,
no interrupt will be produced by the PIO-INT. Filter delays are independently selectable for the PA
and PB ports.

The connector pin out is identical to the PIO-12, except that no external interrupt input and enable are
provided as they would be redundant (hence Pins 1 & 2 of the rear connector have no connection). On
power up, all the mask and interrupt control registers are cleared, so until initialized, the PIO-INT
cannot generate interrupts.

1.5 SPECIFICATIONS

Logic Inputs and Outputs

Input logic low voltage
Input logic high voltage
Input current logic low: PA & PB ports
PC port
Input current logic high: PA & PB ports
PC port
Output low voltage: Isink = 1.4mA
all ports
Output high voltage: Isource = 200uA
all ports

Interrupt levels supported

PC & PC/XT (5 levels)
PC/AT (10 levels)

Programmable interrupt delay time

10mS

Power Consumption

Environmental Specifications

Operating temperature range
Storage temperature range
Humidity

Size

CHAPTER 1: INTRODUCTION

MIN. MAX.
0.5V +0.8V
+2.0V +5.0V
0 -04mA
-10uA +10uA
0 +40uA
-10uA +10uA
0 +0.45V
+2.4V +5.5V
2,3,4,5,7
2/9,3,4,5,7,10,11,12, 14,15

100ns, 1uS, 10uS, 100uS, 1mS,

100mS, 1 sec.

800mA typ. @ +5v

0to+50 deg. C.

-40to +100 deg. C.

0 to 90% non-condensing
2/3 full slot length

PIO-

INT USER GUIDE

1.6 CONNECTOR PIN ASSIGNMENTS

A rear view of the PIO-INT 37-pin, D connector is as shown in /\
the diagram. " S [is) o
oiG. com. |17 32 P:;
+12v |16 34| pas
DIG. COM. (1S 33| pas
oo cow |13 32| 78
1.7 LIST OF DISTRIBUTION FILES C e gl
Tl =
Driver Source Files e
25| Pc4
FILE NAME__ DESCRIPTION |5 2
v |3 2w
PIOINT.BIN Driver for BASIC(A) programs. sl GRS
PIOINT.QLB Driver for QUICK BASIC programs.
PIOINT.LIB Driver for 'C', PASCAL AND FORTRAN.
PIOINT.OB]J Driver routine which is linkable to compiled BASIC.
TURBOPAS.OBJ PIO-INT Driver for TURBO PASCAL.
PIOINT.ASM Assembly source of Driver routine.
PIOIPCF.ASM Source code PIO-INT Language Interface for Pascal, C and Fortran
(PCP).
PIOINT.ADR ASCII file, containing BASE ADDRESS, readable by BASIC, 'C', PASCAL

and FORTRAN example programs.

DOcumentation, Utility, and Executable Programs

FILE NAME___
FILES.DOC

PIOIPCE.DOC
HOWTOBIN.DOC

README.DOC

DIPSW.EXE

MAKEBIN.EXE

DESCRIPTION
This file.

Info. on Multi-Language PCF Call Structures.
Information on how to create a .BIN file.

Information about current driver software supplied (updated with every
revision).

PIO-INT hardware installation aid.

Utility to convert a .COM file to a .BIN file for use with BASIC programs.

CHAPTER 1: INTRODUCTION

Example Programs
FILE NAME___ DESCRIPTION
MSCSEX1.C Microsoft 'C' example program (Small Model).
TCSEX1.C TURBO 'C' example program (Small Model).
TP_EX1.PAS TURBO PASCAL example program.
MSPEX1.PAS Microsoft PASCAL example program.
MSFEX1.FOR Microsoft FORTRAN example program.
EXPIOINT.BAS Basic example program.
QBPIOINT.BAS Quick Basic example program.

CHAPTER 2

HARDWARE
INSTALLATION & SETUP

2.1 GENERAL

This chapter provides instructions for the installing the PIO-INT in an IBM PC-XT or AT and
compatible models. The chapter begins with procedures for unpacking and inspection, which are
followed by settings for the Base Address switch and instructions for board installation. There are
also instructions for making working copies of your distribution diskettes.

2.2 UNPACKING AND INSPECTING

After you remove the wrapped board from its outer shipping carton, proceed as follows:

1. Place one hand firmly on a metal portion of the computer chassis (the computer must be turned
Off and grounded). You place your hand on the chassis to drain off static electricity from the
package and your body, thereby preventing damage to board components.

2. Allow a moment for static electricity discharge; carefully unwrap the board from its anti-static
wrapping material.

3. Inspect the board for signs of damage. If any damage is apparent, return the board to the factory.

4. Check the contents of your package against its packing list to be sure the order is complete.
Report any missing items to MetraByte immediately.

You may find it advisable to retain the packing material in case the board must be returned to the
factory.

2.3 BASE ADDRESS SWITCH SETTINGS

Before installing the board, check its Base (with switen OFF)
Address setting on the ADDRESS SELECT

512
switch. This switch is preset at the factory for an &
To communicate with a specific device such as a disk drive, a monitor, another PIO-INT board, etc.,

256
128
address of 300 Hex, as shown in the Base { ’5
Address SWltCh diagram. P The decimal value of an address
the computer must refer its communication to the device's Base Address. A Base Address is typically
expressed as a 3-digit Hex number.

i] ‘
1 2 3 4 5
line exists only when the line's
ON switch is OFF. Thus, the value
represented here is 512 + 256,
Diagram of the Base Address switch. which equals 768 (300 hex).

A PIO-INT board is preset for a Base Address of 300 Hex, which is within the address range used for a
Prototype Card (300 to 31F, as shown in the table below). This default value will function in most
computers without conflict, thereby eliminating any need for address selection and configuration.

2-1

PIO-INT USER GUIDE

However, if you have a need to change the Base Address from its preset value, you must select an
address within a range of 000 to 3FF (0 to 1023 Decimal). In addition, the address must be on an 8-
byte boundary, and it must not conflict with addresses the computer is already using for other
devices. As an aid to selecting a usable 3-digit Hex number, the following table is an industry-
standard I/O address map for the full 000 to 3FF range.

Table of industry-standard I/O addresses for peripheral devices.

HEX RANGE USAGE HEX RANGE USAGE
000 to 1FF Internal System 387 to 37F LPTI:
200 to 20F Game 380 to 38C SDLC comm.
210 to 217 Expansion unit 380 to 389 Binary comm. 2
220 to 24F Reserved 3A0to 3A9 Binary comm. 1
278 to 27F Reserv 3B0 to 3BF Mono dsp/LPT1:
2FQ to 2F7 LPT2: 3C0 to 3CF Reserved
2F8 to 2FF COM2: 3D0 to 3DF Color graphics
300 to 31F Prototype card 3E0 to 3E7 Reserved
320to 32F Hard disk 3F0 to 3F7 Floppy disk
3F8 to 3FF COM1:

After you select a Base Address, run the DIPSW.EXE program (contained in your PIO-INT software)
to determine the proper setting for the driver board's Base Address switch. To run this program, log
to the directory that contains DIPSW.EXE and type DIPSW <Enter> The program will respond with
the question DESIRED BASE ADDRESS —> ?

Your response should be to type a decimal number (or a Hex number preceded by &H, such as
&H300) representing the selected address. The computer will display the corresponding Base
Address switch settings in diagram form, as shown in the Base Address switch diagram. If the entry
is unacceptable, the computer will display an explanatory statement and a request for another entry.
As the Base Address switch diagram indicates, the Base Address is set in binary code; also, the
switches have value only in the OFF position.

2.4 HARDWARE INSTALLATION
To install the PIO-INT in a PC, proceed as follows.

WARNING: ANY ATTEMPT TO INSERT OR REMOVE ANY ADAPTER BOARD WITH THE
COMPUTER POWER ON COULD DAMAGE YOUR COMPUTER!

1. Turn Off power to the PC and all attached equipment.

2. Remove the cover of the PC as follows: First remove the cover-mounting screws from the rear
panel of the computer. Then, slide the cover of the computer about 3/4 of the way forward.
Finally, tilt the cover upwards and remove.

3. Choose an available option slot. Loosen and remove the screw at the top of the blank adapter
plate. Then slide the plate up and out to remove.

4. Hold the PIO-INT board in one hand placing your other hand on any metallic part of the PC/AT
chassis (but not on any components). This will safely discharge any static electricity from your
body.

Make sure the board switches have been properly set (refer to the preceding section).

6. Align the board connector with the desired accessory slot and with the corresponding rear-panel
slot. Gently press the board downward into the socket. Secure the board in place by inserting
the rear-panel adapter-plate screw.

CHAPTER 2: HARDWARE INSTALLATION & SETUP

7. Replace the computer's cover. Tilt the cover up and slide it onto the system's base, making sure
the front of the cover is under the rail along the front of the frame. Replace the mounting screws.

8. Plugin all cords and cables. Turn the power to the computer back on.

You are now ready to make any necessary system connections, install the PIO-INT software, and
perform calibration and perform checks on calibration and adjustment, as described in Section 8.3 of
Chapter 8.

MetraByte recommends that you retain the static-shield packaging for possible future removal and
handling of the PIO-INT board.

2.5 UTILITY SOFTWARE BACK UP

Distribution software is furnished on 5.25", 360K floppy diskettes. To accommodate users with 3.5"
floppy drives, the Software is also available on a 720K diskette.

As soon as possible, make a working copy of your PIO-INT software using the procedures that follow.
Store your original software copy in a safe place as a backup.

The following back-up procedures cover the more common computer configurations: a single floppy-
disk drive (with hard disk), dual-floppy disk drives, and a hard disk.

2.5.1 Single Floppy-Disk Drive
To copy to another diskette in a single floppy-disk machine (with hard disk), proceed as follows:

1. Turn on power to your computer and display.
2. After system boot-up, the DOS prompt should be C:>

3. Besure the DOS file DISKCOPY.EXE is in the root (C:\) directory. Then, type DISKCOPY A:
A:

4. Insert the source diskette (your PIO-INT Utility diskette) into Drive A. The system will prompt
you through the disk copying process. When the source diskette has been copied into memory,
the System will ask you to insert the target diskette into Drive A. The target diskette is a blank
disk that is to be your back-up disk.

When completed, the computer will ask COPY ANOTHER (Y/N)?. Respond by typing N.

6. Put the original PIO-INT diskette in a safe place. Label the back-up disk PIO-INT Working Disk.
Use this disk to run your PIO-INT programs.

2.5.2 Dual Floppy-Disk Machines

If your dual floppy-drive PC has a hard disk, follow the procedure in Section 2.1.1, substituting the
command DISKCOPY A: B: in Step 3. Then insert the PIO-INT diskette in Drive A and the Target
diskette in Drive B.

If your machine has no hard disk, use the following procedure.

1. Turn on power to your computer and display, and place your DOS diskette in Drive A.

2. The DOS prompt should be A:> If not, type A: followed by < Enter > Be sure the diskette in
Drive A contains the DISKCOPY .EXE file.

2-3

PIO-INT USER GUIDE

Then, type DISKCOPY A: B:

Insert the source diskette (your PIO-INT diskette) into Drive A. The system will prompt you
through the disk copying process. It will ask you to insert the farget diskette into Drive B. The
target diskette is a blank disk that is to be your back-up disk.

When completed, the computer will ask COPY ANOTHER (Y/N)?. Respond by typing N .

When copying is complete, put the original PIO-INT diskette in a safe place. Label the back-up
disk PIO-INT Working Disk. Use this disk to run the software.

2.5.3 Hard Disk Machines
To copy your PIO-INT files to a hard disk:

1.

Start your computer. You should see a prompt, which indicates you are at the DOS level (for
example, if your hard drive is designated as C, you should see the prompt C:\>).

The following instructions create a special directory for the PIO-INT Utility disk files. At the
DOS prompt, type: mkdir PIO followed by < Enter >. Change to the AWFG directory by
typing: CD \PIO followed by < Enter >

Place the Distribution diskette into Floppy Drive A and type A:. When the prompt changes
from C:\> to A:\>, type copy *.* C: followed by < Enter >.

You have now copied the contents of the Utility diskette to your hard disk. Store the Utility
diskette in a safe place.

CHAPTER 3

CONFIGURATION & PROGRAMMING
INFORMATION

3.1 BASE ADDRESS, I/O MAP, & INTERRUPT LEVEL SELECTION

The PIO-INT uses a contiguous block of 16 I/O addresses. The Base Address of this block is switch-
selectable and can be placed on any 16-bit I/O address boundary in the range 000H to 3FOH. Because
of system limitations, addresses from 200H to 3FOH are available on the PC and PC-XT and addresses
from 100H to 3FOH are available on the PC-AT. Allowing for other plug-in adapter boards, there will
still be a wide choice of unused I/O address options available in any computer. The I/O address map
of the PIO-INT is as follows:

Base Address +0 8255 PA data port R/W)
+1 8255 PB data port R/W)
+2 8255 PC data port R/W)
+3 8255 control register (W only)
+4 Interrupt control R/W) *
+5 Global interrupt status (R only)
+6 PA Mask Register R/W) *
+7 PB Mask Register R/W) *
+8 Filter Control Register R/W) *
+9 PA Pattern Match Register R/W)

+10 PB Pattern Match Register R/W)
+11 PA bit interrupt status (R only)
+12 PB bit interrupt status (R only)

+13-15 Not used
* These registers are cleared on power up or hardware reset

Note that the first four I/O addresses correspond directly with the 8255 PPI so that the PIO-INT
programs identically to the PIO-12 for pure digital I/O (see PIO-12 data sheet and programming
examples). The other registers in the I/O map serve only to control the interrupt functions which are
automatically disabled on power up (or hardware reset).

On a PC/AT or EISA/ISA bus computer, the PIO-INT can be programmed to operate on any of the
following 10 bus interrupt levels 2/9, 3,4, 5,7, 10, 11, 12, 14 or 15. When used in a PC/XT based

3-1

PIO-INT USER GUIDE

machine, only 5 levels 2, 3, 4, 5 or 7 may be used due to the XT bus structure. Level 6 is not provided
due to its universal use by the floppy disk controller in all machines, and level 13 is also omitted due
to its use by the numeric coprocessor on PC/AT machines.

3.2 REGISTERS

3.2.1 8255 Registers

The 8255 registers consist of the three read /write data ports PA, PB, and PC and the standard write-
only control register. For information, see the 8255 data sheet or PIO-12 programming information.

3.2.2 Interrupt Control Register

This is an 8-bit read/ write register cleared on power up. It sets the basic operating conditions of the
board such as choice of interrupt level, source of interrupt, and whether the PA and PB ports are
operating in the bit or pattern match mode of generating interrupts.

D7 D6 D5 D4 D3 D2 D1 DO
1 | | | | | | | |
I I [T 1 I I | |
LEV8 LEV4 LEV2 LEV1 M1 MO PTB PTA
[bit/pat]

The PIO-INT is built with a small auxiliary connector so that when used in PC-AT (ISA or EISA) bus
machines, it can utilize 10 of the 11 available interrupt levels. When used in a plain PC bus (62-pin
connector) machine, the auxiliary connector remains unconnected and the PIO-INT can use only five
of the six available interrupts. The interrupt level is selected by the LEV1 - 8 bits, as follows:

INTERRUPT_LEVEL LEVS LEV4 LEV2 LEV1 NOTES
2 0 0 1 0 PC/XT only
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
7 0 1 1 1
9 1 0 0 1 PC/AT only
10 1 0 1 0 PC/AT only
11 1 0 1 1 PC/AT only
12 1 1 0 0 PC/AT only
14 1 1 1 0 PC/AT only
15 1 1 1 1 PC/AT only

Note that Interrupt Level 6 is not available as it is generally used by the floppy-disk drives on PC-XT
and AT machines and is an inconvenient level to use. Likewise, Level 13 is used by the numeric
coprocessor on PC-AT bus machines. Setting the LEV1 - 8 bits to binary values of 0, 1, 6, or 13 (that is,
any illegal level) will disable interrupts from the PIO-INT.

Mode bits M1 and MO select the source of the interrupts and the logical combination of the interrupts
from the PA and PB ports, as follows:

CHAPTER 3: CONFIGURATION & PROGRAMMING INFORMATION

M1 MO FUNCTION
0 0 Interrupts disabled
0 1 PA OR'ed with PB
1 0 PA AND'ed with PB
1 1 PA AND'ed with PB (same as 1 0)

Interrupts are disabled when both mode bits are 0. This enables/disables generation of interrupts
from the PIO-INT. If the PA and PB ports are OR'd together (mode 0 1), then an interrupt condition
originating from either port will generate a bus interrupt. If the PA and PB ports are AND'd together,
then interrupts must be generated by both ports before a bus interrupt is produced.

The PTA/PTB pattern/bit control bits control how each port generates an interrupt. In the bit mode
(PTA or PTB = 0), an interrupt is generated by a change of state of any un-masked bit in the port. The
bit that changed state can be determined by reading the PA or PB port bit interrupt status registers. In
the Pattern Match Mode (PTA or PTB = 1), an interrupt is generated only when the combination of
unmasked bits corresponding to the pattern loaded in the corresponding port pattern registers is
matched. Note that the mask registers are active in both types of comparison. In either case, the
interrupting port can be determined by reading the global interrupt status register. It is possible to
operate one port in bit mode, the other in pattern mode or AND both ports together to do full 16-bit
pattern matches.

3.2.3 Global Interrupt Status Register

This is an 8-bit read-only register that provides information on the source of an interrupt and also
clears the interrupt from the PIO-INT. When operating in the bit change mode, the individual bit(s)
within a port that generated an interrupt can be determined from the interrupt status registers for
each port, and these should be read first as they will also be cleared by reading the global interrupt
status register. The bit assignment is as follows:

D7 D6 D5 D4 D3 D2 D1 DO
| | | | | | | | |

| | | I I I I I
IRQ INTE IRQB IRQA LEV8 LEV4 LEV2 LEVM

Bits DO - D3 return the active interrupt level (identical to that set in the Interrupt Control Register, it
can also be read from the Interrupt Control Register). Bit D4 (IRQA) is set if the PA port generated the
interrupt. Bit D5 (IRQB) is set if the PB port generated the interrupt. Bit D6 (INTE) corresponds to
interrupts being enabled (that is, both MO and M1 bits of the Interrupt Control register are non-zero).
Bit D7 (the IRQ bit) corresponds to the bus-interrupt signal and is set according to the AND/OR
combinations of the port interrupts IRQA and IRQB selected by the mode bits (M0 and M1) of the
interrupt control register. Reading the the Global Interrupt Status Register clears interrupts from
the PIO-INT.

3.2.4 Mask Registers

These are 8-bit read/write registers, one for Port A and one for Port B, that control which bits in the
ports can generate interrupts from bit changes or participate in a bit comparison with the pattern
registers. A '0'in the mask register disables the corresponding bit in the data port; a '1" enables it.
The mask registers are cleared on power up.

PIO-INT USER GUIDE

3.2.5 Filter Register

This is an 8-bit read/ write register that selects the filter delays for each port. It is cleared on power up,
selecting the minimum filter delay (100ns).

D7 | D6 D5 D4 | D3 D2 D1 DO
| | | | | | |
f | T T T T | T |
NOT RB4 RB2 RB1 NOT RA4 RA2 RA1
USED USED
PB port filter PA port filter

R-4,R-2, & R-1: Select internal decade clock source for filter as follows:

R-4 R-2 R-1 FREQUENCY
0 0 0 10 MHz
0 0 1 1 MHz
0 1 0 100 KHz
0 1 1 10 KHz
1 0 0 1 KHz
1 0 1 100 Hz
1 1 0 10 Hz
1 1 1 1Hz

On power up, the filter register is cleared, selecting the shortest delay (100-200nS). The user can then
easily select from a broad range of decade scaled frequencies giving delays extending to 1-2 seconds.

3.2.6 Pattern Match Registers

When operating in the pattern comparison mode, these 8-bit read/write registers are loaded with the
bit pattern required to generate an interrupt. Depending on the individual mask register bit settings,
not all bits of a port may be involved in a pattern match. The pattern match registers are not cleared
on power up or hardware reset and should be initialized to the desired pattern before enabling pattern
match interrupt operation.

3.2.7 Interrupt Status Registers

These 8-bit read-only registers provide information on which bit(s) in a port generated a bit change
interrupt. They are relevant only when operating a port in the Bit Change Interrupt Mode (that is,
when the PTA or PTB bits of the interrupt control register are zero). In the Pattern Match Mode, the
interrupt bit status registers will return zero. To clear either bit interrupt status register, read the
global interrupt status register.

3.3 PROGRAMMING

Programming of the 8255 PPI for digital I/O is standard and is explained in Chapter 5. Since the 8255
is located at the first four I/O addresses in the PIO-INT's address map, the PIO-12 programming
examples are equally valid for the PIO-INT.

3-4

CHAPTER 3: CONFIGURATION & PROGRAMMING INFORMATION

Programming of the interrupt functions requires use of the additional PIO-INT registers and the
installation of an interrupt handler. A sample assembly language driver callable from BASIC together
with its source listing is provided on a utility program disk with the PIO-INT. The hardware has
been designed to accommodate the following possible operations:

1.

Software selectable interrupt level (no jumpers). You can install your interrupt handler for a
particular level and select operation of the PIO-INT on that level in one initializing operation.

Flexible generation of interrupts either by change of a bit in a port or a defined pattern of data
being established on one or both ports.

Delaying of the interrupt by a decade programmable delay in the range 100ns to 1-2 seconds.
This amounts to requiring an interrupting condition to be maintained for the programmable time
before a bus interrupt is generated. It is especially useful in noisy environments or where false
transitional states may momentarily exist.

An interrupting condition from Port A may be OR'd or AND'd with an interrupting condition
from Port B.

The source of an interrupt, Port A or Port B, or in the case of bit change interrupts, the actual
bit(s) that changed may be determined from the PIO-INT's status registers.

Mask registers allow for disabling of any bits involved in either bit change or pattern match
operations.

Pattern Match Registers store the desired bit comparison pattern for generating pattern match
interrupts.

The PIO-INT register structure and hardware capabilities are designed to make the generation of
software for interrupt routines for real-world interrupt handling as simple as possible, for example the
hardware eliminates the need for operations like software debouncing of switch closures etc. Not all
high level languages support the writing of interrupt handlers, C and assembly language are excellent,
whereas BASIC and FORTRAN have no capabilities and require callable extensions.

CHAPTER 4

MODE CALL
PROGRAMMING

4.1 CALL SYNTAX
CALL PIOINT (MD% , D%(0), FLAG%)

4.2 MODE 0: INITIALIZE

Data on entry to the call:

MD% =

D% (0)
D% (1)
D% (2)
D% (3)
D% (4)
D% (5)
D% (6)
D% (7)
D% (8)

D% (9)

FLAGS

0

Base I/O address (range 100H - 3F0H PC/AT, 200H - 3F0H PC/XT)
PA port direction (1 = input, 0 = output)
PB port direction (1 = input, 0 = output)
PC0-3 port direction (1 input, 0 output)
PC4-7 port direction (1 input, 0 output)
Interrupt level (2,3,4,5,7,10,11,12,14,15 - range 0 - 15)
Type of interrupt on PA port (0 = bit, 1 = pattern)
Type of interrupt on PB port (0 = bit, 1 = pattern)
Interrupt configuration:- (range 0 - 3)
0 - all disabled
1l - PA port only
2 - PA OR'ed with PB port
3 - PA AND'ed with PB port
D%$(16) = x (value irrelevant)

x (value irrelevant)

Data on exit from the call:
MD$ = 0 (unchanged)

D% (0)

D% (16) = value unchanged

Possible errors returned:

FLAG%

0 - No error, call executed O.K.

1 - Wrong base address (range 100H to 3FOH/AT or 200H to 3FFH/XT)
2 - No hardware present at base address

4 - Tllegal mode number (MD% < 0 or MD% > 12)

11 thru 18 - Illegal value of D%(Error # - 10)

Check for hardware at Base Address.

PIO-INT USER GUIDE

Check if in AT (presence of 2nd. 8259 - block levels 10-15 if not).

4.3 MODE 1: READ DATA FROM PORTS

Data on entry to the call:
MD$ = 1
D%(0) - D%(16) = x (value irrelevant)

FLAG% = x (value irrelevant)

Data on exit from the call:

MD% = 1 (unchanged)

D%$(0) = Port A data

D% (1) = Port B data

D% (2) = Port C, PC0-3 data

D%$(3) = Port C, PC4-7 data

D%(4) - D%(16) = value unchanged

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - Illegal mode number (MD% < 0 or MD% > 12)

4.4 MODE 2: WRITE DATA TO ALL PORTS
Data on entry to the call:

MD% = 2

D% (0) = Port A data (range 0 - 255)

D%(1) = Port B data (range 0 - 255)

D%$(2) = Port C, PC0-3 data (range 0 -15)
D%(3) = Port C, PC4-7 data (range 0 - 15)

D%(4) - D%(16) = x (value irrelevant)

Data on exit from the call:

MD% = 2 (unchanged)

D% (0) D% (16) = value unchanged

FLAGS

x (value irrelevant)

CHAPTER 4: MODE CALL PROGRAMMING

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - lllegal mode number (MD% < 0 or MD% > 12)
10 thru 13 - Illegal value of D%(Error # - 10)

4.5 MODE 3: WRITE DATA TO ONE PORT
Data on entry to the call:
MD$ = 3

D% (0) = Port select:- (range 0 - 3)

0 = PA port
1 = PB port
2 = PC lower port (PC0-3)
3 = PC upper port (PC4-7)

D% (1) data (range 0 -255)
D%(2) - D%(16) = x (value irrelevant

FLAGS

x (value irrelevant)

Data on exit from the call:
MD% = 3 (unchanged)

D%(0) - D%(16) = value unchanged

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - lllegal mode number (MD% < 0 or MD% > 12)
10 thru 11 - Illegal value of D%(Error # - 10)

4.6 MODE 4: READ MASK REGISTERS
Data on entry to the call:
MD$ = 4

D$(0) - D%(16) = x (value irrelevant)

FLAGY = x (value irrelevant)

Data on exit from the call:
MD% = 4 (unchanged)

PIO-INT USER GUIDE

D%$(0) = PA port mask register data (range 0 - 255)
D%$(1l) = PB port mask register data (range 0 - 255)
D%(2) - D%$(16) = value unchanged

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - Illegal mode number (MD% < 0 or MD% > 12)

4.7 MODE 5: WRITE MASK REGISTERS
Data on entry to the call:

MD% = 5

D% (0) = PA port mask register data (range 0 -255)
D$(1) = PB port mask register data (range 0 - 255)
D%(2) - D%(16) = x (value irrelevant)

FLAGY% = x (value irrelevant)

Data on exit from the call:
MD% = 5 (unchanged)

D% (0) - D%(16) = value unchanged

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - lllegal mode number (MD% < 0 or MD% > 12)
10 thru 11 - Illegal data value

4.8 MODE 6: READ PATTERN MATCH REGISTERS

Data on entry to the call:
MD$ = 6

D% (0) D%$(16) = x (value irrelevant)

FLAGS x (value irrelevant)

CHAPTER 4: MODE CALL PROGRAMMING

Data on exit from the call:

MD% =

D% (0)
D% (1)
D% (2)

6

(unchanged)

PA port pattern match register data
PB port pattern match register data
D% (16) = value unchanged

Possible errors returned:

FLAG%

0 - No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode

4 - Tllegal mode number (MD% < 0 or MD% > 12)

4.9 MODE 7: WRITE PATTERN MATCH REGISTERS
Data on entry to the call:

MD$ =
D%(0)
D% (1)
D% (2)

FLAGS

~

PA port pattern match register data (range 0 - 255)
PB port pattern match register data (range 0 - 255)
D%(16) = x (value irrelevant)

x (value irrelevant)

Data on exit from the call:
MD% = 7 (unchanged)

D%$(0) - D%$(16) = value unchanged

Possible errors returned:

FLAG%

0 - No error, call executed O.K.

3 - Not initialized, run mode 0 before selecting this mode
4 - Illegal mode number (MD% < 0 or MD% > 12)

10 thru 11 - Illegal data value

4.10 MODE 8: SET FILTER RESPONSE
Data on entry to the call:

MD% =

D% (0)
D% (1)
D% (2)

<]

PA port filter rate (range 0 - 7)
PB port filter rate (range 0 - 7)
D%(16) = x (value irrelevant)

PIO-INT USER GUIDE

FLAGY% = x (value irrelevant)

Data on exit from the call:
MD% = 8 (unchanged)

D%$(0) - D%(16) = value unchanged

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - Tllegal mode number (MD% < 0 or MD% > 12)
10 thru 11 - Illegal data value

4.11 MODE 9: ENABLE INTERRUPT
Data on entry to the call:
MD% = 9

D%(0) - D%(16) = x (value irrelevant)

FLAGY% = x (value irrelevant)

Data on exit from the call:
MD% = 9 (unchanged)

D%(0) - D%$(16) = value unchanged

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - Tllegal mode number (MD% < 0 or MD% > 12)
5 - Interrupt already enabled

4.12 MODE 10: DISABLE INTERRUPT
Data on entry to the call:
MD$ = 10

D%$(0) - D%(16) = x (value irrelevant)

FLAGY% = x (value irrelevant)

CHAPTER 4: MODE CALL PROGRAMMING

Data on exit from the call:
MD$ = 10 (unchanged)

D% (0) - D%(16) = value unchanged

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - Tllegal mode number (MD% < 0 or MD% > 12)
6 - Interrupt already disabled

4.13 MODE 11: READ INTERRUPT STATUS & CLEAR INTERRUPT

Data on entry to the call:
MD$ = 11

D%(0) - D%(16) = x (value irrelevant)

FLAGY% = x (value irrelevant)

Data on exit from the call:
MD% = 11 (unchanged)

D%(0) = PA interrupt 1 = PA Port Generate Interrupt;
0 = If Not.

D% (1) = PB interrupt 1 = PB Port Generate Interrupt;
0 = If Not.

D% (2) = Board interrupt (see Notes 4 & 5 of Sect 3.3)

D% (3) = PA interrupt status register

D%$(4) = PB interrupt status register

D%(5) - D%(16) = value unchanged

Possible errors returned:

FLAG% 0-No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - Illegal mode number (MD% < 0 or MD% > 12)

4.14 MODE 12: RETURN CONFIGURATION
Data on entry to the call:
MD$ = 12

D%$(0) - D%(16) = x (value irrelevant)

PIO-INT USER GUIDE

FLAGS

= x (value irrelevant)

Data on exit from the call:

MD$ =

D% (0)
D% (1)
D% (2)
D% (3)
D% (4)
D% (5)
D% (6)
D%(7)
D% (8)

D% (9)

D% (10)
D% (11)
D% (12)
D% (13)
D% (14)
D% (15)
D% (16)

12 (unchanged)

PB
PA
PB
PA
PB
PA
PB

Interrupt status 1 =
PA port directionl =
PB port directionl
PC lower port directionl = Input;
PC upper port directionl = Input;
Interrupt level
Type of interrupt on PA port (0 =
Type of interrupt on PB port (0 =
Interrupt configuration:-

0 - all disabled
PA port only
PA OR'ed with PB port

1 -
2
3 -

PA mask register

mask register
interrupt status
interrupt status
filter rate
filter rate
pattern register
pattern register

Possible errors returned:

0 - No error, call executed O.K.
3 - Not initialized, run mode 0 before selecting this mode
4 - Illegal mode number (MD% < 0 or MD% > 12)

FLAG%

Enable; 0 = Disable.

Input; 0 = Output.
Input; 0 = Output.
0 = Output.
Output.

0 =

bit,
bit,

1
1

pattern)
pattern)

PA AND'ed with PB port

register
register

* %k Kk Xk kK

CHAPTER 5

INSTRUCTIONS
FOR
RETURNS

Before returning any equipment for repair, please call to notify MetraByte's technical
service personnel. If possible, a technical representative will diagnose and resolve your problem by
telephone. If a telephone resolution is not possible, the technical representative will issue you a
Return Material Authorization (RMA) number and ask you to return the equipment. Please reference
the RMA number in any documentation regarding the equipment and on the outside of the shipping
container.

Note that if you are submitting your equipment for repair under warranty, you must furnish the
invoice number and date of purchase.

When returning equipment for repair, please include the following information:

1. Your name, address, and telephone number.
2. The invoice number and date of equipment purchase.

3. A description of the problem or its symptoms.

Repackage the equipment. Handle it with ground protection; use its original anti-static wrapping, if
possible.

Be sure to reference the RMA number on the outside of the package!

APPENDIX A

PCF_PIO-INT
LANGUAGE DRIVERS

Contents

SECTION A1

At
A1.2

SECTION A2
A2.1

A2.2

A2.3

A2.4

A2.5

A2.6

A2.7

INTRODUCTION

Implementation A1-3

INTERFACE DRIVERS

Microsoft C & QuickC A2-5
Small Model A2-5
Medium Model A2-6
Large Model A2-7
Microsoft C Example A2-8
Borland Turbo A2-9
Small Model A2-9
Medium Model A2-10
Large Model A2-11
Turbo C Example A2-12
Microsoft PASCAL A2-14
Medium Model A2-14
Microsoft PASCAL Example A2-15
Borland Turbo PASCAL A2-16
Compact Model A2-17
Large Model A2-18
Turbo PASCAL Example A2-19
Microsoft FORTRAN A2-21
Large Model A2-21
Integer (Default) Function Or Subroutine A2-21
Microsoft FORTRAN Example A2-22
Interpreted BASIC (GW, Compagq, IBM, Etc.) A2-23
Medium Model (Only Model Available) A2-23
QuickBASIC A2-26
PIOINT.LIB General Purpose Library A2-28

PIO-INT USER GUIDE

* k %k *k Xk

SECTION A-l

INTRODUCTION

A1.1 OVERVIEW

MetraByte's PCF_PIO-INT is for Pascal, C, and Fortran programmers writing data acquisition and
control routines for the PIO-INT Pattern Recognition Board. The PCF_PIO-INT supports all memory
models for the following languages;

¢ Microsoft C (V4.0 - 6.0)

e Microsoft QuickC (V1.0 - 2.0)

e Borland Turbo C (V1.0 -2.0)

e Microsoft PASCAL (V3.0 - 4.0)

e Borland Turbo PASCAL (V3.0 -5.0)

e Microsoft FORTRAN (V4.0 - 4.1)

¢ QuickBASIC (V4.0 & higher)

¢ GW, COMPAQ, and IBM BASIC (V2.0 & higher)

The PCF_PIO-INT consists of several assembly language drivers for the various supported languages
along with example programs for each language. This manual is structured to illustrate memory
model usage for each of the above languages and to include a brief example program at the end of
each language section. Full source listings are included on the supplied disk.

This manual is not an introduction or operating guide to the supported PIO-INT boards. You should
be familiar with the boards' various operating MODES, PARAMETERS, and ERROR codes before
attempting PCF_PIO-INT implementation. Refer to the main sections of this manual supplied with
your PIO-INT MetraByte board for a complete discussion of hardware and related functionality.

PCF_PIO-INT Distribution Software is furnished on a 5.25" floppy diskette. A 3.5" diskette version is
available as an option.

A1.2 IMPLEMENTATION

Before working with this interface package, you are urged to become familiar with PIO-INT board
functions and specifications. Example programs herein do not assume any knowledge of these boards
since the programs are general in nature and do not actually implement features of any specific board.
They are limited to the actual language interface for the various languages supported.

In the following chapter, each interface driver (implemented via a CALL statement) consists of three
position-dependent parameters. These are MODE, ARGUMENT (or D), and FLAG, as follows:

MODE Type of function to be executed by the PIO-INT.

D Function dependent arguments required for execution

PIO-INT USER GUIDE

FLAG Error number, if any, corresponding to selected MODE

* % ¥ %X ¥

SECTION A2

INTERFACE
DRIVERS

A2.1 MICROSOFT C (V4.0 - 6.0) & QUICKC (V1.0 - 2.0)
Small Model

Model: Small ("/AS") switch on command line

Passes: word size pointers (offset, no DS register)

Sequence: Arguments Passed Right to Left

Default Calling

Convention: Arguments Passed by Value (Passing pointers to a subroutine is

considered pass-by-value convention)

Example
'C' Call:
'C' Declaration:
.ASM Subroutine:

mscs_pioint (&Mode, D, &Flag);
extern void mscs_pioint (int*,int*, int*);

The following assembly code shows how the driver handles user arguments:

_mscs_pioint proc near

push bp ; save base pointer

mov bp, sp ; save stack pointer

. ; [bpt+4] holds offset of Mode
; [bp+6] holds offset of D
; [bpt8] holds offset of Flag
; Program execution here

pop bp ;restore bp & sp prior to exit

ret ; return

_mscs_pioint endp

Other:

This information is provided for those wishing to create their own drivers:

* _mscs_pioint is declared "PUBLIC" in the .ASM file

* mscs_pioint is declared "extern" in the "C" file

PIO-

INT USER GUIDE

The .ASM file contains the ".model small" directive (MASM & TASM only)
Add leading underscore "_" to all mscs_pioint occurrences in .ASM file

mscs_pioint is a near call

mscs_pioint must be in a segment fname_TEXT (where fname is the name of the file where
mscs_pioint resides) if .ASM file contains mixed model procedures.

Medium Model

Model: Medium ("/AM") switch on command line
Passes: Word-size pointers (offset, no DS register)
Sequence: Arguments Passed Right to Left

Default Calling

Convention: Arguments Passed by Value

Example

'C' Call:
'C' Declaration:
.ASM Subroutine:

mscm_pioint (&Mode, D, &Flag):;
extern void mscm pioint (int*,int*, int¥*);

The following assembly code shows how the driver handles user arguments:

_mscm_pioint proc far ; far CALL (dword return address)
push bp ; save base pointer
mov bp, sp ; save stack pointer

; [bpt6] holds offset of Mode
; [bp+8] holds offset of D

; [bptl0] holds offset of Flag
; Program execution here

pop bp ;restore bp & sp prior to exit
ret ; return

_mscm _pioint endp

Other:

This information is provided for those wishing to create their own drivers:

_mscm_pioint is declared "PUBLIC" in the .ASM file
mscm_pioint is declared "extern” in the "C" file

The .ASM file contains the ".model medium" directive (MASM & TASM only)

" on

Add leading underscore "_" to all mscm_pioint occurrences in .ASM file

mscm_pioint is a far call

APPENDIX A: PCF_PIO-INT

* mscm_pioint must be in a segment fname_TEXT (where fname is the name of the file where
mscm_pioint resides), else Linker returns an error.

Large Model
Model: Large ("/AL") switch on command line
Passes: dword size pointers (offset and DS register)

Sequence: Arguments Passed Right to Left
Default Calling

Convention: Arguments Passed by Value

Example

'C' Call:
'C' Declaration:
.ASM Subroutine:

mscl pioint (&Mode, D, &Flag);
extern void mscl pioint (int*,int*, int*);

The following assembly code shows how the driver handles user arguments:

_mscl pioint proc far ; far CALL (dword return address)
push bp ; save base pointer
mov bp, sp ; save stack pointer

; [bp+6] holds offset of Mode
; [bp+10] holds offset of D

; [bp+14] holds offset of Flag
; Program execution here

pop bp ;restore bp & sp prior to exit
ret ; return
_mscl pioint endp

Other:

This information is provided for those wishing to create their own drivers:

e _mscl_pioint is declared "PUBLIC" in the .ASM file

* mscl_pioint is declared "extern" in the "C" file

* The .ASM file contains the ".model large" directive (MASM & TASM only)
e Add leading underscore "_" to all mscl_pioint occurrences in .ASM file

* Both code and data use dword (segment/ offset) pointers

* mscl_pioint must be in a segment fname_TEXT (where fname is the name of the file where
mscl_pioint resides), else Linker returns an error.

PIO-INT USER GUIDE

Microsoft 'C' Example

/* MSCSEX1.C */
/* */
/* PIO-INT C Example Program *x/
/* */
/* Keithley Metrabyte Corporation */
/* */
/* This Program Uses the Small Model Function Call */
/* */

#include <stdio.H>
#include <time.h>
#include <conio.h>

/***/

/* */
/* The Following are the function Calls for different models: */
/* */
/* mscs_pioint (mode, param, flag) Call from Microsoft C small Model. */

/* mscm_pioint (mode,param, flag) : Call from Microsoft C medium Model. */
/* mscl_pioint (mode,param, flag) : Call from Microsoft C large Model. */
/* *x/

/***/

extern mscs_pioint(int *, int *, int *); /* DECLARE CALL structure */

/***/

/* */
/* Main program */
/* */
P T s I LTy
main ()

{

/***/

/* */
/* Mode 0 */
/* */

/***/

APPENDIX A: PCF_PIO-INT

void mode0 ()

{
FILE *infile;

/* Initialize PIO-INT using Mode 0 */
Mode=0; /* Setup for Mode 0 */
Flag=0; /* flag or error variable
/* D[0]=0x300; Alternative to set the
base address, */
/* if PIOINT.ADR file is not used */

D[1]=0; /* PA port = output */

D[2]=0; /* PB port = outut */

D[3]=0; /* PCO0-3 port = output */

D[4]=0; /* PC4-7 port = output */

D[5]1=7; /* Interrupt Level */

D[6]=0; /* "bit" type interrupt at PA port */
D[7]1=0; /* "bit" type interrupt at PB port */
D[8]=2; /* Interrupt at PA port only */

if ((infile = fopen ("pioint.adr"™,"r")) == NULL)

{
system(“"cls");
printf ("Cannot open PIOINT.ADR file !\n");
exit (0);

}

if (fscanf(infile,"%d",&D[0]) == EOF)

{
printf ("PIOINT.ADR file is empty !'\n");
exit (0);

}

mscs_pioint (¢§Mode, D, &Flag); /* Execute Mode 0 */
if (Flag < 10)
printf ("\n\n%$s",error[Flag]):

else
printf ("\n\n%s%d",error[10],Flag-10);

A2.2 BORLAND TURBO 'C’ (V1.0 - 2.0)

Small Model
Model: Small ("-ms") switch on command line
Passes: word size pointers (offset, no DS register)
Sequence: Arguments Passed Right to Left

PIO-INT USER GUIDE

Default Calling
Convention: Arguments Passed by Value

Example

|C1
tCt

Call:
Declaration:

.ASM Subroutine:

tcs_pioint (&Mode, D, &Flag);
extern void tcs_pioint (int*, int*,int*);

The following assembly code shows how the driver handles user arguments:

_tes_pioint proc near

push bp ; save base pointer

mov bp, sp ; save stack pointer
; [bp+4] holds offset of Mode
; [bp+6] holds offset of D
; [bp+8] holds offset of Flag
; Program execution here

pop bp ;restore bp & sp prior to exit

ret ; return

_tecs_pioint endp

Other:

This information is provided for those wishing to create their own drivers:

_tes_pioint is declared "PUBLIC" in the .ASM file

tes_pioint is declared "extern” in the "C" file

The .ASM file contains the ".model small" directive (MASM & TASM only)
Add leading underscore "_" to all tcs_pioint occurrences in .ASM file

tes_pioint is a near call

tcs_pioint must be in a segment fname_TEXT (where fname is the name of the file where tcs_pioint
resides), else Linker returns an error.

Medium Model

Model: Medium ("-mm") switch on command line
Passes: word size pointers (offset, no DS register)
Sequence: Arguments Passed Right to Left

Default Calling

Convention: Arguments Passed by Value

APPENDIX A: PCF_PIO-INT

Example

'C' Call:
'C' Declaration:
.ASM Subroutine:

tem pioint (&Mode, D, &Flag);
extern void tcm pioint (int*,int*,int*);

The following assembly code shows how the driver handles user arguments:

_tcem pioint proc far ; dword pointer return address
push bp ; save base pointer
mov bp, sp ; save stack pointer

; [bp+6] holds offset of Mode
; [bp+8] holds offset of D

; [bp+10] holds offset of Flag
; Program execution here

pop bp ;restore bp & sp prior to exit
ret ; return
_tem pioint endp

Other:

This information is provided for those wishing to create their own drivers:

e _tcm_pioint is declared "PUBLIC" in the .ASM file
* tcm_pioint is declared "extern” in the "C" file
¢ The .ASM file contains the ".model medium" directive (MASM & TASM only)

¢ Add leading underscore "_" to all tcm_pioint occurrences in .ASM file

* tcm_pioint must be in a segment fname_TEXT (where fname is the name of the file where
tem_pioint resides), else Linker returns an error.

Large Model
Model: Large ("-ml") switch on command line
Passes: dword size pointers (offset and DS register)

Sequence: Arguments Passed Right to Left
Default Calling

Convention: Arguments Passed by Value

Example

'C' Call:
'C' Declaration:
.ASM Subroutine:

tcl_pioint (&Mode, D, &Flag);

PIO-INT USER GUIDE

extern void tcl_pioint (int*, int*, int%*);

The following assembly code shows how the driver handles user arguments:

_tcl _pioint proc far ; dword pointer return address
push bp ; save base pointer
mov bp, sp ; save stack pointer

; [bp+6] holds offset of Mode
; [bp+10] holds offset of D

; [bptl4] holds offset of Flag
; Program execution here

pop bp ;restore bp & sp prior to exit
ret ; return

_tcl pioint endp

Other:

This information is provided for those wishing to create their own drivers:

_tcl_pioint is declared "PUBLIC" in the .ASM file

tcl_pioint is declared "extern” in the "C" file

The .ASM file contains the ".model large” directive (MASM & TASM only)
Add leading underscore "_" to all tcl_pioint occurrences in .ASM file

Both code & data use dword (segment/offset) pointers

tcl_pioint must be in a segment fname_TEXT (where fname is the name of the file where tcl_pioint
resides), else Linker returns an error.

Turbo 'C' Example

/*
/*
/*
/*
/*
/*
/*
/*

TCSEX1.C */

*/

PIO-INT TURBO C Example Program */

*/

Keithley Metrabyte Corporation */

*/

This Program Uses the Small Model Function Call */
*/

#include <stdio.H>
#include <time.h>
#include <conio.h>

APPENDIX A: PCF_PIO-INT

/***/

/* */
/* The Following are the function Calls for different models: */
/* *x/
/* tcs_pioint (mode,param, flag) : Call from Turbo C small Model. */
/* tcm pioint (mode,param,flag) : Call from Turbo C medium Model. */
/* tcl_pioint (mode,param, flag) : Call from Turbo C large Model. */
/* *x/

/***/

extern tcs_pioint(int *, int *, int *); /* DECLARE CALL structure */

/***/

/* */
/* Main program *x/
/* */
A L e ey
main ()

{

/***/

/* */
/* Mode 0 */
/* */

/***/

void mode0 ()

{
FILE *infile;

/* Initialize PIO-INT using Mode 0 */

Mode=0; /* Setup for Mode 0 */

Flag=0; /* flag or error variable */
/* D[0]=0x300; Alternative to set the base address, */
/* if PIOINT.ADR file is not used */

D[1]=0; /* PA port = output */

D[2]=0; /* PB port = outut */

D[3]=0; /* PC0-3 port = output */

D[4]=0; /* PC4-7 port = output */

D[5]=7; /* Interrupt Level */

D[6]=0; /* "bit" type interrupt at PA port */

PIO-INT USER GUIDE

D[7]=0; /* "bit" type interrupt at PB port */
D[8]=2; /* Interrupt at PA port only */
if ((infile = fopen(“"pioint.adr"™,"r")) == NULL)

{
system("cls");
printf ("Cannot open PIOINT.ADR file !\n");
exit (0);

}

if (fscanf (infile, "%d",&D[0]) == EOF)

{
printf ("PIOINT.ADR file is empty !\n");
exit (0);

}

tcs_pioint (&éMode, D, &Flag); /* Execute Mode 0 */

if (Flag < 10)
printf ("\n\n%s",error[Flag]);

else
printf ("\n\n%s%d",error[10],Flag-10);

A2.3 MICROSOFT PASCAL (V3.0 - 4.0)

Medium Model

Model: Medium
Passes: word size pointers (offset address only)
Sequence: Arguments Passed Left to Right
Default Calling
Convention: Arguments Passed by Value
Example
PASCAL Call: Result: = msp_pioint (Varl, Var2, Var3);
PASCAL Declaration: PROCEDURE msp_pioint(VAR Varl:integer;VAR Var2;VAR

Var3: integer).external;
.ASM Subroutine:
The following assembly code shows how the driver handles user arguments:

msp_pioint proc far ; far call (dword return address)

A-14

APPENDIX A: PCF_PIO-INT

push bp ; save base pointer

mov bp, sp ; save stack pointer
; [bp+6] holds offset of Flag
; [bp+8] holds offset of Params
; [bp+10] holds offset of Mode
; Program execution here

mov ax,n ; Return Value for Function In ax register

pPop bp ;
ret 6 ; return and pop bp & sp values prior to

exit
msp pioint endp

Other:

This information is provided for those wishing to create their own drivers:

¢ msp_pioint is declared "PUBLIC" in the .ASM file
* msp_pioint is declared external in the calling program

* msp_pioint resides in segment_TEXT (default of the .model command)

Microsoft PASCAL Example

PROGRAM MSPEX1 (Input,Output);
(**)

(* Keithley Metrabyte Corporation *)
(* File: MSPEX1.PAS *)
(* *)
(* Demonstration program for the PIO-INT using Microsoft Pascal. *)
(* To Compile: *)
(* Type: PL MSPEX1.PAS ; *)
(* *)

(Fhkhhhhhhrkk kR RRAA Rk khkkhhhhhkhkhhhhhhh A AR A KKK KKK KKKk khkkkkk kKK Kk)
TYPE DARRAY = ARRAY[0..16] of INTEGER;

FUNCTION TICS:WORD; EXTERN;

PROCEDURE MSP_PIOINT (VAR Mode:INTEGER; VAR D:DARRAY; VAR
Flag: INTEGER) ; EXTERN;

(**)

(* *)
(* Mode 0 *)
(* *)

(**)

PROCEDURE Mode0;

BEGIN
Mode := 0;
Flag := 0;

PIO-INT USER GUIDE

(*D[0] := 768; Alternative to set the base address, *)
(* if PIOINT.ADR file is not used *)

D[1] := 0;

D[2] := 0;

D[3] := 0;

D[4] := O;

D[5] :=7;

D[ée] := O0;

D[7] := 0;

D[8] := 2;

ASSIGN (FileIn, 'PIOINT.ADR');

RESET (FileIn) ;

READLN (FileIn,D[0]);

CLOSE (FileIn) ;

MSP_PIOINT (Mode,D,Flag);

(**)

(* *)
(* Main *)
(* *)

(hkkkkkhkkkkkhkkkkhkkkkhkkkhkkhkhkkkkkkkkkkkkkkkkkhkkkhhkkhkkkhkkkhkkkkkkkkkkkkk)
BEGIN

END.

A2.4 BORLAND TURBO PASCAL (VER 3.0 - 4.0)

Borland's Turbo PASCAL supports a compact and a large memory model. The compact model
supports one code segment and multiple data segments. In this model, the code segment is limited to
64K with assembly routine calls being near calls. The data segment is unlimited. The large model
permits unlimited code and data segments with assembly calls and data access being far calls.

The program (TINST.EXE) shipped with TURBO PASCAL can change the calling convention so that
the user may not know which convention they are using. The default state is "OFF" or compact mode.
In order to ascertain which mode you are using, run the "TINST.EXE" program.

A-16

APPENDIX A: PCF_PIO-INT

Compact Model

Model: Compact (Forces far call "OFF" in TINST.EXE)
Passes: dword size pointers (offset and segment)
Sequence: Arguments Passed Left to Right
Default Calling
Convention: Arguments Passed by Value

Example

PASCAL Call: Result: = tp_pioint (Varl, Var2, Var3);

PASCAL Declaration: PROCEDURE tp_pioint(VAR Varl:integer;VAR Var2;VAR Var3:
~ integer).external;

.ASM Subroutine:

(Either Model)

The following assembly code shows how the driver handles user arguments:

tp_pioint proc near ; near call (single word return address)

push bp ; save base pointer
mov bp, sp ; save stack pointer
. ; [bp+4] holds offset of VAR3
; [bp+8] holds offset of VAR2
; [bp+12] holds offset of VAR1
; Program execution here
mov ax,n ; return Value for Function In ax register
pop bp
ret 12 ; return & pop values prior to exit
tp_pioint endp

Other:

This information is provided for those wishing to create their own drivers:

e Use the $L '"Metacommand' to link the object file containing external function tp_pioint, i.e. {$l
turbopas} (Link to file turbopas.obj).

* The VAR declarative forces pass by reference (address of variable) in the function declaration.
Default is pass by value (pushing the actual integer value onto the stack).

¢ tp_pioint is declared external in the calling program . Remember that in PASCAL, functions return
a value whereas procedures never do.

e The .ASM file contains an explicit declaration of the code segment containing tp_pioint. Turbo
PASCAL handles segments in a primitive manner which is not compatible with the '.model'
statements available in MASM or TASM. The function tp_pioint must reside in a segment called
'CODE" Turbo PASCAL will not accept any other segment name. If tp_pioint is not in segment
"CODE", the linker returns an "unresolved external" error. The Segment Declaration for "CODE" in
the .ASM file must appear as:

PIO-INT USER GUIDE

CODE SEGMENT WORD PUBLIC

ASSUME CS:CODE
; CODE GOES HERE
CODE ENDS
Large Model
Model: Large (Forces far call "ON" in TINST.EXE)
Passes: dword size pointers (offset and segment)
Sequence: Arguments Passed Left to Right
Default Calling
Convention: Arguments Passed by Value
Example
PASCAL Call: Result: = tp_pioint (Varl, Var2, Var3);
PASCAL Declaration: PROCEDURE tp_pioint(VAR Varl:integer;VAR Var2;VAR Var3:
integer):external;
.ASM Subroutine:
(Either Model)

The following assembly code

shows how the driver handles user arguments:

tp_pioint proc far ; far call (dword return address)
push bp ; save base pointer
mov bp, sp ; save stack pointer
. ; [bp+6] holds dword of VAR3
; [bp+10] holds dword of VAR2
; [bp+l14] holds dword of VARL
; Program execution here
mov ax,n ; return Value for Function In ax register
pop bp
ret 12 ; return & pop values prior to exit
tp_pioint endp
Other:
This information is provided for those wishing to create their own drivers:

e Use the $L 'Metacommand' to link the object file containing external function tp_pioint. For
example; {$1 turbopas} (Link file turbopas.obj).

¢ The VAR declarative forces pass by reference (address of variable) in the function declaration.
Default is pass by value (pushing the actual integer value onto the stack).

* tp_pioint is declared external in the calling program along with the type of return value (integer).
Remember, in PASCAL, functions return a value procedures don't.

APPENDIX A: PCF_PIO-INT

¢ The .ASM file contains an explicit declaration of the code segment containing tp_pioint.

Turbo PASCAL Example

PROGRAM TP_EX1 (Input,Output);

{$L TURBOPAS}

{$1-}

USES CRT,Dos;
(**)

(* Keithley Metrabyte Corporation *)
(* File: TP_EX1.PAS *)
(* *)
(* Demonstration program for the PIO-INT using Turbo Pascal. *)
(* To Compile: *)
(* Type: PL TP_EX1.PAS ; *)
(* *)
(**)
TYPE DARRAY = ARRAY[0..16] of INTEGER;

TYPE StrArray = ARRAY[0..3] of STRING[18];
PROCEDURE TP_PIOINT(VAR Mode: INTEGER; VAR D:DARRAY; VAR
Flag:INTEGER) ; EXTERNAL;

(**)

(* *)
(* Mode 0 *)
(* *)

(**)

PROCEDURE ModeO0;

BEGIN
Mode := 0;
Flag := 0;

(*D[0] := 768; Alternative to set the base address, if *)

(* PIOINT.ADR file is not used *)
D[1] :=
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]
D[8]

’

.
4

’

.
’

’

.
4

’

]
MNooNoooo

4

ASSIGN(FileIn, 'PIOINT.ADR');

RESET (FileIn) ;

READLN (FileIn,D[0]):;

IF (IOResult <> 0) THEN

BEGIN
ClrScr;
WRITELN ('PIOINT.ADR file not found !! ');
HALT;

END;

CLOSE (FileIn);

PIO-INT USER GUIDE

TP_PIOINT (Mode,D,Flagq);

(**)

(* *)
(* Main *)
(* *)

(**)
BEGIN

END.

A2.5 MICROSOFT FORTRAN (V4.0 AND UP)

Large Model
Model: Large
Passes: dword size pointers (offset and DS register)
Sequence: Arguments Passed Left to Right
Default Calling
Convention: Arguments Passed by Reference
Example
FORTRAN Call: call fpioint(Var1, Var2, Var3);

FORTRAN Declaration: ~ None necessary in FORTRAN source file (Fortran assumes that
undeclared subroutines or functions are external. It is left to the linking
process to provide the required .LIB or .OBJ files. However, the function
name should conform to ANSI FORTRAN rules for integer functions.

.ASM Subroutines:

NOTE: FORTRAN integer functions (beginning with letters i, j, or k) return results in the ax
register whereas non-integer functions reserve 4 bytes on the calling stack for a far
pointer to the result. Non-integer functions pass their arguments starting at location
bp+14 after the "push bp" and "mov bp,sp" instructions have been executed. Keithley

APPENDIX A: PCF_PIO-INT

MetraByte's FORTRAN <-—> Assembly routines predominantly use type integer to avoid
the non-integer problem. Using non-integer functions may be a problem when returning
pointers, floating point results, long integers, etc. The user should use the IMPLICIT
INTEGER (A-Z) declaration causing all Functions and Variables to be implicitly type
integer unless declared otherwise. Also note that FORTRAN calls by Reference. This
method places the address of the passed parameters (rather than the parameters
themselves) onto the stack at the time of the call to any function or subroutine. Asa
convenience, PCF_PIO-INT provides two functions (INBYT and OUTBYT) for directly
addressing the registers.

Integer (Default) Function or Subroutine

The following assembly code shows how the driver handles user arguments:

fpioint proc far ; dword pointer return address
push bp ; save base pointer
mov bp, sp ; save stack pointer

; [bp+6] holds offset of VAR3
; [bp+10] holds offset of VAR2
; [bptl14] holds offset of VARl
; Program execution here

mov ax,n ; return Value for Function In ax register

pPop bp
ret ;
fpioint endp

NOTES:
1. VAR3 = Return Value of Function

2. Function fpioint must be declared as an integer * 2 fucntion.

Microsoft FORTRAN Example

ChRARAAKIKAKKKKKK KKKk KKKk KKk ARk kXA kkkkkkkkkkkkkkkkkkhkkkdkkkkkkhkk
MSFEX1.FOR

Example program for the PIO-INT using Microsoft Fortran

Keithley Metrabyte Corporation

(e el oo e Mo N

Chhkhkhkkhkkhkhkkhkkhkhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkhhkkhkhkkhkhkkhkkhkhkkhkkkhkkhkkkkkkkkkkkkkkk
program msfexl

character NULL, ESC, PROMPT (3)
integer*2 key,mode, flag,d(17)
COMMON /ASCII/NULL,ESC
COMMON /SIGN/PROMPT
COMMON mode, flag,d

PIO-INT USER GUIDE

end

c***
(o]
C mode 0

C
Chkhkkkkkhkkkhkhkhkhkhkkkhkhkhkhkkhkhhkhkhkkkhhhkhkkkhkhhkhkhkhkkkkhhkhkhkkkkhkhkhkkkhkhkhkhkhkkhkhkhkkkhkhkkkkk

subroutine model

integer*2 flag,d(17) ,mode
COMMON mode, flag,d

open (unit = 9,err=999,status = 'old', file ='pioint.adr')

flag =0

mode = 0
C
(o} d(l) = 768 Alternative to set the base address,
o] if PIOINT.ADR file is not used
Cc

d(2) =0

d(3) =0

d(4) =0

d(s5) =0

d(e) = 7

d(7) =0

d(s) =0

d(9) = 2

rewind (9)

read(9,10) d4d(1)
10 format (i3)

call fpioint (mode,d (1), flaqg)

end

APPENDIX A: PCF_PIO-INT

A2.6 INTERPRETED BASIC (GW, COMPAQ, IBM, ETC.)

Medium Model (Only Model Available)

Model: Medium (Far Calls, Single Data)
Passes: word size pointers (offset and no DS Register)
Sequence: Arguments Passed Left to Right
Default Calling
Convention: Arguments Passed by Reference
Example
BASIC Call: 12500 CALL pioint(tMODE%, D%(0), FLAG%)
BASIC Declaration: NONE NECESSARY IN BASIC SOURCE CODE. However, a

"BLOAD" (Binary load of .BIN file) of the binary file containing the
external subroutine must be done prior to calling that subroutine.

.ASM Subroutine:

The following assembly code shows how the driver handles user arguments:

Location 0 (Beginning of Code Segment)

jmp pioint
pioint proc far ; far call (dword return address)
push bp ; save base pointer
mov bp, sp ; save stack pointer
; [bpt+6] holds offset of Flag
; [bp+8] holds offset of Params
; [bp+10] holds offset of Mode
; Program execution here
pop bp ; restore bp & sp prior to exit
ret
pioint endp

NOTE BASIC requires that the .BIN file containing the callable subroutine "pioint(Mode%,
D%(0), Flag%)" reside at location 0 in the .ASM segment or to "jmp" (unconditional jump)
to the .BIN file. A BASIC "jmp " will always jump to location 0 in the .ASM code
segment.

Creation of a .BIN file is accomplished as follows:
1. Create the .ASM Source Code File ' EXAMPLE.ASM'

2. Assemble EXAMPLE.ASM' thus creating 'EXAMPLE.OBJ'
3. Link 'EXAMPLE.OBJ to create 'EXAMPLE.EXE'

PIO-INT USER GUIDE

The

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

320
330
340

450

460
470
480
490
500
510
520
530
540
550
560

4. Run EXE2BIN on 'EXAMPLE.EXE' (DOS Utility) to create'EXAMPLE.COM'
5. Run MAKEBIN.EXE (Keithley MetraByte Utility) on 'EXAMPLE.COM ' to create

'EXAMPLE.BIN'
MASM EXAMPLE ;
LINK EXAMPLE;
EXE2BIN EXAMPLE.EXE EXAMPLE.COM
MAKEBIN EXAMPLE.COM

Following Example Program Illustrates a BASIC CALL:

Thhkkkkkhkkkhkkkkkkkkkkkkkkkkhkkkkkhkkkkkkkkkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkk

% *
'* EXPIOINT.BAS - Example showing use of PIOINT.BIN driver *
'k for Basic *
'* Keithley MetraByte Corporation *
Thkkkkkkhkkkkkkkhkhkkkkkkkhkhkkkkkkhkkkkkkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
SCREEN 0 : WIDTH 80 'select 80 character wide text display
CLs 'clear the display
KEY OFF 'turn off function key display on line 25

]

'Load the PIOINT.BIN driver into an area of unused memory:-

CLEAR, 49152!
DEF SEG = 0
SG = 256 * PEEK(&H511) + PEEK(&H510)

SG = SG + 49152!/16

DEF SEG = SG

BLOAD "PIOINT.BIN",0 'load from disk with zero offset (,0) in this

'segment

DIM D%(16)

MD$ = 0 'mode variable - integer type

FLAGY = 0 'flag or error variable - integer type

"Call MODE 0 to initialize the PIO-INT hardware and set its
'configuration: -

' (Note: You must execute mode 0 before selecting any other mode)

MD% = 0 'select mode 0

OPEN "PIOINT.ADR" FOR INPUT AS #1

INPUT #1, D%(0) 'read in base address from PIOINT.ADR file

CLOSE #1

'D%$(0) = &H300 specify PIO-INT base I/O address,

' if PIOINT.ADR file is not used.

D$(1) =0 'set PA port direction (0 = output, 1 = input)

D$(2) =0 'set PB port direction (0 = output, 1 = input)

D%(3) =0 'set PC0-3 port direction (0 = output, 1 = input)

D$(4) =0 'set PC4-7 port direction (0 = output, 1 = input)

APPENDIX A: PCF_PIO-INT

570 D%(5) = 7 'select operation on interrupt level 7

580 D%(6) = 0 'select bit change type interrupts on PA port

590 D%(7) =0 'select pattern match interrupts on PB port

600 D%(8) = 2 'OR the port interrupts (see manual)

610 'Mode 0 only uses the first 9 elements of D%$(16) to pass data

620 CALL PIOINT (MD%, D%(0), FLAG%) 'execute the call to initialize

630 PRINT

640 PRINT"Mode 0 initialization:-"

650 PRINT

660 IF FLAGY < 10 THEN PRINT"Errors: ";ECS$ (FLAGS)

670 IF FLAGY >=10 THEN PRINT"Errors: ";EC$(10) ;FLAG%-10; : PRINT") "

QUICKBasic
Medium Model (Only Model Available)
Model: Medium (Far Calls, Single Data)
Passes: word size pointers (offset and no DS Register)
Sequence: Arguments Passed Left to Right
Default Calling
Convention: Arguments Passed by Reference

Example

BASIC Call: CALL QBPIOINT(MODE%, VARPTR(D%(0)), FLAG%)

BASIC Declaration: DECLARE SUB QBPIOINT (MD%,BYVAL DUMMY %, FLAG%)
The Declaration tells QuickBASIC that the subroutine expects
three arguments and that the middle argument is to be passed
by value. Remember that BASIC normally passes all arguments
by reference (address). This is the only method for passing an
array to a subroutine in BASIC: passing the value of the address of
the array in effect passes the array by reference. To make use of
the callable assembly routine, a ".QLB" (Quick Library) file is
created out of the original .ASM source file. Although the format
of the subroutine is identical to those used by interpreted BASIC
packages, both the Quick BASIC integrated development
environment (QB.EXE) and the command line complier (BC.EXE)
expect the subroutine to be in a specially formatted .QLB library
file. Unlike interpreted BASIC packages, Quick BASIC actually
links to the assembly .QLB library file so it is not necessary to
include the "jmp QBPIOINT" instruction at location 0 (of the
source file) as in interpreted BASIC.

.ASM Subroutine:

The following assembly code shows how the driver handles user arguments:

PIO-INT USER GUIDE

QBPIOINT

QBPIOINT

NOTE

proc far ; far call (dword return address)
push bp ; save base pointer
mov bp, sp ; save stack pointer
. ; [bpt+6] holds offset of Flag
; [bp+8] holds offset of D
; [bp+10] holds offset of Mode
; Program execution here
pop bp ; restore bp & sp prior to exit
ret
endp

When creating a .QLB file, it is good practice to make a .LIB of the same version as a
backup file.

Creation of a .QLB file is accomplished as follows:

1. Create the .ASM Source Code File ' EXAMPLE.ASM'

2. Assemble 'EXAMPLE.ASM' thus creating 'EXAMPLE.OBJ'

3. Link 'EXAMPLE.OBJ' with the "/q" option to create'EXAMPLE.QLB'

MASM EXAMPLE;
LINK /q EXAMPLE;

A LIB file is created by:
1. Create the .ASM Source Code File ' EXAMPLE.ASM'
2. Assemble 'EXAMPLE.ASM' thus creating 'EXAMPLE.OBJ'
3. Use Utility LIB.EXE to add EXAMPLE.OB]J to 'EXAMPLE.LIB'
(Remove old EXAMPLE.OB]J from Library)
LIB EXAMPLE.LIB -EXAMPLE

(Create New .OB]) MASM EXAMPLE;
(Add New .OB]J to Library) LIB EXAMPLE,LIB +EXAMPLE ;

4. To use the .QLB file in the QB integrated environment/editor, invoke QB.EXE with
the /1 option (QB /1 qlbname.qlb,) where glbname.qlb is the file containing BASICsub.

5. To use the .LIB file with the command line complier (BC.EXE), simply specify
"EXAMPLE.LIB" in the link process.

The Following Example Program Illustrates a QuickBASIC CALL:

10
20
30
40
50
60
70
80
90
100

280
290

330

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500

510
520
530
540
550

APPENDIX A: PCF_PIO-INT

Vhhkkkkhkhkhkkkkkkkkhkkhkhkhkhkkkkkkkkkhkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkk

% *
'k QBPIOINT.BAS - Example showing use of PIOINT.QLB driver *
Tk for Quick Basic *
'k Keithley MetraByte Corporation *

Thkkkkkkhkhkhkkkkkkkhkkkkkkkkkkkkkkhkkkkhkhkhkkkkkhkkhkhkhkkkkkkkkhkkkkkkkkkkkkkkk
1

DIM D%(16)
COMMON SHARED D% ()
DECLARE SUB QBPIOINT (MD%, BYVAL DUMMY%, FLAGSY)

MD$ = 0 'mode variable - integer type
=0 'flag or error variable - integer type

"Call MODE 0 to initialize the PIO-INT hardware and set its
'configuration: -

' (Note: You must execute mode 0 before selecting any other mode)

MD% = 0 'select mode 0

OPEN "PIOINT.ADR" FOR INPUT AS #1

INPUT #1, D%(0) 'read in base address from PIOINT.ADR file

CLOSE #1

'D%(0) = &H300 specify PIO-INT base I/O address,

' if PIOINT.ADR file is not used.

D$(1) =0 'set PA port direction (0 = output, 1 = input)
D$(2) =0 'set PB port direction (0 = output, 1 = input)
D$(3) =0 'set PCO0-3 port direction (0 = output, 1 = input)
D$(4) =0 'set PC4-7 port direction (0 = output, 1 = input)
D%(5) = 7 'select operation on interrupt level 7

D%(6) =0 'select bit change type interrupts on PA port

D%(7) = 0 'select pattern match interrupts on PB port

D$(8) = 2 'OR the port interrupts (see manual)

'Mode 0 only uses the first 9 elements of D%(16) to pass data
CALL QBPIOINT (MD%, VARPTR(D%(0)), FLAGS%) 'execute the call to

'initialize
PRINT
PRINT"Mode 0 initialization:-"
PRINT
IF FLAGY% < 10 THEN PRINT"Errors: ";ECS (FLAGS)
IF FLAGS >=10 THEN PRINT"Errors: ";ECS$(10) ; FLAG%-10; : PRINT") "

PIO-INT USER GUIDE

A2.7 PIOINT.LIB GENERAL PURPOSE LIBRARY

pioint.LIB This is a general purpose library file which provides control of the PIO-
INT and related boards. This file can be linked with programs written in
C, PASCAL, FORTRAN, or QuickBASIC to provide access to the PIO-
INT operating modes.

NOTE: This library cannot be used with TurboPASCAL. However, TurboPASCAL may be
used with Turbops.obj (see below).

The following is a brief description of the available call routines:

mscs_pioint(mode,param,flag) : Call from Microsoft C Small Model
mscm_pioint(mode,param,flag) : Call from Microsoft C Medium Model
mscl_pioint(mode,param,flag) : Call from Microsoft C Large Model
tes_pioint(mode,param,flag) : Call from Turbo C Small Model
tem_pioint(mode,param,flag) : Gall from Turbo C Medium Model
tcl_pioint(mode,param,flag) : Call from Turbo C Large Model
msp_pioint(mode,param,flag) : Call from Microsoft PASCAL
QBpioint(mode,param,flag) : Call from Microsoft QuickBASIC
fpioint(mode,param,flag) : Call from Microsoft FORTRAN

Linking the Library "pioint.lib" to the user program is accomplished after program compilation by
including it in the link line as follows:

link userprog.obj,userprog,,user.lib pioint.LIB;
userprog.obj is an object module produced by compilation of the user program.

userprog should be used for the resultant executable .EXE file.
user.lib is any other user library, if applicable.

For TurboPASCAL, the entry point is:

tp_pioint (mode,D, flag) : Call from TurboPASCAL program
The user program should have the directive

{$L turbopas}

at the beginning of the user program. This directive will ensure that the TPC compiler/linker will
include the proper interface object.

TURBOPAS.OBJ (from the PCF-PIOINT disk)

* % % *¥ X

Specifications are subject to change without notice.

All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other
trademarks and trade names are the property of their respective companies.

KEITHLEY

Keithley Instruments, Inc.

Sales Offices: BELGIUM:
CHINA:
FINLAND:
FRANCE:
GERMANY:

GREAT BRITAIN:

INDIA:

ITALY:

JAPAN:

KOREA:
NETHERLANDS:
SWEDEN:
SWITZERLAND:
TAIWAN:

28775 Aurora Road » Cleveland, Ohio 44139 « 440-248-0400 » Fax: 440-248-6168
1-888-KEITHLEY (534-8453) ¢ www.keithley.com

Bergensesteenweg 709 « B-1600 Sint-Pieters-Leeuw « 02-363 00 40 « Fax: 02/363 00 64

Yuan Chen Xin Building, Room 705 ¢ 12 Yumin Road, Dewai, Madian « Beijing 100029 « 8610-6202-2886 « Fax: 8610-6202-2892
Tietdjantie 2 « 02130 Espoo ¢ Phone: 09-54 75 08 10 « Fax: 09-25 10 51 00

3, allée des Garays * 91127 Palaiseau Cédex « 01-64 53 20 20 « Fax: 01-60 11 77 26

Landsberger Strasse 65 « 82110 Germering * 089/84 93 07-40 « Fax: 089/84 93 07-34

Unit 2 Commerce Park, Brunel Road « Theale » Berkshire RG7 4AB « 0118 929 7500 Fax: 0118 929 7519

Flat 2B, Willocrissa ¢ 14, Rest House Crescent » Bangalore 560 001 « 91-80-509-1320/21 « Fax: 91-80-509-1322

Viale San Gimignano, 38 « 20146 Milano « 02-48 39 16 01 « Fax: 02-48 30 22 74

New Pier Takeshiba North Tower 13F « 11-1, Kaigan 1-chome « Minato-ku, Tokyo 105-0022 « 81-3-5733-7555 « Fax: 81-3-5733-7556
2FL., URI Building * 2-14 Yangjae-Dong « Seocho-Gu, Seoul 137-888 « 82-2-574-7778 « Fax: 82-2-574-7838

Postbus 559 « 4200 AN Gorinchem » 0183-635333 « Fax: 0183-630821

c/o Regus Business Centre * Frosundaviks Allé 15, 4tr « 169 70 Solna « 08-509 04 679 « Fax: 08-655 26 10

Kriesbachstrasse 4 « 8600 Diibendorf « 01-821 94 44 « Fax: 01-820 30 81

1FL., 85 Po Ai Street * Hsinchu, Taiwan, R.O.C. « 886-3-572-9077« Fax: 886-3-572-9031

© Copyright 2001 Keithley Instruments, Inc.
Printed in the U.S.A.
4/02

	ISA Homepage
	PIO-INT And PCF-PIO-INT User Guide
	Safety Precautions
	Table Of Contents
	Chapter 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Applications
	1.4 Functional Description
	1.5 Specifications
	1.6 Connector Pin Assignments
	1.7 List Of Distribution Files

	Chapter 2 Hardware Installation & Setup
	2.1 General
	2.2 Unpacking And Inspecting
	2.3 Base Address Switch Settings
	2.4 Hardware Installation
	2.5 Utility Software Back Up

	Chapter 3 Configuration & Programming Information
	3.1 Base Address, I/O Map, & Interrupt Level Selection
	3.2 Registers
	3.3 Programming

	Chapter 4 Mode Call Programming
	4.1 Call Syntax
	4.2 Mode 0: Initialize
	4.3 Mode 1: Read Data From Ports
	4.4 Mode 2: Write Data To All Ports
	4.5 Mode 3: Write Data To One Port
	4.6 Mode 4: Read Mask Registers
	4.7 Mode 5: Write Mask Registers
	4.8 Mode 6: Read Pattern Match Registers
	4.9 Mode 7: Write Pattern Match Registers
	4.10 Mode 8: Set Filter Response
	4.11 Mode 9: Enable Interrupt
	4.12 Mode 10: Disable Interrupt
	4.13 Mode 11: Read Interrupt Status & Clear Interrupt
	4.14 Mode 12: Return Configuration

	Chapter 5 Instructions For Returns
	Appendix A PCF_PIO-INT Language Drivers
	A1 Introduction
	A2 Interface Drivers

	ISA Quick Start Guide

	w/o:
	TOC:

