PART NUMBER DEC. 82

PACKAGE 82

SIMULTANEOUS CV PACKAGE

ANALYSIS CAPABILITIES

CONSTANTS: Flatband C and V

Threshold Voltage Bulk Doping Effective Oxide Charge Work Function

Doping Type 'Best Depth'

GRAPHICS:

Measured: Simultaneous C vs. Gate Voltage

High Frequency C vs. Gate Voltage Quasistatic C vs. Gate Voltage Conductance vs. Gate Voltage Q/t Current vs. Gate Voltage Quasistatic C and Q/t Current

vs. Delay Time

Calculated: Interface Trap Density vs. Trap Energy

Doping vs. Depletion Depth
Depletion Depth vs. Gate Voltage
High Frequency 1/C² vs. Gate Voltage
Band Bending vs. Gate Voltage
High Frequency C vs. Band Bending
Quasistatic C vs. Band Bending

VOLTAGE MEASUREMENT

ACCURACY (1 Year, 18°-28°C): ±(0.05% rdg + 50mV).

RESOLUTION: 10mV.

TEMPERATURE COEFFICIENT (0°-18° & 28°-40°C):

 $\pm (0.005\% + 1mV)/°C.$

VOLTAGE SOURCE

r-r NOISE					
VOLTAGE	(0.1 Hz to 10 Hz)	RESOLUTION			
≤ 20 V	150 µV	10 mV			
> 20 V to 120 V	250 μV	100 mV			

Typically 3 mV up to 75 MHz.

MAXIMUM SWEEP SPAN, |V_{START} - V_{STOP}|: 40V.

MAXIMUM OUTPUT CURRENT: ±2mA (-0%, +20%).

SWEEP STEP VOLTAGE SELECTIONS: 10mV, 20mV, 50mV,

DC OUTPUT RESISTANCE: <100.

HIGH FREQUENCY CAPACITANCE*

100 kHz:				
RANGE	RESO- LUTION	ACCURACY (1 Year, 18*-28°C) ±(% rdg + pF)	COEFFICIENT (0°-18° & 28°-40°C) ± (% rdg)/°C	NOISE F-P
200 pF 2 nF	10 fF 100 fF	0.7 + 0.05 0.9 + 0.5	0.03 0.08	180 fF 1800 fF

1MHz:		TEMPERATURE			
RANGE	RESO- LUTION	ACCURACY (1 Year, 18°-28°C) ± (% rdg + pF)	COEFFICIENT (0°-18° & 28°-40°C) ± (% tdg)/°C	NOISE P-P	
200 pF 2 nF	10 fF 100 fF	0.9 + 0.05 1.4 + 0.5	0.03 0.14	200 fF 400 fF	

SHUNT CAPACITANCE LOADING EFFECT: 0.1% of reading additional error per 100pF load with equal shunt load on input and output.

TEST VOLTAGE: 15mV rms ± 10%.
TEST FREQUENCY TOLERANCE: ±0.1%.

QUASISTATIC CAPACITANCE*

RANGE	RESO- LUTION	ACCURACY (1 Year, 18°-28°C) ± (%rdg + pF)	NOISE P-P (typical)
200 pF	10 EF	1.0 + 0.1	(0.12% rdg + 0.13 pF) × (100 mV/STEP V) + 0.01 pF
2 nF	100 fF	0.8 + 0.2	(0.09% rdg + 0.13 pF) × (100 mV/STEP V) + 0.1 pF

TEMPERATURE COEFFICIENT (0°-18° & 28°-40°C): ±(0.02% rdg + 0.1 pF)/°C.

*NOTES

Specifications are based on parallel RC model and Quality Factor ≥ 20.

Assumes proper cable correction and open circuit suppression.

Quasistatic capacitance accuracy is exclusive of noise, for STEP V ≥ 0.05V and DELAY TIME ≤ 1 second. For other parameters, derate by (5mV/STEP V) × (DELAY TIME/1 second) in pF at 23°C. Double the derating for every 10°C rise in ambient temperature above 23°C.

Typical allowable non-equilibrium current plus leakage current: <20pA on 200pF range; <200pA on 2nF range during capacitance measurements.

GENERAL

100mV

READING RATES: 4½ readings per second to one reading every 400 seconds.

DATA BUFFER: 1000 points maximum.

GRAPHICAL OUTPUTS: Computer display or digital plotter supporting HPGL with IEEE-488 interface; also "screen copy" to compatible printer.

DIGITAL I/O: Consists of one output, four inputs, +5V (series limited with 330), and COMMON referenced to IEEE-488 COMMON. Output will drive one TTL load. Inputs represent one TTL load.

MAXIMUM INPUT: 30V peak, dc to 60Hz sine wave.

MAXIMUM COMMON MODE VOLTAGE: 30V maximum, dc to 60Hz sine wave.

OPERATING ENVIRONMENT: 0° to 40°C, 70% non-condensing RH up to 35°C.

STORAGE ENVIRONMENT: -25° to +65°C.

WARMUP: 2 hours to rated accuracy.

SYSTEM CONFIGURATION: Models 230-1, 590, 595, and 5951 connected as shown in manual. Controller is HP Series 200 or 300 with BASIC 4.0. (requires 1 Mbyte of memory) or HP BASIC Language Processor Card in AT compatible computer.

PACKAGE 82 COMPONENTS:

SPECIFICATIONS

Model 230-1: Programmable Voltage Source

Model 595: Quasistatic CV Meter
Model 590: 100k/1M CV Analyzer
Model 5909: Calibration Sources

Model 5956: Package 82 CV Software and Manual
Model 5951: Remote Input Coupler—includes Models:
4801: Low Noise BNC Cable, 1.2m (4 ft.) (5 supplied)
7007-1: Shielded IEEE-488 Cable, 1m (3.3 ft.) (2 supplied)
2007-2: Shielded IEEE-488 Cable, 2m (4.6 ft.) (3 supplied)

7007-2: Shielded IEEE-488 Cable, 2m (6.6 ft.) (1 supplied) 7051-2: RG-58C BNC to BNC Cable, 0.6m (2 ft.) (3 supplied)

Prices and specifications subject to change without notice.

LTR				DRN. D. 7/,	DATE 7-14-88
\mathcal{G}	REDRAWN#/2892	· Janes	7-/4-88	CKD.	DATE
				APP.	DATE

KEITHLEY

Keithley Instruments Inc. Cleveland, Ohio 44139

PART NUMBER

SPEC.82

SIMULTANEOUS CV PACKAGE

ANALYSIS CAPABILITIES

CONSTANTS: Flatband C and V

Threshold Voltage Bulk Doping Effective Oxide Charge Work Function

Doping Type "Best Depth"

GRAPHICS:

Measured: Simultaneous C vs. Gate Voltage

High Frequency C vs. Gate Voltage Quasistatic C vs. Gate Voltage Conductance vs. Gate Voltage Q/t Current vs. Gate Voltage Quasistatic C and Q/t Current

vs. Delay Time

Calculated: Interface Trap Density vs. Trap Energy

Doping vs. Depletion Depth
Depletion Depth vs. Gate Voltage
High Frequency 1/C¹ vs. Gate Voltage
Band Bending vs. Gate Voltage
High Frequency C vs. Band Bending
Quasistatic C vs. Band Bending

VOLTAGE MEASUREMENT

ACCURACY (1 Year, 18°-28°C): ±(0.05% rdg + 50mV).

RESOLUTION: 10mV.

TEMPERATURE COEFFICIENT (0°-18° & 28°-40°C):

 $\pm (0.005\% + 1mV)/^{\circ}C.$

VOLTAGE SOURCE

VOLTAGE	P-P NOISE ¹ (0.1 Hz to 10 Hz)	RESOLUTION
≤ 20 V	150 µV	10 mV
> 20 V to 120 V	250 μV	100 mV
¹ Typically 3 mV up	to 75 MHz.	

MAXIMUM SWEEP SPAN, |V_{START} - V_{STOP}!: 40V. MAXIMUM OUTPUT CURRENT: ±2mA (-0%, +20%).

SWEEP STEP VOLTAGE SELECTIONS: 10mV, 20mV, 50mV, 100mV.

DC OUTPUT RESISTANCE: < 100.

GENERAL

READING RATES: 4½ readings per second to one reling every 400 seconds.

DATA BUFFER: 1000 points maximum.

GRAPHICAL OUTPUTS: Computer display or digital plotter supporting HPGL with IEEE-488 interface; also "screen copy" to compatible printer.

DIGTTAL I/O: Consists of one output, four inputs, +5V (series limited with 330), and COMMON referenced to IEEE-488 COMMON. Output will drive one TTL load. Inputs represent one TTL load.

MAXIMUM INPUT: 30V peak, dc to 60Hz sine wave.

MAXIMUM COMMON MODE VOLTAGE: 30V maximum, dc to 60Hz sine wave.

OPERATING ENVIRONMENT: 0° to 40°C, 70% non-condensing RH up to 35°C.

STORAGE ENVIRONMENT: -25° to +65°C.

HIGH FREQUENCY CAPACITANCE*

100 kHz:		ACCURACY	TEMPERATURE COEFFICIENT	
RAŅGE	RESO- LUTION	(1 Year, 18°-28°C) ± (% rdg + pF)	(0°-18° 4 28°-40°C) + (% rdg)/°C	NOISE P-P
200 pF	10 fF	0.7 + 0.05	0.03	180 fF
2 nF	100 fF	0.9 + 0.5	0.08	1800 fF
1MHz:			TEMPERATURE	

1MHz:		TEMPERATURE ACCURACY COEFFICIENT				
RANGE	RESO-	(1 Year, 18°-28°C) ± (% rdg + pF)	(0°-18° & 28°-40°C) ± (% rdg)/°C	NOISE P-P		
200 pF 2 nF		0.9 + 0.05 1.4 + 0.5	0.03 0.14	200 fF 400 fF		

SHUNT CAPACITANCE LOADING EFFECT: 0.1% of reading additional error per 100pF load with equal shunt load on input and output.

TEST VOLTAGE: 15mV rms ± 10%.
TEST FREQUENCY TOLERANCE: ±0.1%.

QUASISTATIC CAPACITANCE*

RANGE	RESO- LUTION	ACCURACY (1 Year, 16°-28°C) ±(%rdg + pF)	NOISE P-P (typical)
200 pF	10 fF	1.0 + 0.1	$(0.12\% \text{ rdg} + 0.13 \text{ pF}) \times (100 \text{ mV/STEP V}) + 0.01 \text{ pF}$
2 nF	100 fF	0.8 + 0.2	(0.09% rdg + 0.13 pF) × (100 mV/STEP V) + 0.1 pF

TEMPERATURE COEFFICIENT (0°-18° & 28°-40°C): ±(0.02% rdg + 0.1 pF)/°C.

*NOTES

Specifications are based on parallel RC model and Quality Factor ≥ 20. Assumes proper cable correction and open circuit suppression.

Quasistatic capacitance accuracy is exclusive of noise, for STEP V ≥ 0.05 V and DELAY TIME ≤ 1 second. For other parameters, derate by (5mV/STEP V) \times (DELAY TIME/1 second) in pF at 23°C. Double the derating for every 10°C rise in ambient temperature above 23°C.

Typical allowable non-equilibrium current plus leakage current: < 20pA on 200pF range; < 200pA on 2nF range during capacitance measurements.

WARMUP: 2 hours to rated accuracy.

SYSTEM CONFIGURATION: Models 230-1, 590, 595, and 5951 connected as shown in manual. Controller is HP Series 200 or 300 with BASIC 4.0. Requires 1 Mbyte of memory.

PACKAGE 82 COMPONENTS:

Model 230-1: Programmable Voltage Source

Model 595: Quasistatic CV Meter
Model 590: 100k/1M CV Analyzer
Model 5909: Calibration Sources

Model 5956: Package 82 CV Software and Manual Model 5951: Remote Input Coupler-Includes Models:

4801: Low Noise BNC Cable, 1.2m (4 ft.) (5 supplied) 7007-1: Shielded IEEE-488 Cable, 1m (3.3 ft.) (2 supplied) 7007-2: Shielded IEEE-488 Cable, 2m (6.6 ft.) (1 supplied)

7051-2: RG-58C BNC to BNC Cable, 0.6m (2 ft.) (3 supplied)

Prices and specifications subject to change without notice.