
Programmer’s Manual
ACS-907-01 Rev. F / November 2017

PACS-907-01F
ACS-907-01F

www.tek.com/keithley

Automated Characterization Suite (ACS)

Automated Characterization Suite (ACS)

Programmer's Manual

© 2017, Keithley Instruments

Cleveland, Ohio, U.S.A.

All rights reserved.

Any unauthorized reproduction, photocopy, or use of the information herein, in whole or in part,
without the prior written approval of Keithley Instruments is strictly prohibited.

These are the original instructions in English.

 All Keithley Instruments product names are trademarks or registered trademarks of Keithley
Instruments. Other brand names are trademarks or registered trademarks of their respective

holders.

Microsoft, Visual C++, Excel, and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Document number: ACS-907-01 Rev. F / November 2017

 Safety precautions
The following safety precautions should be observed before using this product and any associated instrumentation. Although
some instruments and accessories would normally be used with nonhazardous voltages, there are situations where hazardous
conditions may be present.

This product is intended for use by personnel who recognize shock hazards and are familiar with the safety precautions required
to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the
product. Refer to the user documentation for complete product specifications.

If the product is used in a manner not specified, the protection provided by the product warranty may be impaired.

The types of product users are:

Responsible body is the individual or group responsible for the use and maintenance of equipment, for ensuring that the
equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the
instrument. They must be protected from electric shock and contact with hazardous live circuits.

Maintenance personnel perform routine procedures on the product to keep it operating properly, for example, setting the line
voltage or replacing consumable materials. Maintenance procedures are described in the user documentation. The procedures
explicitly state if the operator may perform them. Otherwise, they should be performed only by service personnel.

Service personnel are trained to work on live circuits, perform safe installations, and repair products. Only properly trained
service personnel may perform installation and service procedures.

Keithley Instruments products are designed for use with electrical signals that are measurement, control, and data I/O
connections, with low transient overvoltages, and must not be directly connected to mains voltage or to voltage sources with high
transient overvoltages. Measurement Category II (as referenced in IEC 60664) connections require protection for high transient
overvoltages often associated with local AC mains connections. Certain Keithley Instruments measuring instruments may be
connected to mains. These instruments will be marked as category II or higher.

Unless explicitly allowed in the specifications, operating manual, and instrument labels, do not connect any instrument to mains.

Exercise extreme caution when a shock hazard is present. Lethal voltage may be present on cable connector jacks or test
fixtures. The American National Standards Institute (ANSI) states that a shock hazard exists when voltage levels greater than
30 V RMS, 42.4 V peak, or 60 VDC are present. A good safety practice is to expect that hazardous voltage is present in any
unknown circuit before measuring.

Operators of this product must be protected from electric shock at all times. The responsible body must ensure that operators
are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential
human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If
the circuit is capable of operating at or above 1000 V, no conductive part of the circuit may be exposed.

Do not connect switching cards directly to unlimited power circuits. They are intended to be used with impedance-limited
sources. NEVER connect switching cards directly to AC mains. When connecting sources to switching cards, install protective
devices to limit fault current and voltage to the card.

Before operating an instrument, ensure that the line cord is connected to a properly-grounded power receptacle. Inspect the
connecting cables, test leads, and jumpers for possible wear, cracks, or breaks before each use.

When installing equipment where access to the main power cord is restricted, such as rack mounting, a separate main input
power disconnect device must be provided in close proximity to the equipment and within easy reach of the operator.

For maximum safety, do not touch the product, test cables, or any other instruments while power is applied to the circuit under
test. ALWAYS remove power from the entire test system and discharge any capacitors before: connecting or disconnecting
cables or jumpers, installing or removing switching cards, or making internal changes, such as installing or removing jumpers.

Do not touch any object that could provide a current path to the common side of the circuit under test or power line (earth)
ground. Always make measurements with dry hands while standing on a dry, insulated surface capable of withstanding the
voltage being measured.

For safety, instruments and accessories must be used in accordance with the operating instructions. If the instruments or
accessories are used in a manner not specified in the operating instructions, the protection provided by the equipment may be
impaired.

Do not exceed the maximum signal levels of the instruments and accessories. Maximum signal levels are defined in the
specifications and operating information and shown on the instrument panels, test fixture panels, and switching cards.

When fuses are used in a product, replace with the same type and rating for continued protection against fire hazard.

Chassis connections must only be used as shield connections for measuring circuits, NOT as protective earth (safety ground)
connections.

If you are using a test fixture, keep the lid closed while power is applied to the device under test. Safe operation requires the use
of a lid interlock.

If a screw is present, connect it to protective earth (safety ground) using the wire recommended in the user documentation.

The symbol on an instrument means caution, risk of hazard. The user must refer to the operating instructions located in the
user documentation in all cases where the symbol is marked on the instrument.

The symbol on an instrument means warning, risk of electric shock. Use standard safety precautions to avoid personal
contact with these voltages.

The symbol on an instrument shows that the surface may be hot. Avoid personal contact to prevent burns.

The symbol indicates a connection terminal to the equipment frame.

If this symbol is on a product, it indicates that mercury is present in the display lamp. Please note that the lamp must be
properly disposed of according to federal, state, and local laws.

The WARNING heading in the user documentation explains hazards that might result in personal injury or death. Always read
the associated information very carefully before performing the indicated procedure.

The CAUTION heading in the user documentation explains hazards that could damage the instrument. Such damage may
invalidate the warranty.

The CAUTION heading with the symbol in the user documentation explains hazards that could result in moderate or minor
injury or damage the instrument. Always read the associated information very carefully before performing the indicated
procedure. Damage to the instrument may invalidate the warranty.

Instrumentation and accessories shall not be connected to humans.

Before performing any maintenance, disconnect the line cord and all test cables.

To maintain protection from electric shock and fire, replacement components in mains circuits — including the power
transformer, test leads, and input jacks — must be purchased from Keithley Instruments. Standard fuses with applicable national
safety approvals may be used if the rating and type are the same. The detachable mains power cord provided with the
instrument may only be replaced with a similarly rated power cord. Other components that are not safety-related may be
purchased from other suppliers as long as they are equivalent to the original component (note that selected parts should be
purchased only through Keithley Instruments to maintain accuracy and functionality of the product). If you are unsure about the
applicability of a replacement component, call a Keithley Instruments office for information.

Unless otherwise noted in product-specific literature, Keithley Instruments instruments are designed to operate indoors only, in
the following environment: Altitude at or below 2,000 m (6,562 ft); temperature 0 °C to 50 °C (32 °F to 122 °F); and pollution
degree 1 or 2.

To clean an instrument, use a cloth dampened with deionized water or mild, water-based cleaner. Clean the exterior of the
instrument only. Do not apply cleaner directly to the instrument or allow liquids to enter or spill on the instrument. Products that
consist of a circuit board with no case or chassis (e.g., a data acquisition board for installation into a computer) should never
require cleaning if handled according to instructions. If the board becomes contaminated and operation is affected, the board
should be returned to the factory for proper cleaning/servicing.

Safety precaution revision as of June 2017.

 Programming overview .. 1-1

Test modules .. 1-1

ACS programming methods ... 1-2

Creating PTM (or STM) test libraries and modules ... 1-3

 LPT Library Reference .. 2-1

Series 2600B TSP LPT library commands .. 2-1
avgi/avgv ... 2-2
clrscn ... 2-2
crtbf ... 2-2
delay/rdelay ... 2-2
devclr .. 2-3
devint .. 2-3
enable ... 2-3
disable ... 2-3
forceclr .. 2-3
forcei/forcev... 2-3
intgi/intgv ... 2-4
ioli/iolv/ioliv .. 2-4
limiti/limitv .. 2-4
lorangei/lorangev ... 2-4
measi/measv/meast .. 2-5
moli/molv/moliv .. 2-5
postscript ... 2-5
postbuffer .. 2-6
postbuftime.. 2-6
postdata .. 2-7
posterror .. 2-7
postglobal .. 2-7
postsmuinfo ... 2-7
posttable.. 2-7
rangei/rangev .. 2-7
savgi/savgv ... 2-8
scnmeas .. 2-8
setauto .. 2-8
setcount .. 2-8
setitv .. 2-9
setmode .. 2-9
sintgi/sintgv ... 2-10
slorangei/slorangev ... 2-10
smeasi/smeasv/smeast ... 2-10
srangei/srangev ... 2-10
ssetauto .. 2-11
sweepi/sweepv .. 2-11
sysinit .. 2-11
syquery ... 2-11
LPT library command example 1 ... 2-12
LPT library command example 2 ... 2-14

Python LPT library .. 2-16
Python LPT functions .. 2-17
ACS LPT library commands .. 2-19
PTM examples .. 2-53

Table of contents

Table of contents Automated Characterization Suite (ACS) Programmer's Manual

 Python Test Module (PTM) Debug Tool ... 3-1

PTM debug tool introduction .. 3-1

PythonWin description ... 3-2

PTM debugging .. 3-4
Enable debug tool ... 3-4
Start debugging ... 3-7
PTM debug flow chart ... 3-10
Python debugging toolbar icons .. 3-10
Variables in the Watch window ... 3-12
View the Stack view window ... 3-13
View the Breakpoint list and Toggle Breakpoints .. 3-13
Clear All Breakpoints ... 3-15
Step, Step over, Step out, and Go functions ... 3-16
Close the debugger ... 3-16
Python toolbar icons .. 3-17

Debug tool limitations ... 3-19
Debug hardware limitations ... 3-19
GPIB control .. 3-19
KXCI control .. 3-20
LXI control ... 3-20
Step in mode ... 3-20
PTM auto update ... 3-20

 Series 2600B Library and Python Library ... 4-1

Series 2600B library introduction ... 4-2
Create a library without Script Editor ... 4-3
Create a library using Script Editor .. 4-4

Device library ... 4-4
BJT library overview .. 4-4
MOSFET library overview ... 4-12
Diode library overview ... 4-19
Resistor library overview ... 4-22

WLR library overview ... 4-22
HCI .. 4-23
TDDB_CCS ... 4-27
TDDB_per_pin .. 4-30
NBTI .. 4-33
NBTI_meas ... 4-35
NBTI_on_the_fly ... 4-41
QBD_rmpj ... 4-43
QBD_rmpv .. 4-46
Em_iso_test .. 4-50

Python user library introduction ... 4-53
Configure a capacitor meter library ... 4-53
Configure a switch matrix library ... 4-59
Configure a scope library .. 4-65
Configure a Series 23x library ... 4-67
Configure a Series 3700 system switch DMM library .. 4-74
Configure a Series 2400 SourceMeter instruments library .. 4-76

 Automated Characterization Suite (ACS) Programmer's Manual Table of contents

 UAP and Global variable definitions.. 5-1

Overview .. 5-1

Global variables ... 5-2

Global functions ... 5-7
FUNC_SET_GLOBAL_VALUE (name, value) .. 5-8
FUNC_GET_GLOBAL_VALUE (name) .. 5-8
FUNC_SET_USER_GLOBAL (name) ... 5-9
FUNC_SET_KTXE_LOOP (value) .. 5-9
FUNC_SYS_GLOBAL (name, value) .. 5-9
FUNC_EXIT_KTXE () ... 5-9
FUNC_SET_KTXE_SUBSITES (subsite list) .. 5-9
FUNC_GET_KDF_HEADER () ... 5-10
FUNC_SAVE_KDF_HEADER (kdf_file, header) ... 5-11
FUNC_SAVE_KDF_WAFERID (kdf_file, wafer_id) ... 5-11
FUNC_SAVE_KDF_EOW (kdf_file) .. 5-11
FUNC_SAVE_KDF_SITEID (kdf_file, site_id, site_x, site_y) .. 5-12
FUNC_SAVE_KDF_EOS (kdf_file) ... 5-12
FUNC_SAVE_KDF_DATA (kdf_file, data) .. 5-12
FUNC_GET_KDF_DATA (wafer_id, site_id) ... 5-13
FUNC_GET_NEW_KDF_DATA (wafer_id, site_id) ... 5-14
FUNC_SITE_COORD_2_ID (coord) ... 5-14
FUNC_SITE_ID_2_COORD (site_id) .. 5-15
FUNC_GET_WDF_OBJ () .. 5-15
GET_EXEC_TEST_DIC () .. 5-16
FUNC_EXEC_TEST (location) .. 5-16
GET_EXEC_TEST_LIST () ... 5-17
FUNC_GET_TEST_OBJ (test_name) ... 5-17
FUNC_GET_SUBSITE_OBJ (subsite_name) ... 5-18
FUNC_GET_DUT_OBJ (dut_name) ... 5-19
FUNC_GET_DUT_NAME (test_name) ... 5-20
FUNC_GET_KDF_OBJ (dut_name) ... 5-21

Tools for UAP routines ... 5-22
Importing python modules ... 5-22
Modules in ACS .. 5-22
Modules in python ... 5-24
Modules in wxpython ... 5-26
.dll modules ... 5-26
File operation .. 5-26

How to use UAPs ... 5-26
Control test process .. 5-27
Write data to a file ... 5-27

In this section:

Test modules .. 1-1
ACS programming methods ... 1-2
Creating PTM (or STM) test libraries and modules 1-3

Test modules
The ACS Software allows the user to create and sequence measurements in several ways:

• Interactive Test Modules (ITM) - When this method is used, the user interactively defines tests by
assigning instrument resources to the various nodes of a DUT and indicates how what each
instrument will force and measure by filling in fields in the ITM GUI.

• Script Test Modules (STM) - In this method, the user assumes all control of the instrumentation.
When the user creates a test, he will create a script that executes on the 2600B-series SMUs or
700B-series switches. These scripts will make calls to the Keithley Instruments Linear Parametric
Test Library (LPTLib), Test Script Processor Library (TSP), or Lua programming language
statements. This method of programming provides the user with the ability to generate test code
that can run at the fastest possible speed since these functions will literally execute on the
instruments themselves.

• Python Test Modules (PTM) - Similar to the STM case, the user creates PTM modules using calls
to LPTLib. Unlike the STM case, PTM modules use the Python programming language and do
not execute completely on the instrumentation. PTM modules are supported by all instruments
that ACS supports (not just 2600B-series or 700-series) instrumentation. An added feature of
creating PTM tests, is the ability to create test modules with customer Graphical User Interfaces.

Section 1

Programming overview

Section 1: Programming overview Automated Characterization Suite (ACS) Programmer's Manual

1-2 ACS-907-01 Rev. F / November 2017

ACS programming methods

While PTM tests are flexible and relatively simple to create, because they do not run completely on
the instruments, they are slower than equivalent STM modules as the commands are sent one at a
time to the various instruments.

• C Test Modules (CTM) - These tests are created Microsoft Visual C++. This method of test
creation is most useful when interfacing with external DLL libraries or when ACS is running directly
on a Keithley 4200-SCS. There is no access to LPTLib when this method is used. As a result, this
is the most difficult method of test library creation and should be reserved for use in creating
drivers for unsupported instruments or incorporating third-party libraries into the ACS environment.
Note that if you use this method, once you open ACS the PLC default setting is 0.001 seconds.

This manual covers how to use the Keithley LPTLib instrument functions, as well as introducing you
on how to create PTM and STM modules. This manual will not cover creating CTM and ITM tests, nor
will it show how to program using the Python or Lua programming languages. There are several
excellent references on Python and Lua programming:

• www.lua.org
• Programming in Lua, 2nd Edition, Roberto Ierusalimschy, Lua.org (publisher)
• www.python.org
• www.linuxjournal.com/article/3946
• Programming Python, 4th Edition, Mark Lutz, O'Reilly Media (publisher)

 Automated Characterization Suite (ACS) Programmer's Manual Section 1: Programming overview

ACS-907-01 Rev. F / November 2017 1-3

Creating PTM (or STM) test libraries and modules
To create either a python (PTM) test library or script (STM) test library, the ACS Script Editor is used.
To launch the ACS Script Editor, select Script Editor from the ACS Tools menu (see next Figure):

Figure 1: Script Editor in Tools menu

Section 1: Programming overview Automated Characterization Suite (ACS) Programmer's Manual

1-4 ACS-907-01 Rev. F / November 2017

The ACS Script Editor will start in a separate window (see next Figure):

Figure 2: Script Editor for PTM

The first step in creating a test library is to determine which type of library you want to create. The
ACS Script Editor supports either PTM test libraries or TSP test libraries. Select the type of test library
you need by selecting the radio button next to the library type (see next Figure):

Figure 3: Test library types

In this first example, a PTM test library will be created. Now that the library type has been made, you
must now either create a new library or add to an existing library. In this example, a new library will be
created. To do this, click the + (add Library) symbol icon on the script editor toolbar (see next Figure):

 Automated Characterization Suite (ACS) Programmer's Manual Section 1: Programming overview

ACS-907-01 Rev. F / November 2017 1-5

To create a STM Library, you will follow a similar series of steps, however, the only differences are
that you select the TSP radio button in the ACS Script Editor, use the Lua programming language,
and add and import a STM module to your test project.

Figure 4: Add Library icon on toolbar

A new library creation dialog box will open. There are several features in the dialog box. You can
create a new library by copying from an existing library or create a new library. In this example, a
completely new library will be created. First, type in a name for the new library in the New Library
field. You can also specify the name of the first new module in the new library at this time. For this
example, the new library is named eTest and the first test module named resv (see next Figure):

Figure 5: Create a new library dialog box

Click OK after you have entered a name for the New Library and New Module. At this point, the Script
Editor indicates the name of the newly created library and first test module in the library name and
module name fields:

Figure 6: Library and Module names

Section 1: Programming overview Automated Characterization Suite (ACS) Programmer's Manual

1-6 ACS-907-01 Rev. F / November 2017

For this example, a module to measure resistance will be created. The resistance module will have
three input values: high pin, low pin, and voltage force value. The module will also return the
calculated resistance. The inputs will be named hpin, lpin, and vforce. The output will be named
resistance.

To create the input and output values, select the Parameter tab at the bottom of the Script Editor
window and select the Add function four times, one time for each input or output parameter (see next
Figure):

Figure 7: Script Editor Parameter tab

Enter the names of the parameters as indicated in the Figure. Since hpin, lpin, and vforce are input
parameters, click on the input/output field next to each parameter name and select input. For the
output field resistance, select output for this field. Pins are Integer values. Select the Data Type as
indicated for each input parameter. Output parameters are special and their data type cannot be
selected. Select Apply when done (see next Figure):

Figure 8: Names of parameters

Once you select Apply, a python function declaration is automatically created in the edit area of the
Script Editor. Now it is time to create the actual test code.

Next, each python module must include several imports that enable the test module to locate and use
LPTLib and the ACS data handling functions. To do this, select the Imports tab at the bottom of the
ACS Script Editor and type the following text as indicated in the next Figure:

Figure 9: Script Editor Imports tab

 Automated Characterization Suite (ACS) Programmer's Manual Section 1: Programming overview

ACS-907-01 Rev. F / November 2017 1-7

Select Apply when done.

For the resv module, you will use the switch matrix to connect the pins to the SMUs, force voltage
using the SMU, measure current using the SMU, calculate the resistance using python, and return the
data to ACS. Type the following text as indicated in the next Figure. Since python is a positional
language, the editor will automatically indent each statement one tab stop (see next Figure).

Figure 10: Script Editor resv module information

At this point, the module is complete. Make sure you save your work for the current module and
library before closing the project by selecting the Save icon on the ACS Script Editor toolbar (see next
Figure):

Figure 11: Script Editor Save icon

It is recommended that you check your new module to make sure that there are no syntax errors. To
scan for syntax errors, select the check function in the ACS Script Editor toolbar (see next Figure):

Figure 12: Script Editor check function

Section 1: Programming overview Automated Characterization Suite (ACS) Programmer's Manual

1-8 ACS-907-01 Rev. F / November 2017

If there are no errors, a message will open similar to the next Figure (in the Script Editor Log Console
tab):

Figure 13: Script Editor Log Console tab

The newly created library and module are now ready to use. To use the module, add a new PTM to
the desired ACS project (see next Figure):

Figure 14: ACS PTM project

 Automated Characterization Suite (ACS) Programmer's Manual Section 1: Programming overview

ACS-907-01 Rev. F / November 2017 1-9

After the new PTM is added, select the Import button at the bottom of the ACS Setup tab. A dialog
box opens and you must choose the desired library (in this case eTest.py) from the list. Select the
Open function (see next Figure):

Figure 15: ACS Choose the python script

After you open the python script, the ACS Setup tab displays a GUI input form for the newly created
test module. To use the module, input the pin numbers and force voltage to use and select the Save
icon in ACS.

Figure 16: ACS Setup tab GUI

Section 1: Programming overview Automated Characterization Suite (ACS) Programmer's Manual

1-10 ACS-907-01 Rev. F / November 2017

Now that you have added the module to the test project, it is ready for use. If you added more than
one module to the library, you can select the desired module by selecting the down arrow in the User
Module field and select a different module:

To create a STM Library, you will follow a similar series of steps, however, the only differences are
that you select the TSP radio button in the ACS Script Editor, use the Lua programming language,
and add and import a STM module to your test project.

In this section:

Series 2600B TSP LPT library commands 2-1
Python LPT library .. 2-16

Series 2600B TSP LPT library commands
The Keithley Instruments Linear Parametric Test Library (LPTLib) is a high-speed data acquisition
and instrument control software library. It is the programmer’s lowest level of command interface to
the system’s instrumentation.

The Keithley Instruments Automated Characterization Suite incorporates two LPT libraries. One of
the LPT libraries contains commands that are compatible with the Keithley Instruments Series 2600B
System SourceMeter®.

This is the ACS TSP LPT Library. Most of the commands in the ACS TSP LPT Library contain the
same format as those in the Model 4200-SCS library.

The ACS TSP LPT library is built with TSP builder and is programmed with Lua language. They can
be used in STM. For more information about STM, refer to Configuring a Script Test Module (STM).

When the Series 2600B System SourceMeter® instruments are referenced, it also includes the
Series 2600A System SourceMeter instruments, since these two series of instruments are fully
interchangeable. However, the following instruments are not supported in ACS Basic: Model 2604B,
Model 2614B, and Model 2634B.

The Keithley Instruments Series 2600B System SourceMeter includes its own Instrument Control
Library (ICL). Refer to the Series 2600B Reference Manual for detailed information.

The Series 2600B LPT commands are listed in alphabetical order.

Section 2

LPT Library Reference

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-2 ACS-907-01 Rev. F / November 2017

avgi/avgv
Purpose: Performs a series of measurements and averages the results.

Format:
avgi(SMUX, Itable, step_num, step_time) X = SMU number(1,2,3,…)
avgv(SMUX, Vtable, step_num, step_time) X = SMU number(1,2,3,…)

Itable The table created by you; the measured current value is saved into Itable[1].
Vtable The table created by you; the measured voltage value is saved into Vtable[1].
step_num The number of steps averaged in the measurement. This number ranges from 1 to

160,000.
step_time The interval in seconds between each measurement. Minimum practical time is

approximately 0.0001s (nplc must be set as 0.001).

clrscn
Purpose: Clears the measurement scan tables associated with a sweep.

Format:
clrscn()

crtbf
Purpose: Creates a buffer for a specified SMU to store its measurements.

Format:
buff_name = crtbf(SMUX, buff_cap, append_flag, timestamp_flag) X = SMU

number(1,2,3,…)

buff_name The name of the buffer to be created.
buff_cap The capacity of the buffer to be created.
append_flag Use KI_EBAP to enable buffer append mode, KI_DBAP to disable buffer append

mode.
timestamp_flag Use KI_EBTS to enable collecting buffer timestamps, KI_DBTS to disable

collecting buffer timestamps.

delay/rdelay
Purpose: Provides user-programmable delay within a test sequence. The units are in seconds.

Format:
delay(second)
rdelay(second)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-3

devclr
Purpose: Sets all sources to zero.

Format:
devclr()

devint
Purpose: Resets all instruments.

Format:
devint()

enable
Purpose: Provides realtime measurements of voltage, current, conductance, and capacitance.

Format:
enable(ntimer[Y]) Y = Timer number(1,2,3,…)

disable
Purpose: Stops the timer and sets the time value to zero. Timer reading is also stopped.

Format:
disable(ntimer[Y]) Y = Timer number(1,2,3,…)

forceclr
Purpose: Turns the source output off on the specified SMU.

Format:
forceclr(SMUX) X = SMU number(1,2,3,…)

forcei/forcev
Purpose: Programs a sourcing instrument to generate a voltage or current at a specific level.

Format:
forcei(SMUX, value) X = SMU number(1,2,3,…)
forcev(SMUX, value) X = SMU number(1,2,3,…)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-4 ACS-907-01 Rev. F / November 2017

intgi/intgv
Purpose: Performs voltage or current measurements averaged over a user-defined period (usually
one AC-line cycle). This averaging is done in the hardware by integration of the analog measurement
signal over a specified time period. The integration is automatically corrected for 50 or 60Hz power
mains.

Format:
intgi(SMUX, Itable) X = SMU number(1,2,3,…)
intgv(SMUX, Vtable) X = SMU number(1,2,3,…)

Itable The table created by you; the measured current value is saved into Itable[1].
Vtable The table created by you; the measured voltage value is saved into Vtable[1].

ioli/iolv/ioliv
Purpose: Measure current, voltage, or current and voltage using overlap mode. The integration time
is set by setmode(), and the measure count is set by setcount(). The only difference between this
function and msoli() is the integration time (msoli() uses fixed 0.001 nplc).

Format:
ioli(SMUX, i_buff_name) X = SMU number(1,2,3,…)
iolv(SMUX, v_buff_name) X = SMU number(1,2,3,…)
ioliv(SMUX, i_buff_name, v_buff_name) X = SMU number(1,2,3,…)

i_buff_name The buffer to store current measurements. The buffer must be created by crtbf(), and
must be created for the same SMU.

v_buff_name The buffer to store current measurements. The buffer must be created by crtbf(), and
must be created for the same SMU.

limiti/limitv
Purpose: Allows the programmer to specify a current or voltage limit other than the instrument’s
default limit.

Format:
limiti(SMUX, value) X = SMU number(1,2,3,…)
limitv(SMUX, value) X = SMU number(1,2,3,…)

lorangei/lorangev
Purpose: Defines the bottom autorange limit for current or voltage measurements.

Format:
lorangei(SMUX, value) X = SMU number(1,2,3,…)
lorangev(SMUX, value) X = SMU number(1,2,3,…)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-5

measi/measv/meast
Purpose: Allows the measurement of voltage, current, or time.

Format:
measi(SMUX, Itable) X = SMU number(1,2,3,…)
measv(SMUX, Vtable) X = SMU number(1,2,3,…)
meast(ntimer[Y], Ttable) Y = Timer number(1,2,3,…)

Itable The table created by you; the measured current value is saved into Itable[1].
Ttable The table created by you; the measured voltage value is saved into Ttable[1].
Vtable The table created by you; the measured voltage value is saved into Vtable[1].

moli/molv/moliv
Purpose: Measures current (moli), voltage (molv), or current/voltage using overlap mode (moliv)
using a fixed 0.001 nplc.

Format:
moli(SMUX, i_buff_name) X = SMU number(1,2,3,…)
molv(SMUX, v_buff_name) X = SMU number(1,2,3,…)
moliv(SMUX, i_buff_name, v_buff_name) X = SMU number(1,2,3,…)

i_buff_name The buffer to store current measurements. The buffer must be created by crtbf(), and
must be created for the same SMU.

v_buff_name The buffer to store voltage measurements. The buffer must be created by crtbf(), and
must be created for the same SMU.

postscript
Purpose: Prints a list of scripts that are currently stored in the master of the Series 2600B
instruments, according to the location parameter.

Format:
postscript(location)
location = 0: volatile memory
location = 1: nonvolatile memory

Default location value: 1

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-6 ACS-907-01 Rev. F / November 2017

postbuffer
Purpose: Prints buffered data to a GPIB output buffer in binary format. ACS software can only
recognize buffered data printed by the postbuffer function.

Format:
postbuffer(“name”, start_index, end_index, buff_name, avg_num)

name A string that represents the values in the script, defined by the script writer.
startin_dex The starting index of values to post and print.
end_index The ending index of values to post and print.
buff_name The name of the buffer to print; it could be a default name or a user-defined name.
avg_num The average number (must be an integer). If this number is equal to 2 or greater, the

DATA Engine will automatically calculate the average result of each avg_num value. If
this parameter is not given by you, the system will give a default value of 1 (print every
value point).

postbuftime
Purpose: Prints timestamps of buffered data in binary format. ACS software can only recognize
buffered timestamp data printed by the postbuftime function.

Format:
postbuftime(“name”, start_index, end_index, buff_name, avg_num)

name A string that represents the values in the script, defined by the script writer.
start_index The starting index of values to post and print.
end_index The ending index of values to post and print.
buff_name The name of the buffer to print; it could be a default name or a user-defined name.
avg_num The average number (must be an integer). If this number is equal to 2 or greater, the

DATA Engine will automatically calculate the average result of each avg_num value.
Note for the same buffer, always use the same avg_num with the one in postbuffer(), or
the timestamps number will not match with the values number. If this parameter is not
given by you, the system will give a default value of 1 (print every value point).

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-7

postdata
Purpose: Prints a single value. ACS software only recognizes single values printed by the post-data
function.

Format:
postdata(“name”, value)

name A string that represents the value in the script, defined by the script writer.
value The value to print (for example, it could be an execution like “node[2].smua.measure.i()”,

or “measi(SMU1)”).

posterror
Purpose: Prints all errors in the error queue separately. This function was designed for the DATA
Class (Engine) of ACS.

Format:
posterror()

postglobal
Purpose: Prints all global variables in real-time memory of the Series 2600B.

Format:
postglobal()

postsmuinfo
Purpose: Prints information for all SMUs.

Format:
postsmuinfo()

posttable
Purpose: Prints table data. Each item in the table must be a numeric value.

Format:
posttable(“name”, table_name)

rangei/rangev
Purpose: Selects the current or voltage measurement range and prevents the selected instrument
from autoranging. By selecting a range, the time required for auto-ranging is eliminated.

Format:
rangei(SMUX, value) X = SMU number(1,2,3,…)
rangev(SMUX, value) X = SMU number(1,2,3,…)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-8 ACS-907-01 Rev. F / November 2017

savgi/savgv
Purpose: Performs an averaging current or voltage measurement for every point in a sweep.

Format:
savgi(smu_num, Itable, step_num, step_time) X = SMU number(1,2,3,…)
savgv(smu_num, Vtable, step_num, step_time) X = SMU number(1,2,3,…)

Itable The table created by you; the measured current value is saved into Itable[1].
Vtable The table created by you; the measured voltage value is saved into Vtable[1].
step_num The number of measurements made at each point before the average is computed.
step_time The time delay in seconds between each measurement within a given ramp step.

scnmeas
Purpose: To perform a single measurement on multiple instruments at the same time.

Format:
scnmeas()

Remarks: This function behaves like a single point sweep. It performs a single measurement on
multiple instruments at the same time. Any forcing or delaying must be done prior to calling scnmeas.
smeasX, sintgX, or savgX must be used to set up result arrays just as is done for a sweep call.
Each call to scanmeas will add one element to the end of each array. Calls to scnmeas may be
mixed with calls to sweepX and all results will be appended to the result arrays in the same way
multiple sweepX calls behave.

setauto
Purpose: Sets SMU measurement autorange.

Format:
setauto(SMUX) X = SMU number(1,2,3,…)

setcount
Purpose: Sets the number of measurements performed when a measurement is requested.

• This attribute controls the number of measurements taken any time a measurement is requested. When
using a reading buffer with a measure command, the count also controls the number of readings to be
stored.

• The reset function sets the measure count to 1.

Format:
setcount(SMUX, value) X = SMU number(1,2,3,…)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-9

setitv
Purpose: Sets the interval between multiple measurements. The unit of value is seconds.

This attribute sets the time interval between groups of measurements when setcount() is set to a
value greater than 1. The SMU will attempt to start the measurement of each group when scheduled.

• If the SMU cannot keep up with the interval setting, measurements will be made as fast as possible.
• The reset function sets the measure interval to 0.

Format:
setitv(SMUX, value) X = SMU number(1,2,3,…)

setmode
Purpose: Set instrument-specific operating mode parameters. Modifies instruments specific operating
characteristics (see next table).

Format:
setmode(SMUX, modifier, value) X = SMU number(1,2,3,…)

Setmode parameters

Parameters

Comment

smu[X] Modifier Value
smu[X]

KI_INTGPLC <value> (in units of line
cycles

Specifies the integration time the SMU will use for the intgx
command. The default devint value is 1.0 The valid range is
0.001 to 25.0.

KI_AVGMODE KI_MEASX /
KI_INTEGRATE

Controls what kind of readings are taken for avgX calls. The
devint default value is KI_MEASX. When KI_INTEGRATE is
specified, the time used is that specified by the setmode
(KI_INTGPLC) call.

KI_OFFMODE KI_OFF_NORM /
KI_OFF_ZERO /
KI_OFF_OPEN

Set source ouput-off mode.
KI_OFF_NORM: Outputs 0 V when the output is turned off.
KI_OFF_ZERO: Zero the output (in either volts or current)
when off.
KI_OFF_OPEN: Opens the output relay when the output is
turned off.

KI_SENSE KI_SENSE_LOCA /
KI_SENSE_REMO /
KI_SENSE_CALA

Sets the sense mode to remote, local, or calibration.
KI_SENSE_LOCA: Selects Local Sense (2-wire).
KI_SENSE_REMO: Selects Remote Sense (4-wire).
KI_SENSE_CALA: Selects calibration sense mode.

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-10 ACS-907-01 Rev. F / November 2017

sintgi/sintgv
Purpose: Performs an integrated current or voltage measurement for every point in a sweep.

Format:
sintgi(SMUX, Itable) X = SMU number(1,2,3,…)
sintgv(SMUX, Vtable) X = SMU number(1,2,3,…)

Itable The table created by you; the measured current value is saved into Itable[1].
Vtable The table created by you; the measured voltage value is saved into Vtable[1].

slorangei/slorangev
Purpose: Defines the lowest autorange limit for the current or voltage source.

Format:
slorangei(SMUX, value) X = SMU number(1,2,3,…)
slorangev(SMUX, value) X = SMU number(1,2,3,…)

smeasi/smeasv/smeast
Purpose: Allows a number of current or voltage or time measurements to be made by a specified
instrument during a sweepX function. The results of the measurements are stored in the defined
array.

Format:
smeasi(SMUX, Itable) X = SMU number(1,2,3,…)
smeasv(SMUX, Vtable) X = SMU number(1,2,3,…)
smeast(ntimer[Y], Ttable) Y = Timer number(1,2,3,…)

Itable The table created by you; the measured current value is appended to Itable.
Vtable The table created by you; the measured voltage value is appended to Vtable.
Itable The table created by you; the measured time value is appended to Ttable.

srangei/srangev
Purpose: Selects the current or voltage source range and prevents the selected instrument from auto-
ranging. By selecting a range, the time required for auto-ranging is eliminated.

Format:
srangei(SMUX, value) X = SMU number(1,2,3,…)
srangev(SMUX, value) X = SMU number(1,2,3,…)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-11

ssetauto
Purpose: Sets the SMU source to autorange.

Format:
ssetauto(SMUX) X = SMU number(1,2,3,…)

sweepi/sweepv
Purpose: Generates a ramp consisting of ascending or descending currents or voltages. The sweep
consists of a sequence of steps, each with a user-specified duration.

Format:
sweepi(SMUX, start, end, step_number, delay_time) X = SMU number(1,2,3,…)
sweepv(SMUX, start, end, step_number, delay_time) X = SMU number(1,2,3,…)

start The initial voltage or current level output from the sourcing instrument is applied for the
first sweep measurement. This value can be positive or negative.

end The final voltage or current level applied in the last step of the sweep. This value can be
positive or negative.

step_num The number of current or voltage changes in the sweep. The actual number of forced data
points is one greater than the number of steps specified.

delay_time The delay in seconds between each step and the measurements defined by the active
measure list.

sysinit
Purpose: Sets nplc to 0.001, measure count to 1; effects every SMU in the system. Clears the error
queues and resets all registers.

Format:
sysinit()

syquery
Purpose: Queries every node and every SMU in the system and gives every SMU a unique name, for
instance, SMUX. Displays node number and SMU number on every Series 2600B’s screen. Sets the
integration nplc to one and average mode to KI_MEASX on every SMU in the system.

Format:
sysquery()

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-12 ACS-907-01 Rev. F / November 2017

LPT library command example 1
The following LPT example is provided for your reference.

Function: R_single (sensemode, testmode, RSMU1, RSMU2, forcevalue, myLIMIT, myNPLC,
testdelay, Rvalue)
local v_value = {}
local i_value = {}
local error = {}
if sensemode ~= 0 and sensemode ~= 1 then
table.insert(error,-10100)
posttable("error",error)
return
end
if testmode ~= 0 and testmode ~= 1 then
table.insert(error,-10100)
posttable("error",error)
return
end
setmode(RSMU1, KI_INTGPLC, myNPLC) --set RSMU1’s NPLC
setmode(RSMU1, KI_SENSE, sensemode) --set RSMU1 in sensemode
if RSMU2 ~= KI_GND then
setmode(RSMU2, KI_SENSE, sensemode)
limiti(RSMU2, 1) --set RSMU2 current limit
end
if testmode == 0 then --if
limiti(RSMU1, myLIMIT) --set RSMU1 current limit
forcev(RSMU1, forcevalue) --force RSMU1 voltage source value
elseif testmode == 1 then
limitv(RSMU1, myLIMIT) --set RSMU1 voltage limit
forcei(RSMU1, forcevalue) --force RSMU1 current source value
end
if RSMU2 ~= KI_GND then --if
forcev(RSMU2, 0) - -force RSMU2 voltage source value
end
 --if
delay(testdelay) --set delay time before measure
intgv(RSMU1, v_value) --measure RSMU1 voltage
intgi(RSMU1, i_value) --measure RSMU1 current
Rvalue[1] = v_value[1]/i_value[1]
posttable("Rvalue", Rvalue)
table.insert(error, 0)
posttable("error",error)
devint() --reset all instruments after test
end
 --function
--INPUT--
Local Sensemode = 0
local testmode = 1
local RSMU1 = SMU1
local RSMU2 = KI_GND
local forcevalue = 1e-3
local myLIMIT = 20
local myNPLC = 1
local testdelay = 0.01

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-13

local Rvalue = {}
R_single(sensemode, testmode, RSMU1, RSMU2, forcevalue, myLIMIT, myNPLC, testdelay,

Rvalue)
---End of Input---

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-14 ACS-907-01 Rev. F / November 2017

LPT library command example 2
The following LPT example is provided for your reference.

Function: Four_term_MOSFET_idvg (DSMU, GSMU, SSMU, BSMU, Vg_start, Vg_stop, Vg_points,
Dcompliancei, Gcompliancei, Scompliancei, Bcompliancei, VD, VSS, VBULK, myNPLC, holdtime,
sweepdelay, error, time, Id, Vg)
local vg
local i
local Vg_inc
local id_t1={}
local dummy={}
setmode(DSMU, KI_INTGPLC, myNPLC) --set the NPLC of DSMU
limiti(GSMU,Gcompliancei) --set current compliance to GSMU
limiti(DSMU,Dcompliancei) --set current compliance to DSMU
setauto(DSMU) --set DSMU measure range to auto
if SSMU~=KI_GND then
limiti(SSMU,Scompliancei) --set current compliance to SSMU
forcev(SSMU,VSS) --apply SSMU voltage source
end
if BSMU~=KI_GND then - --if
limiti(BSMU,Bcompliancei) --set current compliance to BSMU
forcev(BSMU,VBULK) --apply BSMU voltage source
end
--if
forcev(DSMU,VD) --apply DSMU voltage source
forcev(GSMU,Vg_start) --apply GSMU voltage source
delay(holdtime) --set time delay before measure
intgi(DSMU,dummy) --perform current measure on DSMU
forcev(DSMU,VD) --apply DSMU voltage source
timer.reset()
for i=1,Vg_points do
vg=Vg_start+(i-1)*Vg_inc
forcev(GSMU,vg) --apply GSMU voltage source
table.insert(Vg,vg)
delay(sweepdelay) --set time interval between every point
intgi(DSMU,id_t1) --perform current measure on DSMU
table.insert(Id,id_t1[1])
table.insert(time,timer.measure.t())
end
--for
table.insert(error,0)
posttable("error",error)
posttable("time",time)
posttable("Vg",Vg)
posttable("Id",Id)
devint()
end
--function

--CALL--
local DSMU=SMU2
local GSMU=SMU1
local SSMU=KI_GND
local BSMU=KI_GND

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-15

local Vg_start=0
local Vg_stop=2
local Vg_points=21
local Dcompliancei=0.1
local Gcompliancei=0.1
local Scompliancei=0.1
local Bcompliancei=0.1
local VD=1
local VBULK=0
local VSS=0
local myNPLC=1
local holdtime=0.01
local sweepdelay=0.001
local error={}
local time={}
local Id={}
local Vg={}
---End of Input---

Four_term_MOSFET_idvg (DSMU, GSMU, SSMU, BSMU, Vg_start, Vg_stop, Vg_points,
Dcompliancei, Gcompliancei, Scompliancei, Bcompliancei, VD, VSS, VBULK, myNPLC, holdtime,
sweepdelay, error, time, Id, Vg)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-16 ACS-907-01 Rev. F / November 2017

Python LPT library
For PTM (Python Test Module), ACS includes another special LPT library: ACSLPT. The ACSLPT
has functions that let you configure one or multiple instrumentation to perform parametric tests.

The commands in ACSLPT can be used to configure some general instruments. For example, you
can import ACSLPT and PTM can control these instruments: 23x series, Series 2400 SourceMeter
instruments, Series 2600B SourceMeter instruments, Series 3700 System Switch, 4200CVU,
4200/4210SMU, matrix 70x series, Model 2010 Multimeter, and LCR 4284/4980 capacitance meter.
For more information, you can refer to Configuring a Python Language Test Module (PTM).

Figure 17: ACS LPT call flow

In the following table, you will learn how the CTM modules and the ACS software function and
interact (see next Table).

ACS software compatibility

ACS installed on: Interface: Compatible library:
Model 4200-SCS Normal (non-KXCI) CTM functions
Model 4200-SCS KXCI and Ethernet cable Ki42cvulpt commands
PC KXCI and Ethernet cable Ki42cvulpt commands

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-17

Python LPT functions
In the following tables, function calls are grouped by different instruments. The details on functions for
the SMUs and general operations are listed alphabetically (see next Tables).

LPT functions

Models 236, 237, 238 LPT functions
devclr devint forcei
forcev intgi intgv
limiti limitv lorangei
lorangev measi measv
rangi rangev setauto
setmode srangei srangev

LPT functions

Model 2010 Multimeter LPT functions
devclr devint avgv
intgv measv rangev
setauto setmode getstatus

The lorangei and lorangev functions for the 23x are equal to autorange, no matter the value of
the parameter setting.

LPT functions

Series 2400 SourceMeter instruments LPT functions
abort delay devclr devint
forcei forcev intgi intgv
limiti limitv measi measv
rangi rangev setauto setmode
srangei srangev sweepi sweepv

LPT functions

Series 2600B SourceMeter instruments LPT functions
abort avgi avgv devclr devint
forcei forcev intgi intgv limiti
limitv lorangei lorangev measi measv
rangi rangev setauto setmode srangei
srangev

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-18 ACS-907-01 Rev. F / November 2017

LPT functions

Series 3700 System Switch LPT functions
addcon addpth clrcon conpin
conpth delcon delpth devint

LPT functions

Model 4200-SCS LPT functions
avgi avgv clrscn clrtrg
delay devclr devint disable
enable excut forcei forcev
getinstatrr getinstid getstatus imeast
Intgi intgv limiti limitv
lorangei lorangev measi measv
measz rangi rangev rdelay
setauto setfreq setlevel setmode
smeasz_sweepv sweepi sweepv tstdsl
tstsel

LPT functions

Models 707, 708 LPT functions
addcon addpth clrcon conpin
cinpth delcon delpth devint
insbind

LPT functions

Model 4200 CVU LPT functions
devclr devint forcev
measz rangei setauto
Setfreq setlevel setmode

LPT functions

Model 4284 LCR Meter LPT functions
devclr devint forcev getstatus
measz rangei setauto setfreq
setlevel setmode

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-19

ACS LPT library commands

Before using the ACSLPT commands, you need to import ACSLPT and ptmlpt.constantlp to the
header lines of a PTM (see next Figure). The ACSLPT commands are listed in alphabetical order.

Figure 18: Import ACSLPT

abort
Purpose: To abort the current source-delay-measure process. It is recommended that you call the
abort function node in the user access point (UAP) only.

The abort function is only valid with the Series 2600B and Series 2400 instruments (SMUs).

Format:
abort (*args)

Example:
abort (SMU1)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-20 ACS-907-01 Rev. F / November 2017

addcon
Purpose: Add terminal-pin connections.

Format:
addcon(*instMTRX, ter, pin, *more_pin)

instMTRX The matrix name in the hardware configuration (the name is optional).
ter The list of terminals to be connected.
pin The list of pins to be connect.
more_pin Indicates additional pins to connect.

Remarks: Terminal and pin lists must have the same number of items. Terminals and pins will be
matched according to the sequence. If the numbers in the terminal and pin lists are not the same, the
connection will be performed according to the shortest list.

Normally, addcon supports the “ROW_COLUMN” mode of matrix. When the matrix is set to
“INSTRUMENT_CARD” mode, a row will be assigned automatically to connect the terminal and the
pin.

For more information about the how to set the “INSTRUMENT_CARD” mode and “ROW_COLUMN”
mode, refer to the ACS Reference manual Hardware configurations section.

Example:
addcon(MTRX1,SMU1,1)
addcon(SMU1,1)
addcon(SMU1H,1)
addcon(SMU1L,1)
addcon(SMU1,1,2,3)
addcon([SMU1,SMU2], [1,2])
addcon(SMU1, SMU2)
addcon(CVU1H,1)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-21

addpth
Purpose: Add terminal-pin connections by path.

Format:
addpth(*instMTRX, ter, pin, row)

instMTRX The matrix name in the hardware configuration (the name is optional).
ter The list of terminals to be connected.
pin The list of pins to be connected.
row The row used to connect terminals and pins.

Example: 70X
addpth(MTRX1,SMU1,1,’A’)
addpth(SMU1,1,’A’)
addpth(SMU1H,1,’A’)
addpth(SMU1L,1,’A’)
addpth([SMU1,SMU2],[1,2],‘A’)
addpth(MTRX1,[SMU1,SMU2],[],‘A’)
addpth([],[1,2],‘A’)

Series 3700 System Switch
addpth(MTRX1,SMU1,1,’1’)
addpth(SMU1,1,’1’)
addpth(SMU1H,1,’1’)
addpth(SMU1L,1,’1’)
addpth([SMU1,SMU2],[1,2],‘1’)
addpth(MTRX1,[SMU1,SMU2],[],‘1’)
addpth([],[1,2],‘1’)

Remarks: All terminals and pins will be connected together in the row. One command can not
connect paths in multiple matrices.

You can also connect only terminals or only pins with this function. But when connecting only
terminals, instMTRX is required, otherwise the function will not know which instrument to send the
command to.

For more information about the how to set the “INSTRUMENT_CARD” mode and “ROW_COLUMN”
mode, refer to Hardware Configuration.

Figure 19: addpth library command

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-22 ACS-907-01 Rev. F / November 2017

avgi/avgv
Purpose: Performs a series of measurements and averages the results.

Format:
avgi(unitname, iStepNo, dStepTime)
avgv(unitname, iStepNo, dStepTime)

iStepNo The number of steps averaged in the measurement. This number ranges from 1 to
160,000 (for 42xx is 32767).

dStepTime The interval in seconds between each measurement. Minimum practical time is
approximately 0.0001s (nplc must be set as 0.001, for Model 4200 set as 2.5us).

Example:
I1= avgi(SMU1, 100, 0.001)

checkparam
Purpose: Check the hardware limits patameter according to hwlimits file. This only applies to DC
range and limit check.

Format:
checkparam(unitname, **kwargs)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.
**kwargs A dictionary of arbitrary keyword arguments supplied using callback. The names are

defined in C:\S4200\sys\kcon\hwlimits.ini ["dc_srange_v", "dc_srange_i", "dc_range_v",
"dc_range_i", "dc_lmt_v", "dc_lmt_i"].

Example usage:
dc_range_v=10, dc_i_lmt=0.1

return value: dictionary/number

dc_range_v (INVAL_PARAM,correct_range) / (OK, the lowest range if input value less than it) /
(OK, input_range)

dc_lmt_i (ERR_CHECKPARAM, input_range) / (INVAL_PARAM, correct_lmt) / (OK,
input_range)

INVAL_INST_ID Invalid instrument ID
ERR_CHECKPARAM An error will be reported if check limits and no source range are input

Example:
heckparam(SMU1,dc_lmti_i=1, dc_srange_v = 10)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-23

clrattrset
Purpose: Clear current instrument setting saving in memory.

Format:
clrattrset(*args)

*args A tuple of arbitrary positional arguments supplied using the callback_args option attribute.

Example:
Clrattrset(SMU1, SMU2)

clrcon
Purpose: Clear all connections of all the matrices or specified matrices.

Format:
clrcon(unitname)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf, such as
MTRX1.

Example:
clrcon() ## Clear all matrixs’ connections in the hardware configuration.
clrcon(MTRX1) ## Clear only matrix1’s connections.

Figure 20: clrcon library command

clrscn
Purpose: Clears the measurement scan tables associated with a sweep (only for Model 4200-SCS).

Format:
clrscn(*args)

*args A tuple of arbitrary positional arguments supplied using the callback_args option attribute.

Example:
clrscn(), clrscn(SMU1,SMU2,CVU1)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-24 ACS-907-01 Rev. F / November 2017

clrtrg
Purpose: Clears the user-selected voltage or current level used to set trigger points. This permits the
use of trigXl or trigXg more than once with different levels within a single test sequence (only
used for Model 4200-SCS).

Format:
clrtrg(*args)

Figure 21: clrtrg library command

conpin(SMU1, 1)
conpin(SMU1L, 2)
trigil(SMU1, 5.0e-3)# Increase ramp to I = 5mA.
smeasi(SMU1,)# Measure forward
forcur=sweepv(SMU1, 0.0, 0.5, 10, 5.0e-3)# Output 0 to 0.5V in 10 steps, each 5ms

duration.
clrtrg() # Clear 5mA trigger point.
clrscn() # Clear sweepv
trigil(SMU1, -0.5e-3)# Decrease ramp to I = -0.5mA.
smeasi(SMU1)# Measure reverse
revcur=sweepv(SMU1, 0.0, -30.0, 10, 5.00e-3)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-25

conpin
Purpose: Clear old connections and adds new terminal-pin connections.

Format:
conpin(*instMTRX, ter, pin, *more_pin)

instMTRX The matrix name in the hardware configuration (the name is optional).
ter The list of terminals to be connected.
pin The list of pins to be connect.
more_pin Indicates additional pins to connect.

Remarks: Normally conpin() supports “ROW_COLUMN” mode of matrix.When matrix is set to be
“INSTRUMENT_CARD” mode, rows will be assigned automatically to connect the terminals and pins.

For more information about the how to set the “INSTRUMENT_CARD” mode and “ROW_COLUMN”
mode, refer to Hardware Configuration in the ACS Reference manual (document number ACS-901-
01).

Example:
conpin(MTRX1,SMU1,1)
conpin(SMU1,1)
conpin(SMU1H,1)
conpin(SMU1L,1)
conpin(SMU1,1,2,3)
conpin([SMU1,SMU2], [1,2])
conpin(SMU1, SMU2)
conpin(CVU1H,1)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-26 ACS-907-01 Rev. F / November 2017

conpth
Purpose: Clear all connections and adds new terminal-pin connections based on the path.

Format:
conpth(*instMTRX, ter, pin, row)

instMTRX The matrix name in the hardware configuration (the name is optional).
ter The list of terminals to be connected.
pin The list of pins to be connected.
row The row used to connect terminals and pins.

Remarks: All terminals and pins will be connected together by the assigned row.

One command cannot connect two paths.

One command cannot connect paths in multiple matrixs.

You can also connect only terminals or only pins by this function. But when connecting only terminals,
instMTRX is required, otherwise the function does not know which instrument to send the commend
to.

Example: 70X
conpth(MTRX1,SMU1,1,’A’)
conpth(SMU1,1,’A’)
conpth(SMU1H,1,’A’)
conpth(SMU1L,1,’A’)
conpth([SMU1,SMU2],[1,2],‘A’)
conpth(MTRX1,[SMU1,SMU2],[],‘A’)
conpth([],[1,2],‘A’)

Example: Series 3700 System Switch
conpth(MTRX1,SMU1,1,’1’)
conpth(SMU1,1,’1’)
conpth(SMU1H,1,’1’)
conpth(SMU1L,1,’1’)
conpth([SMU1,SMU2],[1,2],‘1’)
conpth(MTRX1,[SMU1,SMU2],[],‘1’)
conpth([],[1,2],‘1’)

delay
Purpose: Provides a user-programmable delay within a test sequence. The units are in milliseconds.

Format:
delay(iDelayTime)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-27

delcon
Purpose: Delete terminal-pin connections.

Format:
delcon(*instMTRX, ter, pin, *more_pin)

instMTRX The matrix name in the hardware configuration (the name is optional).
ter The list of terminals to be connected.
pin The list of pins to be connected.
more_pin Indicates more pins to connect.

Remarks: Normally delcon() supports “ROW_COLUMN” mode for a matrix. For more information
about the how to set the “INSTRUMENT_CARD” mode and “ROW_COLUMN” mode, refer to ACS
Example hardware configurations in the ACS Reference manual (document number ACS-901-01).

Example:
delcon(MTRX1,SMU1,1)
delcon(SMU1,1)
delcon(SMU1H,1)
delcon(SMU1L,1)
delcon(SMU1,1,2,3)
delcon([SMU1,SMU2], [1,2])
delcon(SMU1, SMU2)
delcon(CVU1H,1)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-28 ACS-907-01 Rev. F / November 2017

delpth
Purpose: Delete terminal-pin connections based on the specified path.

Format:
delpth(*instMTRX, ter, pin, row)

instMTRX The matrix name in the hardware configuration (the name is optional).
ter The list of terminals to be connected.
pin The list of pins to be connected.
row The row used to connect terminals and pins.

Remarks: Note that the ter-pin-row has to be the actual group when they are connected, otherwise
there is no action in the Matrix.

Example: 70X
delpth(MTRX1,SMU1,1,’A’)
delpth(SMU1,1,’A’)
delpth(SMU1H,1,’A’)
delpth(SMU1L,1,’A’)
delpth([SMU1,SMU2],[1,2],‘A’)
delpth(MTRX1,[SMU1,SMU2],[],‘A’)
delpth([],[1,2],‘A’)

Example: Series 3700 System Switch
delpth(MTRX1,SMU1,1,’1’)
delpth(SMU1,1,’1’)
delpth(SMU1H,1,’1’)
delpth(SMU1L,1,’1’)
delpth([SMU1,SMU2],[1,2],‘1’)
delpth(MTRX1,[SMU1,SMU2],[],‘1’)
delpth([],[1,2],‘1’)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-29

devclr
Purpose: Sets all sources to a zero state.

Format:
devclr(*args)

Example:
devclr()
devclr(SMU1)
devclr(SMU1, CVU1)

Remarks: This function will send output off commands or call the Model 4200 devclr function. It will
not work on a matrix. If the system is configured using KCON the Model 4200 devclr function will
execute. This function will clear all sources sequentially. Prior to clearing all Keithley Instruments
supported instruments, GPIB based instruments will be cleared by sending all strings defined with
kibdefclr. Devclr is implicitly called by clrcon, devint, execut, and tstdsl.

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-30 ACS-907-01 Rev. F / November 2017

devint
Purpose: Resets the instruments and clears the system by opening all relays and disconnecting the
pathways. Meters and sources are reset to the default states. Refer to the specific hardware manuals
for listings of the default conditions and ranges for the instrumentation.

Format:
devint(*args)

Example:
devint()
devint(SMU1)

Remarks: This function will send reset commands or call the Model 4200 devint function. If the
system is configured using KCON the Model 4200 devclr function will execute. The Model 4200
devclr function will execute as follows:

This function will reset all instruments in the system to their default states.

This function will preform the following actions prior to resetting the instruments:

1. Clear all sources by calling devclr.
2. Clear the matrix cross-points by calling clrcon.
3. Clear the trigger tables by calling clrtrg.
4. Clear the sweep tables by calling clrscn.
5. Reset GPIB instruments by sending the string defined with kibdefint.
6. Stop the pulse generator card, and click the standard pulse mode and its default settings (like *RST).

devint is implicitly called by execut and tstdsl.

The following table indicates the default settings for the Series 2600B and 2400 instruments after
using the devint LPT command.

Default settings

Series 2600B SourceMeter instruments setting after devint

Output

turn source off

Reset

reset all bits of following register to 0:
• standard event register
• operation event register
• measurement event register
• questionable event register

Long-form and short-form versions

command word will be sent in short-form
version

ACS hardware configuration
setting window

if interlock enabled enable interlock
if rear panel enabled enable rear panel
if beeper disabled disable beeper

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-31

Default settings

Series 2400 SourceMeter instruments setting after devint

Current range 0.1 A (all SMUs)
Output clear

Error queue clear

Status model reset all bit

Error display disable

PLC 0.001

1 (for intgx)
Measure count 1
DTNS clear sweep table, clear trigger, clear garbage, then set all 26xx in DTNS group

0
Sense mode depends on ACS software preference
Reset each instruments default factory setting

disable
Purpose: Stops the timer and sets the time value to zero. Timer reading is also stopped.

Format:
disable(unitname)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

Example:
disable(‘TIMER1’)

enable
Purpose: Provides correlation of real time to measurements of voltage, current, conductance, and
capacitance.

Format:
enable(unitname)

unitname The instrument name of the timer module in the folder
\\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

Example:
enable(‘TIMER1’)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-32 ACS-907-01 Rev. F / November 2017

execut
Purpose: Causes system to wait for the preceding test sequence to be executed.

Format:
execut(*args)

Example:
execut()
execut(SMU1)

Remarks: For 42xx or Series 2600B SourceMeter instruments, this function will wait for all previous
LPT commands to complete and then will issue a devint.

forcei/forcev
Purpose: Programs a sourcing instrument to generate a voltage or current at a specific level.

Format:
forcei(unitname, dValue)
forcev(unitname, dValue)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.
dValue The level of the bipolar voltage or current forced in volts or amperes.

get common
Purpose: Get common attribute from global_dict. Return key list: [UNITLIST, PLC, pin]

Format:
getcommon()

Example:
print getcommon()
{'PLC': '60HZ', 'UNITLIST': ['GNDU', 'PRBR1', 'SMU1', 'TIMER1']}

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-33

getinstattr
Purpose: Get the instrument attribute from the instrument name string.

Format:
getinstattr(unitname, attr_str)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.
attr_str The attribute string list in found in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf

containing the instrument name.

Figure 22: Unit name and Attribute string .kcf file

return value:
INVAL_INST_ID

 -1 ---- This function does not apply to this unit.

Example:
getinstattr(SMU1, “GPIB_ADDRESS”)
print getinstattr(SMU1, “MODEL”)
KI4200

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-34 ACS-907-01 Rev. F / November 2017

getinstid
Purpose: Get the instrument identifier (ID) from the instrument name string (only used for Model
4200-SCS).

Format:
getinstid(unitname)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

return value:
instrument identifier (ID)

Example:
print getinstid(SMU1)
4100

getstatus
Purpose: Returns the operating state of the desired instrument (only used for Model 4200-SCS).

Format:
getstatus(unitname, iCode)

unitname_str The instrument name (string type) in the folder
\\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

iCode The parameter of the query.

Return value: The data returned from the instrument. getstatus returns one item.

Valid Errors:

The UT_INVLDPRM invalid parameter error is returned from getstatus. The status item parameter
is illegal for this device. The requested status code is invalid for selected device.

A list of supported getstatus query parameters for a SMU are provided in the next table.

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-35

Getstatus parameters

iCode Comment

KI_IPVALUE The presently programmed
output value

Current value (I output value)
KI_VPVALUE Voltage value (V output value)
KI_IPRANGE The presently programmed range Current range (full-scale range

value, or 0.0 for autorange)
KI_VPRANGE Voltage range (full-scale range

value, or 0.0 for autorange)
KI_IARANGE The presently active range Current range (full-scale range

value)
KI_VARANGE Voltage range (full-scale range

value)
KI_IMRANGE The range used when the last

measurement was performed
For autorange, the range at which
the previous I measurement was
performed.

KI_VMRANGE For autorange, the range at which
the previous V measurement was
performed.

KI_COMPLNC Active compliance status Bitmapped values:
2 = LIMIT (at the compliance limit
set by limitX).
4 = RANGE (at the top of the range
set by rangeX)

KI_RANGE_COMPLIANC
E

Active compliance status for fixed
range

In range compliance if 1

KI_COMPLNC_EVER Compliance history Reset by reading compliance
history and by devint

ki20xxlpt Getstatus parameters

iCode Comment

KI_VPRANGE The presently programmed voltage range
KI_VARANGE The presently active voltage range
KI_VMRANGE The range used when the last measurement was performed. For

autorange, the range at which the previous V measurement was
performed

Valid Errors:

The UT_INVLDPRM invalid parameter error is returned from getstatus. The status item parameter
is illegal for this device. The requested status code is invalid for selected device.

Example:
gstatus=getstatus(SMU1, KI_COMPLNC)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-36 ACS-907-01 Rev. F / November 2017

gpibenter
Purpose: Used to read a device dependent string from an instrument connected to the GPIB
interface.

Format:
gpibenter(unitname, max_size)

unitname_str The instrument name (string type) in the folder
\\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

max_size A value specifying the maximum number of characters you want to receive; maximum
length can be a number from 0 to 32767 (hex FFFF).

Return value: (tupple type)(receive str, length, status) or error code

Example:
rvalue = gpibenter(SMU2, 100)

gpibsend
Purpose: Sends a device dependent command to an instrument connected to the GPIB interface.

Format:
gpibsend(unitname, cmd_str)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.
cmd_string A command string sent to the device. Note that terminating characters are automatically

added to the end of this string when it is sent. The default terminator is a line feed
character.

Return value: A variable which indicates the success or failure of the data transfer.

Example:
gpibsend(SMU1, ‘devint()’)
gpibsend(GPI1, “L2X”)

gpibspl
Purpose: A serial poll reads the status of an instrument connected to the GPIB interface.

Format:
gpibspl(unitname)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

Return value: Tupple - (receive number, status) or error code.

Example:
poll1 = gpibspl(SMU1)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-37

insbind
Purpose: Binds the high-voltage (HV) SMU and high-voltage ground (HVGND) to the CVU HI, LO,
and ground (CVU_HI/LO/GRD) to the RBT through pins 09, 10, and 11 (PIN09/10/11)(pin number is
defined in the ACS_setting.ini file).

Format:
insbind(ter1,ter2)

ter1 CVU terminal to be connected.
ter2 SMU terminal to be connected.

Remarks: Only the HV SMU, HVGND, and HV CVU related terminals are supported as inputs.

Example:
insbind(CVU1H,SMU1)
insbind(CVU1G,HVGND)

imeast
Purpose: Force a read of the timer and return the result.

Format:
imeast(unitname)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf. For
example, TIMER1 or TIMER2.

Return value: Elapsed time from enable (TIMER1).

Remarks: This command applies to all timers. Must call enable (TIMERn) first.

Example:
t1= imeast(TIMER1)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-38 ACS-907-01 Rev. F / November 2017

intgi/intgv
Purpose: Performs voltage or current measurements averaged over a user-defined period (usually,
one AC line cycle). This averaging is done in hardware by integration of the analog measurement
signal over a period of specified time. The integration is automatically corrected for 50 or 60Hz power
mains.

Format:
intgi(unitname)
intgv(unitname)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

Return value: Result data.

Example:
i1= intgi(SMU1)

limiti/limitv
Purpose: Allows the programmer to specify a current or voltage limit other than the instrument's
default limit.

Format:
limiti(unitname,dValue)
limitv(unitname,dValue)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.
dValue The maximum level of the current or voltage. The value is bidirectional. For example, a

limitv (“SMU1”, 10.0) limits the voltage of the current source of SMU1 to 10.0 V. A
limiti (“SMU1”, 1.5E-3) limits the current of the voltage source of SMU1 to 1.5 mA.

Remarks: Use limiti to limit the current of a voltage source. Use limitv to limit the voltage of a
current source.

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-39

lorangei/lorangev
Purpose: Defines the bottom autorange limit.

Format:
lorangei(unitname,dValue)
lorangev(unitname,dValue)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.
dValue The value of the desired instrument range in volts or amperes.

Remarks: lorange is used with autoranging to limit the number of range changes and therefore
saves test time.

For the 42xx, if the instrument was on a range lower than the one specified by lorange, the range is
changed. Model 4200-SCS automatically provides any range change settling delay that may be
necessary due to this potential range change. Once defined, lorange is in effect until a devclr,
devint, execut, or another lorangeX executes.

For the 23x instruments, works as autorange. The second dValue will be ignored.

It cannot be used for the Series 2400 SourceMeter instruments.

Example:
lorangei(SMU1, 2.0E-6)

measi/measv
Purpose: Allows the measurement of voltage or current.

Format:
measi(unitname)
measv(unitname)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

Return value: Result data

Remarks: For this measurement, the signal is sampled for a specific period of time. This sampling
time for the measurement is called the integration time. For the measX function, the integration time
is fixed at 0.01PLC. For 60Hz line power, 0.01PLC = 166.67µs (0.01PLC/60Hz). For 50Hz line power,
0.01PLC = 200µs (0.01PLC/50Hz).

Example:
i1= measi(SMU1)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-40 ACS-907-01 Rev. F / November 2017

measz
Purpose: Performs an impedance measurement on a CVU or other capacitance measuring
instrument.

Format:
measz(unitname, iModel,iSpeed)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.
iModel Measurement Model (see next table).
iSpeed Measure speed: KI_CVU_SPEED_FAST, KI_CVU_SPEED_NORMAL, or

KI_CVU_SPEED_QUIET

Return value: [result1, result2]

result1 The first result data of the selected measure model
result2 The second result data of the selected measure model

Remarks: The measurement models are listed in the next Table.

Measurement speed settings: KI_CVU_SPEED_FAST performs fast measurements (higher noise)

Measurement settings

unitname_str
(Model name)

iModel (Measurement Model) parameter values

CVU1

ZTH Impedance (Z) and phase (ø in radians) KI_CVU_TYPE_ZTH or 0
RjX Resistance and reactance KI_CVU_TYPE_RJX or 1
CpGp Parallel capacitance and conductance KI_CVU_TYPE_CPGP or 2
CsRs Series capacitance and resistance KI_CVU_TYPE_CSRS or 3
CpD Parallel capacitance and dissipation factor KI_CVU_TYPE_CPD or 4
CsD Series capacitance and dissipation factor KI_CVU_TYPE_CSD or 5
RAW Raw data from measure KI_CVU_TYPE_RAW or 6

CMTR1 Z-thr Impedance (Z) and phase (ø in radians) KI_AGCV_TYPE_CPD or 0
R-X Resistance and Reactance KI_AGCV_TYPE_RX or 1
Cp-G Parallel capacitance and equivalent parallel

conductance
KI_AGCV_TYPE_CPG

Cs-Rs Series capacitance and resistance KI_AGCV_TYPE_CSRS
Cp-D Parallel capacitance and dissipation factor KI_AGCV_TYPE_CPD
Cs-D Series capacitance and dissipation factor KI_AGCV_TYPE_CSD
Cp-Q Parallel capacitance and Quality factor

(inverse of D)
KI_AGCV_TYPE_CPQ

Cs-Q Series capacitance and Quality factor (inverse
of D)

KI_AGCV_TYPE_CSQ

Lp-D Inductance value measured with parallel-
equivalent circuit Model and dissipation factor

KI_AGCV_TYPE_LPD

Lp-Q Inductance value measured with parallel-
equivalent circuit Model and Quality factor
(inverse of D)

KI_AGCV_TYPE_LPQ

Lp-G Parallel inductance value and equivalent
parallel conductance

KI_AGCV_TYPE_LPG

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-41

Measurement settings

unitname_str
(Model name)

iModel (Measurement Model) parameter values

Lp-Rp Parallel inductance value and Equivalent
parallel resistance

KI_AGCV_TYPE_LPRP

Ls-D Series inductance value and dissipation factor KI_AGCV_TYPE_LSD
Ls-Q Series inductance value and Quality factor

(inverse of D)
KI_AGCV_TYPE_LSQ

Ls-Rs Series inductance value and equivalent
resistance

KI_AGCV_TYPE_LSRS

Z-thd Impedance (Z) and phase (ø in degree) KI_AGCV_TYPE_ZTD
Cp-Rp Parallel capacitance and equivalent resistance KI_AGCV_TYPE_CPRP
G-B Equivalent parallel conductance and

Susceptance
KI_AGCV_TYPE_GB

Y-thd Admittance and phase (in degree) KI_AGCV_TYPE_YTD
Y-thr Admittance and phase (in radians) KI_AGCV_TYPE_YTR
Vdc-Idc Direct-current voltage and Direct-current

electricity
KI_AGCV_TYPE_VDID

Example:
measData = measz(CVU1, KI_CVU_TYPE_CSRS, KI_CVU_SPEED_NORMAL)

rangei/rangev
Purpose: Selects a measurement range and prevents the selected instrument from autoranging. By
selecting a range, the time required for autoranging is eliminated.

Format:
rangei(unitname_str,dvalue)
rangev(unitname_str,dvalue)

unitname_str The instrument name (string type) in the folder
\\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

dValue The value of the highest measurement taken. The most appropriate range for this
measurement is selected automatically. If range is set to 0, the instrument will
autorange, unless you have a Series 2600B SourceMeter instrument.

Example:
rangei(SMU1, 2.0E-3) # Click current range of 2mA.

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-42 ACS-907-01 Rev. F / November 2017

rdelay
Purpose: A user-programmable delay in seconds.

Format:
rdelay(dDelayTime)

n The desired delay duration in seconds.

Example:
rdelay(0.02)# Pause for 20ms

setauto
Purpose: Re-enables autoranging and cancels any previous rangeX command for the specified
instrument.

Format:
setauto(unitname)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf.

Remarks: When an instrument is returned to the autorange mode, it will remain in its present range
for measurement purposes. The source range will change immediately.

Due to the dual mode operation of the SMU (v versus i) setauto places both voltage and current
ranges in autorange mode.

Example:
setauto(SMU1) # Enable autorange mode.

setfreq
Purpose: A CV test command. Sets the frequency for the AC drive.

Format:
setfreq(unitname,dFreq)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf. Note
that only CVUn and CMRTn is supported.

frequency: Frequency of the AC drive in Hz

Example:
status = setfreq(CVU1,10000)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-43

setlevel
Purpose: A CV test command. Sets the AC drive voltage level.

Format:
setlevel(unitname,dSignalLevel)

unitname The instrument name in the folder \\ACS\KATS\CONFIG\ACS_hdcon_Online.kcf. Note
that only CVUn and CMRTn is supported.

dSignalLevel Voltage level of the AC drive (10 mV to 100 mV RMS) in volts. Note there are different
valid ranges for the CVU and CMTR.

Example:
status = setlevel(CVU1,0.05)

setmode
Purpose: Set instrument specific operating mode parameters.

Format:
setmode(unitname,iModifier, dValue)

Remarks: Setmode allows control over certain instrument specific operating characteristics. Refer to
the specific instrument's documentation for more information on what each instrument supports. Refer
to the next tables for more information regarding modifier values.

Setmode

ki23xlpt Parameters Comment
 unitname

_str
iModifier dValue

SMU1 KI_INTGPLC <value> (in units of line cycles) Specifies the integration time the SMU
will use for the intgx command. The
default devint value is 1.0. The valid
range is 0.001 to 25.0.

 KI_SENSE KI_SENSE_LOCA (or 0)
KI_SENSE_REMO(or 1)

Set remote, local, sense mode:
KI_SENSE_LOCA: Selects Local Sense
(2-wire).
KI_SENSE_REMO: Selects Remote
Sense (4-wire).

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-44 ACS-907-01 Rev. F / November 2017

Setmode

ki23xlpt Parameters Comment
 KI_TRIG_IN KI_TRIG_IN_CONT = 0

KI_TRIG_IN_SRC = 1
KI_TRIG_IN_DLY = 2
KI_TRIG_IN_SRCDLY = 3
KI_TRIG_IN_MSR = 4
KI_TRIG_IN_SRCMSR = 5
KI_TRIG_IN_DLYMSR = 6
KI_TRIG_IN_SRCDLYMSR = 7
KI_TRIG_IN_PULSE = 8

Input triggers. Input trigger are used to
control when source, delay, and measure
operations occur:
KI_TRIG_IN_CONT: Continuously
process all SDM(Source Delay Measure)
cycles.
KI_TRIG_IN_SRC: Each trigger will
process an SDM cycle.
KI_TRIG_IN_DLY: Initial trigger sets
source. Each subsequent trigger initiates
a delay and measure then sets source of
next SDM cycle.
KI_TRIG_IN_SRCDLY: Two trigger
process each SDM cycle. First trigger
sets source. Second trigger initiates a
delays and measure.
KI_TRIG_IN_MSR: Initial trigger sets
source and causes a delay. Second
trigger initiates measure, and then, for
next SDM cycle, sets source and initiates
a delay.
KI_TRIG_IN_SRCMSR: Two triggers
process each SDM cycle. First trigger
sets source and initiates a delay. Second
trigger initiate a measure.
KI_TRIG_IN_DLYMSR: Initial trigger sets
source. Two triggers process each SDM
cycle. First trigger initiates a delay.
Second trigger initiates a measure and
sets source of nest SDM cycle.
KI_TRIG_IN_SRCDLYMSR: Three
triggers process each SDM cycle. First
trigger sets source. Second trigger
initiates a delay. Third trigger initiates a
measure.
KI_TRIG_IN_PULSE: Pulse sweep
trigger. Each trigger process the on the
time and off time of each pulse in the
sweep. Two measurements are made on
each pulse.

 KI_TRIG_SOURCE KI_TRIG_X = 0
KI_TRIG_GET = 1
KI_TRIG_TALK = 2
KI_TRIG_EXTERNAL = 3
KI_TRIG_INTERNAL = 4

Input trigger origin. The input trigger
stimulus may be provided by front
manual trigger function, and external
device that applies a TTL level pulse to
the TRIGGER in connector on the rear
panel, or an appropriate IEEE-488
operation.
KI_TRIG_X: IEEE X origin. “X” sent over
IEEE-488 bus.
KI_TRIG_GET: Group execute trigger
KI_TRIG_TALK: Unit address to talk over
IEEE-488 bus.
KI_TRIG_EXTERNAL: Negative going
TTL level pulse applied to TIRIGGER in
connector.
KI_TRIG_INTERNAL: Front panel
MANUAL trigger function or HO
command over IEEE-488 bus.

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-45

Setmode

ki23xlpt Parameters Comment
 KI_TRIG_OUT KI_TRIG_OUT_NONE = 0

KI_TRIG_OUT_SRC = 1
KI_TRIG_OUT_DLY = 2
KI_TRIG_OUT_SRCDLY = 3
KI_TRIG_OUT_MSR = 4
KI_TRIG_OUT_SRCMSR = 5
KI_TRIG_OUT_DLYMSR = 6
KI_TRIG_OUT_SRCDLYMSR =
7
KI_TRIG_OUT_PULSE = 8

Output trigger generation:
KI_TRIG_OUT_NONE: No output
triggers.
KI_TRIG_OUT_SRC: Output trigger
pulse after every source phase.
KI_TRIG_OUT_DLY: Output trigger
pulse after every delay phase.
KI_TRIG_OUT_SRCDLY: Output trigger
pulse after every source phase and delay
phase.
KI_TRIG_OUT_MSR: Output trigger
pulse after every source phase and
measure phase.
KI_TRIG_OUT_SRCMSR: Output trigger
pulse after every source phase and
measure phase.
KI_TRIG_OUT_DLYMSR: Output trigger
pulse after every delay phase and
measure phase.
KI_TRIG_OUT_SRCDLYMSR: Output
trigger pulse after every source phase,
delay phase and measure phase.
KI_TRIG_OUT_PULSE: For pulse
sweeps. Output trgger pulse after end of
each off time measure.

 KI_SWEEPEND_TRIGO
UT

KI_SWEEPEND_TRIGOUT_EN
= 1
KI_SWEEPEND_TRIGOUT_DIS
= 0

When enable, an output trigger pulse
occurs at the end of the sweep.

 KI_AVGNUMBER 0, 2, 4, 8, 16, 32 Number of readings to take average.
0 means disable average filter

Setmode

ki20xxlpt parameters

Comment

Unitname_str iModifier dValue

VMTR1

KI_INTGPLC <value> (in units of
line cycles)

Specifies the integration time will be used for the intgv
command.

KI_AVGMODE KI_MEASX
KI_INTEGRATE

Controls what kind of readings are taken for avgv calls.

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-46 ACS-907-01 Rev. F / November 2017

Setmode

kiSeries 2400 instruments lpt parameters

Comment

Unitname_
str

iModifier dValue

SMU1 KI_INTGPLC <value> (in units of line
cycles)

Specifies the integration time the SMU will use
for the intgx command. The default devint
value is 1.0. The valid range is 0.01~10(DC)
and
0.004~0.1(2430 Pulse mode)

SMU1 (only
2430 SMU)

KI_TRIG_IN_CONT <value> Set the output pulse count.

SMU1

PULSE_MODE_PULS
E

VOLT CURR Click pulse mode and pulse source function
VOLT: voltage source
VOLT: voltage source
CURR: current source

PULSE_MODE_WID <value> Click pulse mode and set pulse width

PULSE_MODE_DELA
Y

<value> Click pulse mode and set pulse delay

Setmode

kiSeries 2600B instruments lpt parameters

Comment

unitname
_str

iModifier dValue

SMU1 KI_INTGPLC <value> (in units
of line cycles)

Specifies the integration time the SMU will use for the intgx
command. The default devint value is 1.0. The valid range is 0.001
to 25.0.

 KI_AVGMODE KI_MEASX
KI_INTEGRATE

Controls what kind of readings are taken for avgX calls. The devint
default value is KI_MEASX. When KI_INTEGRATE is specified,
the time used is that specified by the setmode call.

 KI_OFFMODE KI_OFF_NORM
KI_OFF_ZERO
KI_OFF_OPEN

Set source output-off mode.
KI_OFF_NORM: Outputs 0V when the output is turned off.
KI_OFF_ZERO: Zero the output (in either volts or current) when
off.
KI_OFF_OPEN: Opens the output relay when the output is turned
off.

 KI_SENSE KI_SENSE_LOCA
KI_SENSE_REM
O
KI_SENSE_CALA

Set remote, local, sense mode, or calibration.
KI_SENSE_LOCA: Selects Local Sense (2-wire).
KI_SENSE_REMO: Selects Remote Sense (4-wire).
KI_SENSE_CALA: Selects calibration sense mode.

Setmode

ki42cvulpt parameters

Comment

unitname
_str

iModifier dValue

 KI_CVU_COMPENSATE [1,1,1]
To each item:
0=OFF
1=ON

Set open_comp, short_comp,
load_comp in one command. Value
must be list type and have three items.

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-47

Setmode

ki42cvulpt parameters

Comment

CVU1

KI_CVU_CABLE_CORRECT 0,1.5 or 3 Cable length setting (in Meters), Can be
set to any floating point number
between 0 and 3.0, but will be coerced
to 0, 1.5 or 3.

KI_CVU_CUST_SPEED [delay_factro, filter_factor,
aperture] = [1,1,1]
delay_factor: 0~100,
aperture: 0006~10.002

Select customize speed mode and set
parameter value, including delay_factor,
filter_factor, and aperture. Value must
be list type and have three items.

KI_CVU_OPEN_COMPENSATE
KI_CVU_SHORT_COMPENSAT
E
KI_CVU_LOAD_COMPENSATE

0=OFF
1=ON

Enable or disable compensation
constants for open load and short.

KI_CVU_FILTER_FACTOR 0 to 100 Set the custom speed filter factor.
KI_CVU_MEASURE_SPEED KI_CVU_SPEED_FAST =0

KI_CVU_SPEED_NORMA
L =1
KI_CVU_SPEED_QUIET
=2
KI_CVU_SPEED_CUSTO
M =3

Set CVU speed

KI_CVU_MEASURE_MODEL KI_CVU_TYPE_ZTH =0
KI_CVU_TYPE_RJX =1
KI_CVU_TYPE_CPGP =2
KI_CVU_TYPE_CSRS =3
KI_CVU_TYPE_CPD =4
KI_CVU_TYPE_CSD =5
KI_CVU_TYPE_RAW =6

For more information about the CVU
mode type (see measz).

KI_CVU_CHANNEL 1~8 Selects CVU card on which subsequent
card CVU commands will act.

KI_CVU_DCV_OFFSET -30~30 Apply offset value to the DC low
terminal.

KI_CVU_ACVHI 1 = HCUR/HPOT
2 = LCUR/LPOT

Allows you to define the source terminal
(AC only) for the CVU test to be
performed. Unless set otherwise, the
default AC source terminal is
HCUR/HPOT.

KI_CVU_DCVHI 1 = HCUR/HPOT
2 = LCUR/LPOT

Allows you to define the source terminal
(DC only) for the CVU test to be
performed. Unless set otherwise, the
default DC source terminal is
HCUR/HPOT.

KI_CVU_MODE 0 or 1 0: set CVU to user mode
1: set CVU to system mode

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-48 ACS-907-01 Rev. F / November 2017

Setmode

ki4284lpt parameters

Comment

unitname
_str

iModifier dValue

CMTR1 KI_CVU_CABLE_CORRECT 0,1.5 or 3 Cable length setting (in Meters), Can
be set to any floating point number
between 0 and 3.0, but will be coerced
to 0, 1.5 or 3.

 KI_CVU_OPEN_COMPENSATE
KI_CVU_SHORT_COMPENSAT
E
KI_CVU_LOAD_COMPENSATE

0=OFF
1=ON

Enable or disable compensation
constants for open load and short.

 KI_CVU_FILTER_FACTOR 0 to 100 Set the custom speed filter factor

 KI_CVU_MEASURE_SPEED KI_CVU_SPEED_FAST =0
KI_CVU_SPEED_NORMAL
=1
KI_CVU_SPEED_QUIET =2
KI_CVU_SPEED_CUSTOM
=3

Set CVU speed

 KI_CVU_MEASURE_MODEL KI_CVU_TYPE_ZTH =0
KI_CVU_TYPE_RJX =1
KI_CVU_TYPE_CPGP =2
KI_CVU_TYPE_CSRS =3
KI_CVU_TYPE_CPD =4
KI_CVU_TYPE_CSD =5
KI_CVU_TYPE_RAW =6

For more information about the CVU
mode type see measz.

 KI_CVU_MODE 0 or 1 0: set CVU to user mode
1: set CVU to system mode

 KI_AGCV_CORRECT_METHOD KI_AGCV_CORRECT_MET
HOD_MULT = 0
KI_AGCV_CORRECT_MET
HOD_SING = 1

elects the correction mode (Single or
Multi). Scanner I/F should be installed
for the Multi mode
KI_AGCV_CORRECT_METHOD_SIN
G : Sets the correction mode to
“SINGLE”
KI_AGCV_CORRECT_METHOD_MU
LT : Sets the correction mode to
“MULTI”

 KI_AGCV_TRIG_SOURCE KI_AGCV_TRIG_SOURCE
 KI_AGCV_TRIG_I
NTERNAL = 0
KI_AGCV_TRIG_HOLD = 1
KI_AGCV_TRIG_EXTERNA
L = 2
KI_AGCV_TRIG_BUS = 3

Selects the trigger mode:
KI_AGCV_TRIG_INTERNAL: Sets
trigger source to “internal”
KI_AGCV_TRIG_HOLD: Sets trigger
source to “manual”
KI_AGCV_TRIG_EXTERNAL: Sets
trigger source to “external connector
on the rear panel”
KI_AGCV_TRIG_BUS: Sets trigger
source to “GPIB/LAN/USB”

 KI_AGCV_INIT_CONTINUE 0=OFF
1=ON

Enables the automatic trigger to
change state from the “Idle” state to
the “Wait for Trigger”
state. Refer to the chapter on Remote
Control
ON or 1: Enables automatic trigger
state change OFF or 0 (Preset value):
Disables automatic trigger state
change

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-49

Setmode

ki4284lpt parameters

Comment

 KI_AGCV_DISPLAY_PAGE KI_AGCV_DISPLAY_MEAS
= 0
KI_AGCV_DISPLAY_BNUM
BER = 1
KI_AGCV_DISPLAY_BCOU
NT = 2
KI_AGCV_DISPLAY_LIST =
3
KI_AGCV_DISPLAY_MSET
UP = 4
KI_AGCV_DISPLAY_CSET
UP = 5
KI_AGCV_DISPLAY_LTAB
LE = 6
KI_AGCV_DISPLAY_LSET
UP = 7
KI_AGCV_DISPLAY_CATA
LOG = 8
KI_AGCV_DISPLAY_SYST
EM = 9
KI_AGCV_DISPLAY_SELF
= 10
KI_AGCV_DISPLAY_MLAR
GE = 11
KI_AGCV_DISPLAY_SCON
FIG = 12
KI_AGCV_DISPLAY_SERVI
CE = 13

Selects the page to be displayed.
KI_AGCV_DISPLAY_MEAS: Sets
displayed page to <MEAS DISPLAY>
KI_AGCV_DISPLAY_BNUMBER:
Sets displayed page to <BIN No.
DISPLAY>
KI_AGCV_DISPLAY_BCOUNT: Sets
displayed page to <BIN COUNT
DISPLAY>
KI_AGCV_DISPLAY_LIST: Sets
displayed page to <LIST SWEEP
DISPLAY>
KI_AGCV_DISPLAY_MSETUP: Sets
displayed page to <MEAS SETUP>
KI_AGCV_DISPLAY_CSETUP: Sets
displayed page to <CORRECTION>
KI_AGCV_DISPLAY_LTABLE: Sets
displayed page to <LIMIT TABLE
SETUP>
KI_AGCV_DISPLAY_LSETUP: Sets
displayed page to <LIST SWEEP
SETUP>
KI_AGCV_DISPLAY_CATALOG: Sets
displayed page to <CATALOG>
KI_AGCV_DISPLAY_SYSTEM: Sets
displayed page to <SYSTEM
INFORMATION>
KI_AGCV_DISPLAY_SELF: Sets
display page to <SELF TEST>
KI_AGCV_DISPLAY_MLARGE: Sets
page to display measurement results
in large
characters
KI_AGCV_DISPLAY_SCONFIG: Sets
displayed page to <SYSTEM
CONFIG>
KI_AGCV_DISPLAY_SERVICE: Sets
displayed page to <SERVICE>

Setmode

Support Parameters Comment

instr_id modifier value
Supported

KI_SYSTE
M

KI_TRIGMODE KI_MEASX
KI_INTEGRATE
KI_AVERAGE
KI_ABSOLUTE
KI_NORMAL

Redefines all existing triggers to use a new method
of measurement.

KI_AVGNUMBER <value> Number of readings to take when KI_TRIGMODE
is set to KI_AVERAGE.

KI_AVGTIME <value> (in units of
seconds)

Time between readings when KI_TRIGMODE is set
to KI_AVERAGE.

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-50 ACS-907-01 Rev. F / November 2017

Setmode

Support Parameters Comment
No-Op
(accepted
but not
responded
to)

KI_MX_DEFMODE KI_HIGH
KI_LOW

Sets the default matrix mode to high current mode
or low current mode. This setting will remain in
effect until the end of the current session and is not
reset by devint.

KI_HICURRENT KI_ON Forces the matrix into high current mode. The
mode will revert to the default at the next devint
unless the configuration file sets this parameter to
reset on a clrcon.

KI_CC_AUTO KI_ON
KI_OFF

Turns automatic compliance clear processing on or
off. devint will reset this value to KI_ON.

KI_CC_SRC_DLY <value> The minimum time after a source value change
before a compliance clear scan may start. This
represents the time after a source value change
and it takes the circuit under test to settle and
prevent false compliance detection due to
transients.

KI_CC_COMP_DLY <value> The time between compliance scans while
processing compclr. This also represents the time
after a source value change takes the circuit under
test to settle and prevent false compliance
detection due to transients, but the source value
changes are only due to removing the instrument
from an artificial compliance state.

KI_CC_MEAS_DLY <value> The minimum time after the last source value
change before a measurement can be made. This
represents the time it takes the circuit under test to
settle to the level desired for the subsequent
measurements.

Supported

SMUn

KI_INTGPLC <value> (in units of
line cycles)

Specifies the integration time the SMU will use for
the intgx and singtx commands. The default devint
value is 1.0. The valid range is 0.01 to 10.0.

KI_AVGMODE KI_MEASX
KI_INTEGRATE

Controls what kind of readings are taken for avgX
calls. The devint default value is KI_MEASX. When
KI_INTEGRATE is specified, the integration time
used is that specified by the KI_INTGPLC setmode
call.

No-Op
(accepted
but not
responded
to)

KI_IMTR

 Sets up the SMU as a current meter. The ranges
used are representative of the type of instrument
being simulated. NOTE: this setmode will turn the
source on.

KI_S400 Sets the SMU to use ranges equivalent to the
Model S400.

KI_DMM Sets the SMU to use ranges equilvalent to a DMM
(lowest range = 100 µa). Provides a lower
resolution, fast measurement. Used for high current
applications.

KI_ELECTROMETE
R

Sets the SMU to use ranges equivalent to an
electrometer. Provides best measurement
resolution, but has a slower measurement time.
Used for low current measurements.

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-51

Setmode

Support Parameters Comment
KI_LIM_INDCTR Any Controls what measure value is returned if the

SMU is at its programmed limit. The devint default
is SOURCE_LIMIT (7.0e22). NOTE: the SMU
always returns INST_OVERRANGE (1.0e22) if it is
on a fixed range that is too low for the signal being
measured.

KI_LIM_MODE KI_INDICATOR
KI_VALUE

Controls whether SMU will return an indicator value
when in limit or overrange, or the actual value
measured. The default mode after a devint is to
return an indicator value.

KI_RANGE_DELAY <value> (in seconds)
ranges from
-2147493.647 to
+2147483.647
seconds

Specifies an additional delay time for the SMU
driver to add to the range settle delay time
whenever it is changing a preamp range. Value
may be negative to shorten rather than lengthen
the overall range change delay. In no event will the
overall delay time be less than the preamp circuit
hardware switching time. The devint default value
is 0.0.

KI_RANGE_SETTL
E

0.01
0.1
1.0
2.5
5.0
10.0

Controls how long the SMU driver will delay when
changing a preamp range. Value is specified in
percent settling accuracy, although at present, only
six specific values are valid. The actual delay time
depends on which range the preamp is being
switched from and which range it is being switched
to. The devint default value is 1.00

KI_VMTR

 Sets the SMU as a volt meter. The ranges used are
representative of the type of instrument being
simulated. NOTE: this setmode will turn the source
on.

KI_S400 Sets the SMU to use ranges equivalent to the
Model S400.

KI_DMM Sets the SMU to use ranges equivalent to a DMM.
Provides a low impedance, fast measurement.
Used for low voltage applications.

KI_ELECTROMETE
R

Sets the SMU to use ranges equivalent to an
electrometer. Provides a high input impedance, but
has a slower measurement time. Used for high
reisistance measurements.

These modifiers perform no operations in the Model 4200-SCS. They are included only for
compatibility, so that existing S600 programs using the setmode function can be ported to the Model
4200-SCS without upsets.

Example:
status = setmode(“CVU1”, KI_CVU_OPEN_COMPENSATE, isCmpstOpen=0)

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-52 ACS-907-01 Rev. F / November 2017

smeasz_sweepv
Purpose: Performs and returns CD measurements for a voltage sweep with specified frequency bias.
Posts data after the sweep is completed.

Format:
smeasz_sweepv(unitname,iSpeed,dVStart,dVStop,iStepNum,dDelayTime)

return value: [rvalue1, rvalue2]

result1 Lists the first result of the selected measured model.
result2 Lists the second result of the selected measured model.

Example:
smeasz_sweepv(CVU1, KI_CVU_SPEED_FAST,-3,3,10,0.01)

srangei/srangev
Purpose: Selects the current or voltage source range and prevents the selected instrument from
autoranging. By selecting a range, the time required for autoranging is eliminated.

Format:
srangei(SMUX, value) X = SMU number(1,2,3,…)
srangev(SMUX, value) X = SMU number(1,2,3,…)

tstsel
Purpose: Used to enable or disable a test station. Only used for the Model 4200.

To relinquish control of an individual test station, a new test station must be selected using tstsel
before any subsequent test control functions are run. The tstdsl command has the same effect as
the tstsel (0) command.

Format:
tstsel(iStatus = 1)

Remarks: tstsel is normally called at the beginning of a test program.

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-53

PTM examples
ACSLPT using example: vgsid1
##outputlist=GateV,DrainI,Time##
from ACS_PostData import *
from ACSLPT import *
from ptmlpt.constantlpt import *
from math import *
Get4200HWCtrl()
def vgsid1(DrainSMU, DrainPin, GateSMU, GatePin, SourceSMU, SourcePin, BulkSMU,

BulkPin, GateVStart,GateVStop, numberofpoint, SweepDelay, DrainV,
SourceV,BulkV,RangeDrainI, ComplianceDrainI,StoponCompliance,NPLC):

 GateV=[]
 DrainI=[]
 Time_meas=[]
 tstsel(1)
 #Some input checking is needed
 if GateVStart < -200 or GateVStart > 200:
 return INVAL_PARAM
 if GateVStop < -200 or GateVStop > 200:
 return INVAL_PARAM
 if numberofpoint < 1 or numberofpoint > 4096:
 return INVAL_PARAM
 if SweepDelay < 0 or SweepDelay > 100:
 return INVAL_PARAM
 if DrainV < -200 or DrainV > 200:
 return INVAL_PARAM
 if SourceV < -200 or SourceV > 200:
 return INVAL_PARAM
 if BulkV < -200 or BulkV > 200:
 return INVAL_PARAM
 if RangeDrainI < 1 or RangeDrainI > 12:
 return INVAL_PARAM
 if ComplianceDrainI < -0.1 or ComplianceDrainI > 0.1:
 return INVAL_PARAM
 # Switch Matrix connection
 '''
 clrcon()
 if GatePin > 0:
 conpin(GateSMU,GatePin)
 if DrainPin > 0:
 conpin(DrainSMU,DrainPin)
 if SourcePin > 0:
 conpin(SourceSMU,SourcePin)
 if BulkPin > 0:
 conpin(BulkSMU,BulkPin)
 '''
 #Set the SMUs range
 rangei(GateSMU,0.1)
 rangei(BulkSMU,0.1)
 rangei(SourceSMU,0.1)
 setauto(DrainSMU)
 limiti(DrainSMU, ComplianceDrainI)
 # best fix for voltage range
 if fabs(SourceV) < 0.2:

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-54 ACS-907-01 Rev. F / November 2017

 rangev(SourceSMU, 0.2)
 elif fabs(SourceV) < 2:
 rangev(SourceSMU, 2)
 elif fabs(SourceV) < 20:
 rangev(SourceSMU, 20)
 else:
 rangev(SourceSMU, 200)
 if fabs(BulkV) < 0.2:
 rangev(BulkSMU, 0.2)
 elif fabs(BulkV) < 2:
 rangev(BulkSMU, 2)
 elif fabs(BulkV) < 20:
 rangev(BulkSMU, 20)
 else:
 rangev(BulkSMU, 200)
 if fabs(DrainV) < 0.2:
 rangev(DrainSMU, 0.2)
 elif fabs(DrainV) < 2:
 rangev(DrainSMU, 2)
 elif fabs(DrainV) < 20:
 rangev(DrainSMU, 20)
 else:
 rangev(DrainSMU, 200)
 if fabs(GateVStart) > fabs(GateVStop):
 temp = fabs(GateVStart)
 else:
 temp = fabs(GateVStop)
 if temp < 0.2:
 rangev(GateSMU, 0.2)
 elif temp < 2:
 rangev(GateSMU, 2)
 elif temp < 20:
 rangev(GateSMU, 20)
 else:
 rangev(GateSMU, 200)
 if RangeDrainI == 1: # auto range
 setauto(DrainSMU)
 elif RangeDrainI == 2: # limited auto 10pA
 lorangei(DrainSMU, 1e-11)
 elif RangeDrainI == 3: #limited auto 100pA
 lorangei(DrainSMU, 1e-10)
 elif RangeDrainI == 4: #limited auto 1nA
 lorangei(DrainSMU, 1e-9)
 elif RangeDrainI == 5: #limited auto 10nA
 lorangei(DrainSMU, 1e-8)
 elif RangeDrainI == 6: #limited auto 100nA
 lorangei(DrainSMU, 1e-7)
 elif RangeDrainI == 7: #limited auto 1uA
 lorangei(DrainSMU, 1e-6)
 elif RangeDrainI == 8: # limited auto 10uA
 lorangei(DrainSMU, 1e-5)
 elif RangeDrainI == 9: # limited auto 100uA
 lorangei(DrainSMU, 1e-4)
 elif RangeDrainI == 10: # limited auto 1mA
 lorangei(DrainSMU, 1e-3)
 elif RangeDrainI == 11: # limited auto 10mA
 lorangei(DrainSMU, 1e-2)

 Automated Characterization Suite (ACS) Programmer's Manual Section 2: LPT Library Reference

ACS-907-01 Rev. F / November 2017 2-55

 elif RangeDrainI == 12: # limited auto 100mA
 lorangei(DrainSMU, 0.1)
 else: #limited auto 10mA
 lorangei(DrainSMU, 1e-2)
 # set integration time
 setmode(GateSMU, KI_INTGPLC, NPLC)
 #Activate the range
 if SourceSMU!=GNDU:
 forcev(SourceSMU, SourceV)
 if BulkSMU!=GNDU:
 forcev(BulkSMU,BulkV)
 forcev(GateSMU,GateVStart)
 forcev(DrainSMU,DrainV)
 idummy = measi(DrainSMU)
 enable(TIMER1)
 # sweep setup
 if numberofpoint>1:
 for index1 in range(numberofpoint):
 GateV_tmp = GateVStart+(GateVStop-GateVStart)*index1/(numberofpoint-1)
 print GateV_tmp
 GateV.append(GateV_tmp)
 forcev(GateSMU,GateV_tmp)
 delay(int(SweepDelay*1000))
 DrainI_tmp = intgi(DrainSMU)
 if DrainI_tmp > ComplianceDrainI:
 break
 DrainI.append(DrainI_tmp)
 Time_meas.append(imeast(TIMER1))
 else:
 forcev(GateSMU, GateVStart)
 GateV.append(GateVStart)
 delay(int(SweepDelay*1000))
 DrainI.append(intgi(DrainSMU))
 Time_meas.append(imeast(TIMER1))
 # check compliance
 Dstatus = getstatus(DrainSMU, KI_COMPLNC)
 if Dstatus == 2:
 return KI_RANGE_COMPLIANCE
 if Dstatus == 4:
 return KI_COMPLIANCE
 devint()
 #clrcon(MTRX1)
 # test finished
 for index2 in range(numberofpoint):
 ACSPostDataDouble("GateV",GateV[index2])
 ACSPostDataDouble("DrainI",DrainI[index2])
 ACSPostDataDouble("Time",Time_meas[index2])
return GateV,DrainI,Time_meas
###################CALL######################
DrainSMU=SMU1
DrainPin=1
GateSMU=SMU2
GatePin=2
SourceSMU=GNDU
SourcePin=3
BulkSMU=GNDU
BulkPin=4

Section 2: LPT Library Reference Automated Characterization Suite (ACS) Programmer's Manual

2-56 ACS-907-01 Rev. F / November 2017

GateVStart=0.0
GateVStop=3.0
numberofpoint=21
SweepDelay=0.001
DrainV=0.1
SourceV=0
BulkV=0
RangeDrainI=1
ComplianceDrainI=0.1
StoponCompliance=0
NPLC=1
vgsid1(DrainSMU, DrainPin, GateSMU, GatePin, SourceSMU, SourcePin, BulkSMU,

BulkPin, GateVStart,GateVStop, numberofpoint, SweepDelay, DrainV, SourceV,
BulkV, RangeDrainI, ComplianceDrainI,StoponCompliance,NPLC)

In this section:

PTM debug tool introduction .. 3-1
PythonWin description ... 3-2
PTM debugging .. 3-4
Debug tool limitations ... 3-19

PTM debug tool introduction
Automated Characterization Suite (ACS) software provides you with a debug tool that can be used for
test modules that use scripts, such as the python test modules (PTM). The name of the tool is
PythonWin Debugger and it is integrated in ACS software for your convenience.

PythonWin Debugger will help you to debug your PTM, step-by-step, and can monitor your script
variables during test execution. The PythonWin Debugger helps you refine and optimize your PTM
scripts and assists in tracking the testing process.

Python is Copyright (c) 2001-2017 Python Software Foundation. All Rights Reserved.

Pythonwin - Python IDE and GUI Framework for Windows. Copyright 1994-2017 Mark Hammond
(mhammond@skippinet.com.au). All Rights Reserved.

Section 3

Python Test Module (PTM) Debug Tool

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-2 ACS-907-01 Rev. F / November 2017

PythonWin description
PythonWin Debugger is a graphical user interface (GUI) and includes an easy to use interactive
editing environment (see next Figure).

Figure 23: Pythonwin GUI

PythonWin Debugger supports setting conditional breakpoints, single stepping at the source line
level, inspects stack frames, source code listings, and evaluates arbitrary Python code in the context
of any stack frame. It also supports postmortem debugging for you and can be called under program
control.

The following is an overview on how PythonWin functions (see next Figure):

The list of functions below (1 - 10) are represented in the next Figure by viewing the ten icons from
left to right.

Figure 24: Pythonwin debug toolbar

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-3

Debugging Toolbar icon descriptions:

1. Watch (monitor the modules that you insert in the Watch window)
2. Stack view (view the modules and global variables in the Stack view window)
3. Breakpoint list (inserts designated breakpoints and a dialog box opens to view the condition and

location of each)
4. Toggle Breakpoint (add or remove a breakpoint)
5. Clear All Breakpoints (removes the breakpoints)
6. Step (steps into the current module source code statement and executes a single-step line-by-

line)
7. Step over (steps over the current module code, execute, and continue)
8. Step out (steps out of the current module code)
9. Go (continue execution)
10. Close (cancels the debugging session)

The list of functions below (1 - 4) are represented in the next Figure by the red box that is around the
four icons from left to right.

Figure 25: Pythonwin Standard Toolbar

Standard Toolbar icon descriptions:

1. Import/Reload (shows the condition and location of a Python module)
2. Run (run a Python script by choosing the Script File, Arguments, and the Debugging

required)(see next Figure)

You must click the down-arrow to choose the type of debugging desired when running a script.

Figure 26: PythonWin Run Script

3. Check (checks the current file without executing it)
4. Interactive window (show or hide the interactive window)

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-4 ACS-907-01 Rev. F / November 2017

PTM debugging
Figure 27: VARIABLE - NOTE

 You cannot run the debug tool if ACS is in Demo mode.

 You cannot run the debug tool for Automation testing.

 You cannot run the debug tool on instruments that are connected through LXI.

 You cannot run the debug tool on python test modules if a LPT module is included.

Enable debug tool

If you do not see the debug icon in the toolbar, you need to make sure that debug has been enabled.
The Debug Run icon is circled in the figure below (see next Figure).

Figure 28: Debug icon in toolbar

The default state of the debug tool is disabled. To enable the debug option, you must select the View
option in the main toolbar, and in the drop-down list click the Enable Debug function (see next
Figure).

Figure 29: Enable Debug in View drop-down list

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-5

When you want to debug a PTM, or multiple PTMs, you can right-click the PTM module in the test
tree. You will see a drop-down menu. Choose the Debug This Python Module option (see next
Figure).

You must select each PTM, one at a time, if you want to debug multiple PTMs. Additionally, once
you have completed debugging, you must deselect each PTM, one at a time, in order to return to
normal operating mode in ACS.

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-6 ACS-907-01 Rev. F / November 2017

Once you select Debug This Python Test Module, the icon of the PTM will change and the text will
change to bold. The icon will look like a bug for the selected PTM in the test tree (see next Figure).

Figure 30: PTM selected for debugging

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-7

Start debugging

Here are some notes for you to keep in mind before you start debugging modules in ACS:

You can click different levels to highlight in the test tree or in the user access points (UAPs).

 Click the PTM to debug individual module.

 Click the device to debug all modules under the device, one by one.

 Click the subsite to debug all modules under the subsite, one by one.

 Click the pattern to debug all modules under the subsite, one by one.

 In the UAP, click the PTM to debug individual UAP.

 In the test tree with added UAPs, click the modules in the test tree to test and the related UAPs
will also be debugged; the UAPs include, test_begin, test_end, device_begin, device_end,
subsite_begin, subsite_end, pattern_begin, and pattern_end.

1. Click the Operation function in the main toolbar.
2. In the drop-down menu, select Debug Run to start debugging the selected PTM (see next

Figure):

Figure 31: Start Debug Run feature

You can also use the ACS toolbar to accomplish the debugging task by selecting the icon. The
Debug Run icon is circled in the figure below (see next Figure):

Figure 32: Debug icon in toolbar

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-8 ACS-907-01 Rev. F / November 2017

View the results of the debugging in the PythonWin - break window (see next Figure).

Once you select Debug Run, a new dialog box opens. This is where you get the results of debugging
and where you will see the Watch window, Stack view window, and the current module source code.
The Watch window and Stack view window are dockable, which means they can be moved for your
viewing convenience.

Figure 33: PythonWin - break window

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-9

When debugging, if there are data output, it will be printed on the interactive window.

When the debugging is complete and you have changed the script, click the Save or Save All function
on the debugging window toolbar to save it. The script will be saved in the default folder path:
C:\ACS\KATS\Debug. The script file name will be the same as the module name.

If you want to run debug on a saved file, you will need import the file from the folder
C:\ACS\KATS\Debug before running debug.

You can close the debugging tool by clicking the X and closing the window. If there was data output
from the debugging session, it will post to the ACS Data tab of the module (see next Figure).

Figure 34: PTM debugging Data tab

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-10 ACS-907-01 Rev. F / November 2017

PTM debug flow chart
Review the debug flow chart for a detailed list of step-by-step instructions (see next Figure):

Figure 35: Debug flow chart

Python debugging toolbar icons
Click the Watch window icon in order to create and monitor variables that you insert in the watch
window (see next Figure).

You can click the following icons to view or hide the windows: Watch, Stack view, and the Breakpoint
list.

Figure 36: Watch window icon

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-11

Create variables in the Watch window to closely monitor the source code and when stepping into,
stepping over, or stepping out of the module source code.

In the next Figure, note that the Expression (the variables) are listed in the order they are created.
Plus, the variables that are in the active window will display with the current information (see the next
Figures).

Figure 37: Watch window variables

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-12 ACS-907-01 Rev. F / November 2017

In the next Figure, note that the Expression (the variable) named "getattr" in displaying information
and that the active window is "object." Also, note that the other variables have a Value stating
NameError. This is because the variables are not in the active window. are listed in the order they
are created. Plus, the variables that are in the active window will display with the current information
(see the next Figure).

Figure 38: Watch window variables active window

Variables in the Watch window
To create variables:
1. Click the Expression <New Item>.
2. Right-click <New Item>.
3. Choose Edit Item in the drop-down box.
4. Type the name of a variable that you want to monitor (see next Figure).

Figure 39: Create a variable in the Watch window

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-13

View the Stack view window
Click the Stack view icon (see next Figure).

Figure 40: Stack view icon

The Stack view window appears (see next Figure). In the Stack view you will see the variables that
are active in the Watch window. You can also local and global variables by expanding the top level
variable (see next Figure).

When the Stack view window opens, it may be docked to the PythonWin window, or it may be free
floating (undcocked)(see next Figure). If it is undocked, you will see the heading Stack on the
window. If you move it to the Watch window it will dock side-by-side.

Figure 41: Stack view window

View the Breakpoint list and Toggle Breakpoints
Click the Breakpoint list icon (see next Figure).

Figure 42: Breakpoint list icon

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-14 ACS-907-01 Rev. F / November 2017

The Breakpoint list window appears (see next Figure). In the Breakpoint list window you will see the
location of the breakpoints that you have created. You will also see the line number. For instance, in
the next Figure, the location of led_results.py:25 is line 25.

You will see a column named Condition in the Breakpoints window. For this function, you can click
the word "None," right-click and choose Edit item. From there, you choose the name of the condition
for the breakpoint that you configured in the module source code. Additionally, you can delete the
breakpoint by using this method.

Figure 43: Breakpoint list window

When you step into a module's code, you can toggle breakpoints. The breakpoints are added by
selecting on the Toggle Breakpoint icon (see next Figure).

Figure 44: Toggle Breakpoint icon

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-15

The breakpoints are displayed to the left of the code as a red dot (see next Figure).

You can create breakpoints by moving the cursor in the module source code to the line where a
breakpoint is needed. Once the cursor is at the appropriate line, click the Toggle Breakpoint icon to
add a breakpoint.

Figure 45: Breakpoint icons in module source code

Clear All Breakpoints
When you want to delete all of the breakpoints, you must click the Clear All Breakpoints icon (see
next Figure).

When you clear all of the breakpoints, the Breakpoints list window should not contain any
breakpoints.

Figure 46: Clear All Breakpoints icon

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-16 ACS-907-01 Rev. F / November 2017

Step, Step over, Step out, and Go functions
When you step into the current module source code and execute debugging, line-by-line, you must
click the Step icon (see next Figure).

Figure 47: The Step icon

When you step over, or skip, the current module source code and execute debugging at the next line,
you must click the Step over icon (see next Figure).

Figure 48: The Step over icon

When you step out of the current module source code and execute debugging, you must click the
Step out icon (see next Figure).

Figure 49: The Step out icon

When you need to begin or continue executing debugging, you must click the Go icon (see next
Figure).

Figure 50: The Go icon

Close the debugger
When you want to close, or stop, your session of debugging the active module code window, you
must click the Close icon (see next Figure).

Figure 51: The Close icon

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-17

Python toolbar icons
The following Python toolbar icons are used to import or reload a python script, run a script, check a
script, or use the interactive window. See the next topics for graphics and additional information.

Figure 52: Four specific PythonWin Standard Toolbar functions

Import/Reload a python script
When you want to import or reload python scripts, you must click the Import/Reload icon (see next
Figure).

Figure 53: The Import_Reload icon

When you click the Import/Reload icon, you will get a dialog box where you have to find the python
script that you need (see next Figure). Once you open the script, you can begin your debugging
session. Also, you can check the Interactive Window to find the condition and location of the module
that plan to debug.

Figure 54: The Import_Reload dialog box

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-18 ACS-907-01 Rev. F / November 2017

Run a script
When you want to run a python script, after importing or reloading, you must click the Run icon (see
next Figure).

Figure 55: The Run icon

When you click the Run icon, you will get a dialog box. First, you must locate (browse) the script file.
Second, you must enter any arguments. These are parameters that you establish to the function that
you want to use while running the script. Third, you must click the down-arrow to choose the type of
debugging desired when running a script. There are four choices: No debugging, Step-through in the
debugger, Run in the debugger, Post-Mortem of unhandled exceptions (see next Figure).

Figure 56: PythonWin Run Script

Check a script
When you want to check a python script, without executing it, to make sure that it is a valid script for
debugging, you must click the Check icon (see next Figure).

Figure 57: The Check icon

 Automated Characterization Suite (ACS) Programmer's Manual Section 3: Python Test Module (PTM) Debug Tool

ACS-907-01 Rev. F / November 2017 3-19

Interactive Window
Interactive Window

When you want to check the status of your debugging session, the Interactive Window contains all of
the command lines for the currently active python module window. You can view or hide this window
by selecting the icon (see next Figure).

Figure 58: Interactive Window

Debug tool limitations
ACS integrates third-party tools to achieve the debug function and therefore will not prevent you from
opening other modules or using other features. If you directly open a python test module from
PythonWin and debug it, you may get inaccurate, inconsistent, or strange results that you would not
normally receive. Therefore, it is suggested that you use the debug tool as intended.

Debug hardware limitations
You can control instruments, such as the KI26xx, KI4200, KI2400, etc. with a PTM. Additionally, these
instruments can be connected differently and the type of connection requires different debugging
environments:

• GPIB
• KXCI
• LXI

GPIB control
Most instruments can be connected by GPIB, such as the series KI26xx, series KI24xx, series
KI3700, series Ki24xx, etc. The PythonWin debug tool for ACS software supports debug testing
instruments that are connected through GPIB.

Section 3: Python Test Module (PTM) Debug Tool Automated Characterization Suite (ACS) Programmer's Manual

3-20 ACS-907-01 Rev. F / November 2017

KXCI control
ACS controls the model KI4200 using the KXCI interface. ACS is able to send commands to KXCI
and KXCI will parse the commands and control hardware according to the command. ACS can be
installed on a PC or on the Model 4200-SCS.

• Installing ACS on the Model 4200-SCS
The debug tool supports the debug testing on the PTM with the Model 4200-SCS.

• Installing ACS on a PC
The debug tool only supports the PTM that directly sends KXCI commands to the Model KI4200.
If the PTM includes a LPT module, the PTM cannot control hardware, therefore, the debug tool is
not supported for debugging the module.

LXI control
Since the LXI mode only supports ITM and STM, the debug tool is not supported for debugging PTMs
if the hardware is connect using LXI.

Step in mode
If you import modules to your PTM that contain the following file suffix (.pyc) or the modules have
been imported from a zipped library, such as kimisc, ACS_PostData, ACSLPT, etc, you wiil not be
able to use the Step in command to enter into the module and single step through the source code.

PTM auto update
You can modify a debugged PTM during the process of debugging, however, any changes you make
to the debugged PTM are not automatically updated to the original PTM in your test. Therefore, it is
necessary to manually make the same changes to your PTM in the ACS file to ensure that the
original matches the debugged PTM.

In this section:

Series 2600B library introduction ... 4-2
Device library ... 4-4
WLR library overview ... 4-22
Python user library introduction .. 4-53

Section 4

Series 2600B Library and Python Library

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-2 ACS-907-01 Rev. F / November 2017

Series 2600B library introduction
The ACS software has a test library of commands (26Library), that is a library for the Series 2600B
SourceMeter® instruments. The library can be found in the following directory: \\ACS\library\26Library.
It includes device test libraries and a wafer-level reliability (WLR) library. The tables in this section
summarize all the test modules in the device test and WLR libraries.

Bipolar junction transistor (BJT) Test Library
Three_term_BJT_BVCBO Three_term_BJT_BVCEI Three_term_BJT_BVCEO
Three_term_BJT_BVCES Three_term_BJT_BVCEV Three_term_BJT_BVEBO
Three_term_BJT_BVECO Three_term_BJT_HFE_sw Three_term_BJT_HFE_tral
Three_term_BJT_ICBO Three_term_BJT_IBEO Three_term_BJT_ibicvbe
Three_term_BJT_ibvbe Three_term_BJT_ICBO Three_term_BJT_ICEO
Three_term_BJT_ICES Three_term_BJT_ICEV Three_term_BJT_icvcb
Three_term_BJT_icvce_biasIB Three_term_BJT_icvce_biasVB Three_term_BJT_icvce_stepib
Three_term_BJT_icvce_stepvb Three_term_BJT_IEBO Three_term_BJT_IECO
Three_term_BJT_ieveb Three_term_BJT_VBCO Three_term_BJT_VCE

MOSFET Test Library
Four_term_MOSFET_BVDSS Four_term_MOSFET_BVDSV Four_term_MOSFET_BVGDO
Four_term_MOSFET_BVGDS Four_term_MOSFET_BVGSO Four_term_MOSFET_IDL
Four_term_MOSFET_IDS_ISD Four_term_MOSFET_idvd Four_term_MOSFET_idvd_vg
Four_term_MOSFET_idvg Four_term_MOSFET_idvg_vd Four_term_MOSFET_idvg_vsub
Four_term_MOSFET_IGL Four_term_MOSFET_igvg Four_term_MOSFET_ISL
Four_term_MOSFET_isubvg Four_term_MOSFET_Vth_ci Four_term_MOSFET_Vth_ex
Four_term_MOSFET_Vth_llsq Four_term_MOSFET_Vth_sens

e

Diode Test Library
Diode_DynamicZ Diode_DynamicZ_I1I2 Diode_Ifd_Vfd
Diode_Ifd_Vfd_vsweep Diode_Ileakage_Vrd Diode_Ird_Vrd_vsweep
Diode_Vrd_Ird Diode_Vbr_Ird Diode_Vfd_Ifd

Resistor Test Library
Resistor_single Resistor_sweep
VDP_Resistivit
y

The next table summarizes all of the test modules that are in the WLR library. More detailed
descriptions of each module follow the tables.

Wafer-level reliability (WLR) Test Library
HCI NBTI NBTI_on_the_fly
TDDB_CCS TDDB_per_pin qbd_rmpj
qbd_rmpv Em_iso_test NBTI_meas

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-3

Create a library without Script Editor
You can use Test Script Language on the Keithley Instruments Series 2600B System SourceMeter or
the Linear Parametric Test Library (LPT Library) to write a new library.

You will need to use the syntax of the script that follows the rules for LUA programming language.

The script must use the postdata, postbuffer, or the posttable function to retrieve data from the Series
2600B. Refer to the LPT Library Reference in the Series 2600B Reference manual for more
information on these functions. For examples, refer to the directory: \\ACS \Library\26Library folder.

If you would like to design a test library with a graphical user interface (GUI), follow the instructions
below:

1. The first line must be the name of the .xrc (GUI) file, and the .xrc (GUI) file must be put in the
\\ACS\library\26Library\xrc folder. ACS will then load the GUI file automatically when importing
the script file. For example:
----<<xrc=HCI.xrc>>----

2. The types of input variables must be:
• instid (SMU input)
• string
• double
• integer
• table

3. You can set a default value for every input variable. You can also set the input range for double
and integer-type input variables. For example:
• instid smu_S=SMU3 --- SMU1, SMU2, SMU3,..., SMU64, KI_GND
• double vg_stress=-2.0 in [-40,40] -- gate stress voltage; -40 = vg_stress =40
• double V_rd=0 in ['',0] -- reverse voltage, Vrd <= 0
• double meas_delay=0 in [0,] -- measure delay after stress is off, meas_delay >= 0
• integer navg=1 in [1,20] -- points for average, average = 1, 2, 3,…19, 20
• table t_array={1,2,5,10,20,50,100} -- stress time array

4. The input variables must be defined in the first section of the test script, after the .xrc line, listed
between "--INPUT--" and "--END of INPUT--". For example:
• -- INPUT --
• instid CSMU=SMU3 -- SMU1, SMU2, SMU3,..., SMU64
• double Vb_stop=1.2 -- stop voltage(Units:V)
• double Vb_points=100 -- sweep points
• integer resetflag=1 in [0,1] -- '1' will reset instruments after test, '0' will not.
• -- END OF INPUT --

5. The Call function must start with a "--CALL--" line, then assign a value for every input variable
and call test function.

Refer to the following directory for examples: \\ACS \Library\26Library\WLR folder.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-4 ACS-907-01 Rev. F / November 2017

Create a library using Script Editor
You can also use the Script Editor in ACS to write a new library. For more information about how to
use the Script Editor, refer to the Script Editor Tool.

When you use the Script Editor, the library will be automatically saved to
\\ACS\library\26Library\TSPLib. The .xrc GUI will be automatically saved to
\\ACS\library\26Library\TSPLib\xrc.

Device library
The bipolar junction transistor (BJT) library components are located in the following directories:

• \\ACS \Library\26Library\Parametric\BJT
• \\ ACS \Library\42Library\Parametric\S4200ParLib\src

BJT library overview
This BJT test library is used to test parameters of a BJT, such as breakdown voltage, amplify times,
reverse current, gummel plot, etc. The 26library is used with a Series 2600B instrument to create test
script files, based on the Series 2600B LPT library. The 42library is used with a Model 4200 to create
KULT files, based on the Model 4200 LPT library.

Three_term_BJT_BVCBO
Module Name: Three_term_BJT_BVCBO

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-base breakdown voltage of the BJT, with the emitter open.

Pin Connections: Open the emitter and apply the desired current to the collector. The base connects
to ground.

Intended results: Get the collector-base breakdown voltage.

Three_term_BJT_BVCEI
Module Name: Three_term_BJT_BVCEI

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-emitter breakdown voltage of the BJT with a biased current forced at the
base.

Pin Connections: Apply the desired current to the collector and set the base bias current. The emitter
connects to ground.

Intended results: Get the collector-emitter breakdown voltage.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-5

Three_term_BJT_BVCEO
Module Name: Three_term_BJT_BVCEO

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-emitter breakdown voltage with the base open.

Pin Connections: Open the base and apply the desired current to the collector. The emitter connects
to ground.

Intended results: Get the collector-emitter breakdown voltage.

Three_term_BJT_BVCES
Module Name: Three_term_BJT_BVCES

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-emitter breakdown voltage of the BJT with a short at the base-emitter.

Pin Connections: Apply the desired current to the collector. The base and emitter connect to ground.

Intended results: Get the collector-emitter breakdown voltage.

Three_term_BJT_BVCEV
Module Name: Three_term_BJT_BVCEV

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-emitter breakdown voltage with a biased voltage forced at the base.

Pin Connections: Apply the desired current to the collector and bias voltage at the base. The emitter
is connected to ground.

Intended results: Get the collector-emitter breakdown voltage.

Three_term_BJT_BVEBO
Module Name: Three_term_BJT_BVEBO

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the emitter-base breakdown voltage of the BJT with the collector open.

Pin Connections: Open the collector and set the emitter to the desired current. Connect the base to
ground.

Intended results: Get the emitter-base breakdown voltage.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-6 ACS-907-01 Rev. F / November 2017

Three_term_BJT_BVECO
Module Name: Three_term_BJT_BVECO

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the emitter-collector breakdown voltage of the BJT with the base open.

Pin Connections: Open the base and apply the desired current to the emitter. Connect the collector to
ground.

Intended results: Get the emitter-collector breakdown voltage.

Three_term_BJT_HFE_sw
Module Name: Three_term_BJT_HFE_sw

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the DC current gain of the BJT with a collector voltage sweep.

Pin Connections: Sharing the emitter connection, apply a sweep voltage on the collector and apply a
bias voltage to the base. The emitter is connected to ground (if it's not connected to ground be sure to
apply a bias voltage on the emitter).

Use this technique:
1. Force collectorV sweep.

2. Measure Ib and Ic.
3. Check for measurement problems.
4. Calculate HFE= Ic/Ib.

Intended results: Get the collector current, base current, and DC current gain based on the collector
sweep voltage.

Three_term_BJT_HFE_trial
Module name: Three_term_HFE_trial

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the DC current gain of the BJT with a traditional test method.

Pin Connections: Sharing the emitter connection, apply a desired voltage on the collector and apply a
current to the base. The emitter connects to ground (if the emitter is not connected to ground, there is
a specified voltage applied; see next figure).

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-7

Figure 59: Three_term_BJT_HFE_trial pin connection

Use this technique:

1. Set base current level, measure collector current, and check if it equals the desired target.
2. If collector current is not at desired target, repeat step 1.
3. Find the target collector current and record base current.
4. Calculate HFE=IC_tar/IB.

Intended Results: Get the DC current gain.

Three_term_BJT_IBCO
Module Name: Three_term_BJT_IBCO

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the base-collector current with the emitter open.

Pin Connections: Open the emitter, apply a voltage on the base, and apply voltage to the collector (if
not connected to ground).

Intended results: Get the base-collector current.

Three_term_BJT_IBEO
Module Name: Three_term_BJT_IBEO

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the base-emitter current with the collector open.

Pin Connections: Sharing the base connection, apply a sweep voltage on the collector, and apply a
bias voltage on the emitter. The base is usually connected to ground, but can be set to a desired bias
voltage.

Intended results: Get the base-emitter current.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-8 ACS-907-01 Rev. F / November 2017

Three_term_BJT_ibicvbe
Module Name: Three_term_BJT_ibicvbe

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the base current and collector current of the BJT with a specified base voltage sweep.

Pin Connections: Sharing the emitter connection, apply a sweep voltage on the base, and apply a
bias voltage on the collector. The emitter is usually connected to ground, but can be set to the desired
bias voltage.

Use this technique:

1. Measure base current and collector current of BJT.
2. Get Ib-Vbe and Ic-Vbe curve.
3. Get the gummel plot if the axis properties of data plot have changed (logarithm instead of right-angle

coordinate).

Intended results: Get the base current and collector current.

Three_term_BJT_ibvbe
Module Name: Three_term_BJT_ibvbe

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the base current of the BJT with a specified base voltage sweep.

Pin Connections: Sharing the emitter connection, apply a sweep voltage on the base, and apply a
bias voltage on the collector. The emitter is usually connected to ground, but can be set to a desired
bias voltage.

Intended results: Get the measured base current according to the base voltage sweep results.

Three_term_BJT_ICBO
Module Name: Three_term_BJT_ICBO

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT.

Function: Test the collector-base cut off current with the emitter open.

Pin Connections: Open the emitter and apply a desired voltage to the collector. The base is
connected to ground.

Intended results: Get the collector-base to cut off current.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-9

Three_term_BJT_ICEO
Module Name: Three_term_BJT_ICEO

Instrument: Keithley Instruments Model 4200.

DUT: Three-terminal BJT

Function: Test the collector-emitter cut off current with the base open.

Pin Connections: Open the base, apply a desired voltage to the collector, and connect the emitter to
ground.

Intended results: Get the collector-emitter to cut off current.

Three_term_BJT_ICES
Module Name: Three_term_BJT_ICES

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-emitter cut-off current with the base-emitter shorted.

Pin Connections: Apply a desired voltage to the collector and connect the emitter and base to ground.

Intended results: Get the collector-emitter to cut off current.

Three_term_BJT_ICEV
Module Name: Three _term_BJT_ICEV

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-emitter cut off current with a bias voltage on the base.

Pin Connections: Apply a desired voltage to the collector, apply a bias voltage on the base, and
connect the emitter to ground.

Intended results: Get the collector-emitter to cut off current.

Three_term_BJT_icvcb
Module Name: Three_term_BJT_icvcb

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-current of the BJT with a specified collector voltage sweep.

Pin Connections: Sharing the emitter connection, apply a sweep voltage on the collector, apply a bias
voltage on the base. The emitter is usually connected to ground, but can be set to the desired bias
voltage.

Intended results: Get the measured collector current according to the collector voltage sweep.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-10 ACS-907-01 Rev. F / November 2017

Three_term_BJT_icvce_biasIB
Module Name: Three_term_BJT_icvce_biasIB

Instrument: Keithley Instruments Model 4200

DUT: Three-terminal BJT

Function: Test a series of collector-current and collector-emitter voltage (Ic-Vce) curves of the BJT
while stepping the base current.

Pin Connections: Sharing the emitter connection (connect the emitter to ground), step the base
current, and sweep the collector voltage.

Intended results: Get the measured collector current according to the base step current and collector
sweep voltage.

Three_term_BJT_icvce_biasVB
Module Name: Three_term_BJT_icvce_biasVB

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test a series of Ic-Vce curves of the BJT while stepping the base voltage.

Pin Connections: Sharing the emitter connection (connect the emitter to ground), step the base
voltage, and sweep the collector voltage.

Intended results: Get the measured collector current according to the base step voltage and collector
sweep voltage.

Three_term_BJT_icvce_stepib
Module Name: Three_term_BJT_icvce_stepib

Instrument: Keithley Instruments Model 4200

DUT: Three-terminal BJT

Function: Test a series of Ic-Vce curves of the BJT while stepping the base current.

Pin Connections: Sharing the emitter connection (connect the emitter to ground), step the base
current, and sweep the collector voltage.

Intended results: Get the measured collector current according to the base step current and collector
sweep voltage.

Three_term_BJT_icvce_stepvb
Module Name: Three_term_BJT_icvce_stepvb

Instrument: Keithley Instruments Model 4200

DUT: Three-terminal BJT

Function: Test a series of Ic-Vce curves of the BJT while stepping the base voltage.

Pin Connections: Sharing the emitter connection (connect the emitter to ground), step the base
voltage, and sweep the collector voltage.

Intended results: Get the measured collector current according to the base step and collector sweep
voltage.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-11

Three_term_BJT_IEBO
Module Name: Three_term_BJT_IEBO

Instrument: Keithley Instruments Model 4200 .

DUT: Three-terminal BJT

Function: Test the emitter-base cut off current with the collector open.

Pin Connections: Open the collector and apply a desired voltage to the emitter. The base connects to
ground.

Intended results: Get the emitter-base cut-off current.

Three_term_BJT_IECO
Module Name: Three_term_BJT_IECO

Instrument: Keithley Instruments Model 4200

DUT: Three-terminal BJT

Function: Test the emitter-collector current with the base open.

Pin Connections: Open the base and apply a desired voltage to the emitter. The collector is usually
connected to ground, if voltage is not applied.

Intended results: Get the emitter-collector current.

Three_term_BJT_ieveb
Module Name: Three_term_BJT_ieveb

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the emitter-current of the BJT with a specified emitter voltage sweep.

Pin Connections: Sharing the base connection, apply a sweep voltage on the emitter, and apply a
bias voltage on the collector. Connect the base to ground, if voltage is not applied.

Intended results: Get the measured emitter-current based on the emitter voltage sweep.

Three_term_BJT_VBCO
Module Name: Three_term_BJT_VBCO

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the base-collector voltage of the BJT with the emitter open.

Pin Connections: Open the emitter and apply a current to the base. The emitter usually connects to
ground, but can be set to the desired bias voltage.

Intended results: Get the base-collector voltage.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-12 ACS-907-01 Rev. F / November 2017

Three_term_BJT_VCE
Module Name: Three_term_BJT_VCE

Instrument: Keithley Instruments Series 2600B

DUT: Three-terminal BJT

Function: Test the collector-emitter voltage BJT.

Pin Connections: Apply voltage on the base, set the collector-current to a desired level, and connect
the emitter to ground.

Intended results: Get the collector-emitter voltage.

MOSFET library overview
The MOSFET library components are located in the following directories:

• \\ACS \Library\26Library\Parametric\MOSFET
• \\ ACS \Library\42Library\Parametric\S4200ParLib\src

The MOSFET parameter library is used to test parameters of a MOSFET, such as gmlin, gmsat,
idvd, idvg, igvg, Vtci, and Vtex. The 26library is used with a Series 2600B to create test script
files, based on the Series 2600B LPT library. The 42library is used with a Model 4200 to create KULT
files, based on the Model 4200 LPT library.

Four_term_MOSFET_BVDSS
Module Name: Four_term_MOSFET_BVDSS

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the drain-source breakdown voltage of a MOSFET with the gate-source
shorted.

Pin Connections: Apply a breakdown current on the drain and connect the bulk to ground. If the bulk
is not connected to ground, force 0 voltage. The gate and source are connected to ground, if they are
not connected to ground, force 0 voltage.

Intended results: Get the breakdown voltage between the drain and source with gate-source shorted.

Four_term_MOSFET_BVDSV
Module Name: Four_term_MOSFET_BVDSV

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the drain-source breakdown voltage of a MOSFET with the gate biased.

Pin Connections: The source and bulk are connected to ground, and the gate is biased. Apply a
breakdown current on the drain.

Intended results: Get the breakdown voltage between the drain and source with the gate biased.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-13

Four_term_MOSFET_BVGSO
Module Name: Four_term_MOSFET_BVGSO

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the gate-source breakdown voltage of a MOSFET with the drain opened.

Pin Connections: Open the drain and connect the bulk and source to ground. Apply a breakdown
current on the gate.

Intended results: Get the breakdown voltage between the gate and source with the drain opened.

Four_term_MOSFET_BVGDS
Module Name: Four_term_MOSFET_BVGDS

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the gate-drain breakdown voltage of a MOSFET with the source-drain shorted.

Pin Connections: Connect the source and drain to ground. Apply a breakdown current on the gate.

Intended results: Get the breakdown voltage between the gate and drain with source-drain shorted.

Four_term_MOSFET_BVGDO
Module Name: Four_term_MOSFET_BVGDO

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the gate-drain breakdown voltage of a MOSFET with the source opened.

Pin Connections: Open the source and connect the bulk and drain to ground. Apply a breakdown
current on the gate.

Intended results: Get the breakdown voltage between the gate and drain when the source is open.

Four_term_MOSFET_IDL
Module Name: Four_term_MOSFET_IDL

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to measure the drain leakage-current with the gate-source shorted.

Pin Connections: Short the gate and source. Apply a voltage on the drain, with the bulk, gate, and
source connected to ground.

Intended results: Get the drain leakage-current with the gate-source shorted.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-14 ACS-907-01 Rev. F / November 2017

Four_term_MOSFET_IDS_ISD
Module Name: Four_term_MOSFET_IDS_ISD

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to measure the drain-source and the source drain-current with the gate biased.

Pin Connections: Apply voltage separately on the gate, source, and drain. The bulk is usually
connected to ground, but can be set with a desired bias voltage.

Intended results: Get the measured drain-source and source drain-current with the gate biased.

Four_term_MOSFET_idvd
Module Name: Four_term_MOSFET_idvd

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the drain-current at a specified drain-voltage sweep.

Pin Connections: Bias the gate and sweep the drain. Connect the bulk and source to ground, if
voltage is not applied.

Intended results: Get the measured drain-current at a specified drain-voltage sweep.

Four_term_MOSFET_idvd_vg
Module Name: Four_term_MOSFET_idvd_vg

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test a series of Id_Vd curves for a four-terminal MOSFET, that performs on the
Series 2600B.

Pin Connections: Sweep the drain and step the gate. Connect the bulk and source to ground, if
voltage is not applied.

Intended results: Get the measured drain-current at a specified drain-voltage sweep.

Four_term_MOSFET_idvg
Module Name: Four_term_MOSFET_idvg

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the drain-current at a specified gate-voltage sweep.

Pin Connections: Bias the drain and sweep the gate. Connect the bulk and source to ground, if
voltage is not applied.

Intended results: Get the measured drain-current at the gate-voltage sweep.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-15

Four_term_MOSFET_idvg_vd
Module Name: Four_term_MOSFET_idvg_vd

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the drain-current at a specified gate-voltage sweep while stepping the drain.

Pin Connections: Step the drain and sweep the gate. Connect the bulk and source to ground, if
voltage is not applied.

Intended results: Get the measured drain-current at the gate-voltage sweep.

Four_term_MOSFET_idvg_vsub
Module Name: Four_term_MOSFET_idvg_vsub

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the drain-current at a specified gate-voltage sweep while stepping the bulk.

Pin Connections: Step the bulk, sweep the gate, and bias the drain. Connect the source to ground, if
voltage is not applied.

Intended results: Get the measured drain-current at the gate-voltage sweep.

Four_term_MOSFET_IGL
Module Name: Four_term_MOSFET_IGL

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to measure the gate leakage-current while the source-drain shorted.

Pin Connections: Apply a voltage on the gate. Connect the source, drain, and bulk to ground.

Intended results: Get the gate leakage-current when the source and drain are shorted.

Four_term_MOSFET_igvg
Module Name: Four_term_MOSFET_igvg

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the gate-current at a specified gate-voltage sweep when the drain is biased.

Pin Connections: Bias the drain and sweep the gate. Connect the bulk and source to ground,
otherwise, apply the desired voltage.

Intended results: Get the measured gate-current at the gate-voltage sweep.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-16 ACS-907-01 Rev. F / November 2017

Four_term_MOSFET_ISL
Module Name: Four_term_MOSFET_ISL

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to measure the source leakage-current when gate-drain is shorted.

Pin Connections: Apply a voltage on the source. Connect the bulk, gate, and drain to ground.

Intended results: Get the source leakage-current when gate-drain is shorted.

Four_term_MOSFET_isubvg
Module Name: Four_term_MOSFET_isubvg

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to test the bulk-current at a specified gate-voltage sweep.

Pin Connections: Bias the drain and bulk, and sweep the gate. Connect the source to ground, if
voltage is not applied.

Intended results: Get the measured bulk-current at the gate-voltage sweep.

Four_term_MOSFET_Vth_ci
Module Name: Four_term_MOSFET_Vth_ci

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to get the constant current threshold voltage of a MOSFET.

Pin Connections: Bias the drain and sweep the gate. Input the source and bulk voltage when needed.
The source and bulk are usually connected to ground for NMOS, and connected to the normal power
supply voltage (VDD) for PMOS.

Technique: The constant current threshold voltage is defined below:

Vth_ci=VGS (@ID=1uA.W/L) -- NMOS

Vth_ci=VGS (@ID=-0.025uA.W/L) -- PMOS

Where W and L are the gate-width and gate-length as printed on the wafer. Set a target drain-current
Id_tar (Id_tar=1uA.W/L, or -0.025uA.W/L), which means it is near the threshold, then search the gate-
voltage to make the drain-current equal to Id_tar.

The Four_term_MOSFET_Vth_ci measurement technique must determine Vth_ci to within a 1 mV
resolution. If the VGS step size is larger than 1 mV, then a linear interpolation method may be used
to achieve the 1 mV resolution.

Typical dc bias voltages for Vth_ci measurements are VDS = VDS_lin, VBS = VBB for linear region
measurement, or VDS = VDS_sat, (VBS = VBB for saturation region measurement). Typically, for
PMOS, VDS_lin = -0.1 V (@VDD=5V); for NMOS, VDS_lin=0.1V(@VDD=5V).

Intended results: Get the constant-current threshold voltage.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-17

Four_term_MOSFET_Vth_ex
Module Name: Four_term_MOSFET_Vth_ex

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to get threshold voltage from the maximum slope measurement.

Pin Connections: Bias the drain and sweep the gate. Input source and bulk voltage when needed.
The source and bulk are usually connected to ground for NMOS, and connected to the normal power
supply voltage (VDD) for PMOS.

Technique: The threshold voltage is extrapolated from the measurement of the maximum slope
(Gmmax) of the ID-VGS curve, as described below:

Vth_ex=VGS (@Gmmax)-ID(@Gmmax)/Gmmax

Where VGS (@Gmmax) is the gate-voltage at the point of the maximum slope of the ID-VGS curve
and ID(@Gmmax) is the drain-current at the point of the maximum slope of the ID-VGS curve. Also,
Gmmax is the maximum slope of the ID-VGS curve.

DC bias voltages for Vth_ex measurements are VDS = VDS_lin, VBS = VBB for linear measurement.

VDS=VDS_sat, VBS=VBB for saturation. Typically, for PMOS, VDS_lin = -0.1 V(@VDD=5V); for
NMOS, VDS_lin=0.1V(@VDD=5V).

Intended results:

Get the measured drain-current at the gate-voltage sweep.

Extract the transconductance(Gm) and get the maximum transconductance (Gmmax).

Get the extracted threshold voltage (Vth_ex).

Get the drain-current versus the gate-voltage curve.

Get the Gm versus the drain-current or the Gm versus the gate-voltage curve.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-18 ACS-907-01 Rev. F / November 2017

Four_term_MOSFET_Vth_llsq
Module Name: Four_term_MOSFET_Vth_llsq

Instrument: Keithley Instruments Series 2600B

DUT: Four-terminal MOSFET

Function: Used to extract the threshold voltage from the measurement slope. In this test, the least-
square approximation is used.

Pin Connections: Bias the drain and sweep the gate. Input source and bulk voltage when needed.
The source and bulk are usually connected to ground for NMOS, and connected to the normal power
supply voltage (VDD) for PMOS.

Technique: The threshold voltage is extrapolated from the measurement of the maximum slope
(Gmmax) of the ID-VGS curve, as described below:

Vth_ex=VGS (@Gmmax)-ID(@Gmmax)/Gmmax.

Where VGS(@Gmmax) is the gate-voltage at the point of the maximum slope of the ID-VGS curve
and ID(@Gmmax) is the drain-current at the point of the maximum slope of the ID-VGS curve. Also,
Gmmax is the maximum slope of the ID-VGS curve.

DC bias voltages for Vth_ex measurements are VDS = VDS_lin, VBS = VBB for linear measurement.

VDS=VDS_sat,VBS = VBB for saturation.

Typically, for PMOS, VDS_lin = -0.1 V(@VDD = 5V); for NMOS,VDS_lin = 0.1V(@VDD = 5V).

Intended results:

Get the measured drain-current at the gate-voltage sweep.

Extract the transconductance (Gm) and get the maximum transconductance (Gmmax).

Get the extracted threshold voltage (Vth_ex).

Get the drain-current versus gate-voltage curve.

Get the Gm versus the drain-current or the Gm versus the gate-voltage curve.

Four_term_MOSFET_Vth_sense
Module Name: Four_term_MOSFET_Vth_sense

Instrument: Keithley Instruments Series 2600B in sense mode

DUT: Four- terminal MOSFET

Function: Used to get the self-biasing threshold voltage (Vth_sel) for a four-terminal MOSFET.

Pin connections: Connect the bulk, source, HI terminal of SMU_B, and sense_HI terminal of SMU_A
together. Connect the gate, LO terminal of SMU_B and HI terminal of SMU_A together. Connect the
drain, sense_LO, and LO terminal of SMU_A are together.

Use two SMUs: For example, SMU_A and SMU_B. SMU_A is in sense mode.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-19

Figure 60: Four_term_MOSFET_Vth_sense pin connections

Technique:

• Set SMU_B to the desired drain-current level (IDS).
• Set SMU_A to the desired VDS level.
• Measure the VG using SMU_B.
• Ensure the threshold voltage equals the gate-voltage.

When in sense mode, SMU_A will automatically vary the voltage on the gate until VDS is equal to
the desired level, and at that time measure the gate-voltage. The threshold voltage should equal the
measured gate-voltage.

Intended results: Get the self-biasing threshold voltage.

Diode library overview
The Diode library components are located in the following directories:

• \\ACS \Library\26Library\Parametric\Diode
• \\ ACS \Library\42Library\Parametric\S4200ParLib\src

The diode test library is used to test parameters of a diode, such as the forward voltage and current,
reverse voltage and current, I-V curve, and dynamic impedance. The 26library is used with a Series
2600B to create test script files based on the Series 2600B LPT library. The 42library is used with a
Model 4200 to create KULT files based on the Model 4200 LPT library.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-20 ACS-907-01 Rev. F / November 2017

Diode_DynamicZ
Module Name: Diode_DynamicZ

Instrument: Keithley Instruments Series 2600B

DUT: Diode

Function: Calculates the dynamic impedance based on two forward voltage measurements or two
reverse voltage measurements. For example, DynamicZ = (v2 - v1) / (I2 - I1).

Pin Connections: Uses one SMU to force the forward current, while the other terminal is connected to
ground.

Intended results: Get dynamic impedance.

Diode_Ifd_Vfd
Module Name: Diode_Ifd_Vfd

Instrument: Keithley Instruments Series 2600B

DUT: Diode

Function: Test the forward current of a diode at a specified forward voltage.

Pin Connections: Force a forward voltage on the P terminal. Connect the N terminal to ground.

Intended results: Get the forward current.

Diode_Ifd_Vfd_vsweep
Module Name: Diode_Ifd_Vfd_vsweep

Instrument: Keithley Instruments Series 2600B

DUT: Diode

Function: Test the forward current with a forward voltage sweep in order to indicate the forward I-V
characteristics of a diode.

Pin Connections: Apply a forward sweep voltage to terminal P. Connect the N terminal to ground.

Intended results: Forward the voltage based on the forward current sweep.

Diode_Ileakage_Vrd
Module Name: Diode_Ileakage_Vrd

Instrument: Keithley Instruments Series 2600B

DUT: Diode

Function: Test the leakage-current of a diode at a specified reverse voltage.

Pin Connections: Apply a forced reverse voltage, or zero voltage to the N terminal. Connect the P
terminal to ground.

Intended results: Get the reverse leakage-current.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-21

Diode_Ird_Vrd_vsweep
Module Name: Diode_Ird_Vrd_vsweep

Instrument: Keithley Instruments Series 2600B

DUT: Diode

Function: Test the reverse current with a reverse voltage sweep in order to indicate the reverse I-V
characteristics of a diode.

Pin Connections: Apply a reverse voltage sweep to the N terminal. Connect the P terminal to ground.

Intended results: Reverse the current at each reverse voltage sweep point.

Diode_Vbr_Ird
Module Name: Diode_Vbr_Ird

Instrument: Keithley Instruments Series 2600B

DUT: Diode

Function: Test the breakdown voltage of a diode at a specified reverse current.

Pin Connections: Force a reverse current on the N terminal. Connect the P terminal to ground.

Intended results: Determine the breakdown voltage of a diode.

Diode_Vfd_Ifd
Module Name: Diode_Vfd_Ifd

Instrument: Keithley Instruments Series 2600B

DUT: Diode

Function: Test the forward voltage of a diode.

Pin Connections: Use one SMU to force the forward current, while the other terminal is grounded.
The forward voltage is measured at the current.

Intended results: Determine the forward voltage of a diode.

Diode_Vrd_Ird
Module Name: Diode_Vrd_Ird

Instrument: Keithley Instruments Series 2600B

DUT: Diode

Function: Test the reverse voltage of a diode at a specified reverse current.

Pin Connections: Force a reverse current to the N terminal. Connect the P terminal to ground.

Intended results: Determine the reverse voltage of a diode.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-22 ACS-907-01 Rev. F / November 2017

Resistor library overview
The Resistor library components are located in the following directories:

• \\ACS \Library\26Library\Parametric\Resistor
• \\ ACS \Library\42Library\Parametric\S4200ParLib\src

The resistor test library is used to test parameters of a resistor, such as resistance (source V measure
I or source I measure V, 2-wire or 4-wire). The 26library is used with a Series 2600B to create test
script files based on Series 2600B LPT library. The 42library is used with a Model 4200 to create
KULT files based on the Model 4200 LPT library.

Resistor_single
Module Name: Resistor_single

Instrument: Keithley Instruments Series 2600B

DUT: Two term generic device

Function: Measure Resistance at specified voltage or current stress.

Pin Connections: It supports 1 or 2 SMU(s), with terminal 1 to do the stress and measure, terminal 2
to be 0 or connected to ground.

Intended results: Resistance reading at voltage or current stress.

Resistor_sweep
Module Name: Resistor_sweep

Instrument: Keithley Instruments Series 2600B

DUT: Two term generic device

Function: Measure Resistance with specified voltage or current sweep.

Pin Connections: Supports 1 or 2 SMU(s). Terminal 1 is used for stress and measurement, terminal 2
set to 0 or connected to ground.

Intended results: Resistance reading at a specified voltage or current sweep.

WLR library overview
The wafer-level reliability (WLR) library components are located in the following directory:

• \\ACS\Library\26Library\WLR

The WLR test library provides certain wafer-level reliability tests on devices with Series 2600B
instruments. The HCI, TDDB, and two NBTI tests are available in this library. They are test script files,
based on the Series 2600B LPT library.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-23

HCI
Pin Connections: A four-terminal MOSFET is used in this test. The source and bulk can be connected
to ground manually and two to four SMUs are needed. The process consists of two parts: The test
and stress.

For the stress, the stress time setting, linear/logarithmic/input-array, is set by you. In addition to the
stress time, you can also monitor the gate-current during the stress test.

For the test, the following are supported:

• Threshold voltage ‘Vtex’ / ‘Vtic’, maximum conductance ‘gm’ and linear drain-current ‘Id_lin’ tests.
If start gate-voltage ‘Vg_start’ is not empty, this test will be performed. If Id_target is not empty,
Vtic (Vt extracted by constant current method) will be provided instead of Vtex (Vt extracted by
maximum gm method).

• Saturate the drain-current ‘Id_sat’ test. If drain-voltage saturation ‘Vd_sat’ is not empty, measure
the Id_sat@Vd=Vd_sat, and the Vg = Vd_sat.

• A drain leakage-current ‘Id_leak’ test. If the drain leakage-voltage ‘Vd_leak’ is not empty,
measure the Id_leak@Vd = Vd_leak, and the Vg = Vb.

• A gate leakage-current 'Ig_leak' test. If the gate leakage voltage ‘Vg_leak’ is not empty, measure
the Ig_leak@Vg=Vg_leak, and the Vd = Vs.

The test will abort if a parameter exceeds its preset limit, or the time frame (set by you) is completed.

Intended outputs
'Time' -- stress time section

'Vtci', 'Vtex', 'gm', 'Id_lin', 'Id_sat', 'Id_leak', 'Ig_leak' -- absolute
value of measured parameters

'Vtci_shift', 'Vtex_shift', 'gm_shift','Id_lin_shift',
'Id_sat_shift','Id_leak_shift' and 'Ig_leak_shift' -- relative shift of measured
parameter

‘Idi’ and ‘Vgi’ (I = 1,2,3) -- Id_Vg curves

‘Ig’ and ‘Ig_time’ -- monitored gate leakage-current and time during stress

Syntax
HCI(t_mode, t_max, npdec_delta, time_input, SSMU, BSMU, GSMU, DSMU, myNPLC,
VSS, S_comp, VBB, B_comp, Id_Vg, Vg_start, Vg_stop, Vg_points, G_comp,
Vd_lin, D_comp, Id_target, Vd_sat, Vd_leak, Vg_leak, Abort_shift, Abort_Vt,
Abort_Ig, time_interval, Vg_stress, Vd_stress, Vb_stress, G_stress_comp,
D_stress_comp)

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-24 ACS-907-01 Rev. F / November 2017

Inputs
integer t_mode=0 in [0,2] --0: linear 1: logrithmic 2: take input time array

integer t_max=1000 in [0,] --maximum time for the test. Not in use when t_mode is 2

integer npdec_delta=3 in [0,] --when t_mode is 0 is the time interval; when t_mode is
1 is the number of points in one decade

table time_input={0,1,2,5,10} -- when t_mode is 2 time array should be input from
outside

instid SSMU=KI_GND -- SMU1, SMU2, SMU3,..., SMU64, KI_GND

instid BSMU=KI_GND -- SMU1, SMU2, SMU3,..., SMU64, KI_GND

instid GSMU=SMU1 -- gate SMU

instid DSMU=SMU2 -- drain SMU

double myNPLC=0.001 in [0.001,25] -- set PLC value

double VSS=0 -- voltage applied on source if not connected to GND

double S_comp=0.1 in [0,] -- source compliance during test and stress (Unit: A)

double VBB=0 -- voltage applied on substrate if not connected to GND

double B_comp=0.1 in [0,] -- source compliance during test and stress (Unit: A)

integer Id_Vg=0 in [0,1] -- 1: Id_Vg curve will be output; 0: The curve will not be output

double Vg_start=0 -- if 'nil', no Vth output. Start voltage for sweep on gate (Unit: V)

double Vg_stop=1.5 -- stop voltage for sweep on gate (Unit: V)

integer Vg_points=101 in [0,] -- number of points of sweep

double G_comp=0.1 in [0,] -- gate compliance during test (Unit: A)

double Vd_lin=0.1 -- drain-voltage in linear district (Unit: V)

double D_comp=0.1 in [0,] -- drain compliance during test (Unit: A)

double Id_target=1e-4 -- if not nil, Vtci will be calculated and output instead of Vtex --
Enter positive value for NMOS and negative value for PMOS

double Vd_sat=1.5 -- nil: Do not measure Id_sat; Double: measure Id_sat (Unit: V)

double Vd_leak=1.5 -- nil: Do not measure Id_leak; Double: Measure Id_leak under
given Vd_leak (Unit: V)

double Vg_leak=1 -- nil: Do not measure Ig_leak; Double: measure Ig_leak under
given Vg_leak (Unit: V)

double Abort_shift=10 in [0,] -- when relative shift of parameters ((value[now] -
value[fresh])/value[fresh]) reaches this value, abort (except Vt)

double Abort_Vt=0.05 in [0,] -- when absolute shift of Vt (value[now] - value[fresh])
reaches this value, abort (Unit: V)

integer Abort_Ig=1000 in [0,] -- nil: Do not monitor on gate-current during stress
Integer: when Ig[now]>=Ig[fresh]*Abort_Ig, abort

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-25

double time_interval=1e-3 in [0,] -- time interval between sampling of Ig if Ig is to
be monitored during stress (Unit: S)

double Vg_stress=3 -- stress voltage on gate (Unit: V)

double Vd_stress=3.5 -- stress voltage on drain (Unit: V)

double Vb_stress=0 -- stress voltage on bulk (Unit: V)

double G_stress_comp=0.1 in [0,] -- current limit on gate during stress (Unit: A)

double D_stress_comp=0.1 in [0,] -- current limit on drain during stress (Unit: A)

GUI
The next figure shows the GUI dialog box for HCI testing. If the test script processor (TSP™) file
imported has a corresponding .xrc GUI file, ACS automatically loads and displays the GUI.

Refer to the .xrc GUI File for more information on importing .xrc files.

Figure 61: GUI for HCI

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-26 ACS-907-01 Rev. F / November 2017

Terminal Stress Setup: Set the SMUs for each terminal, set the voltage and corresponding
compliances during the stress and test. If the source and/or bulk are set to KI_GND, connect them to
ground manually.

Time Setup: Set the stress time. If Linear or Log is selected, leave the stress time array entry field
blank. If Custom is selected, input the time array into the stress time array entry field.

Measure Setup: Several tests are available. If a green test field remains empty, the corresponding
test will not be performed.

If the Vg_start entry field is completed, but the Id(A) for Vtci entry field is empty, the threshold voltage
(Vth) will be extracted from the maximum gm. If the Id(A) for Vtci entry field is also completed, the
Vth will be extracted from the constant current.

Abort Test Setup: Set the parameters controlling the proceeding of the test. If the Ig stress shift entry
field is completed, the gate-current Ig will be monitored during stress, and if Ig[now] = Ig stress
shift’*Ig[fresh], the test ends.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-27

Example call
local VBB=0
local npdec_delta=4
local Abort_shift=50
local Vd_sat=nil
local B_comp=0.1
local t_max=20
local D_comp=0.1
local Vg_stop=1.4
local DSMU=SMU1
local t_mode=1
local time_input=nil
local G_stress_comp=0.1
local Id_Vg=1
local Vd_stress=0.5
local myNPLC=0.001
local time_interval=1
local D_stress_comp=0.1
local BSMU=KI_GND
local SSMU=KI_GND
local Vg_start=nil
local Vd_leak=2
local Vg_points=141
local Vd_lin=0.1
local Id_target=nil
local Abort_Ig=1000
local Vb_stress=0
local G_comp=0.1
local Vg_leak=2
local S_comp=0.1
local Abort_Vt=0.1
local VSS=0
local GSMU=SMU2
local Vg_stress=0.5
HCI(t_mode, t_max, npdec_delta, time_input, SSMU, BSMU, GSMU, DSMU, myNPLC, VSS,

S_comp, VBB, B_comp, Id_Vg, Vg_start, Vg_stop, Vg_points, G_comp, Vd_lin,
D_comp, Id_target, Vd_sat, Vd_leak, Vg_leak, Abort_shift, Abort_Vt, Abort_Ig,
time_interval, Vg_stress, Vd_stress, Vb_stress, G_stress_comp, D_stress_comp)

TDDB_CCS
This function is used to perform the constant current time-dependent dielectric breakdown (TDDB)
test. Up to four SMUs are supported and only voltage is measured. The hard breakdown (HBD)
occurs if:

• the Vg is below breakdown voltage (abs(Vg)<abs(Vmin))
• the Vg falls dramatically (abs(Vg[now]) <= HBDL * abs(Vg[prev]))

Syntax
TDDB_CCS(sample_interval, time_max, holdtime, V_min, HBDL, myPLC, smu_1,
comp1, stress1, meas1, smu_2, comp2, stress2, meas2, smu_3, comp3, stress3,
meas3, smu_4, comp4, stress4, meas4).

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-28 ACS-907-01 Rev. F / November 2017

Inputs
double sample_interval=1 in(0,) --time between sample (Unit:s)

double HBDL=0.6 in [0,0.999] --limit of hard BD.when Vg[now]>=Vg[prev]*HBDL then
abort.

double V_min=0.06 in [0,200] --minimum voltage

double time_max=nil in(0,)/nil --max time of experiment. if 'nil' appears, test until BD

double holdtime=0 in[0,) --time before stress begin (Unit:s)

double myPLC=1 in[0.001,25] --PLC setting

integer smu_1=1 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

double comp1=2 --SMU compliance (Unit:A for current;V for voltage)

double stress1=1e-6 --SMU required stress value (Unit:A for current; V for
voltage)

integer meas1=1 in [0,1] --1: current stress and make measurement 0: voltage
stress no measurement

integer smu_2=2 in[0,1,2..64] --maximum 4 SMUs are supported. if not input '0'

double comp2=0.1 --SMU compliance (Unit:A for current; V for voltage)

double stress2=0 --stress value required on the smu (Unit:A for current; V
for voltage)

integer meas2=0 in [0,1] --1: current stress and make measurement 0: voltage
stress no measurement

integer smu_3=0 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

double comp3=nil --SMU compliance (Unit:A for current;V for voltage)

double stress3=nil --SMU required stress value (Unit:A for current; V for
voltage)

integer meas3=nil --1: current stress and make measurement 0: voltage
stress no measurement

integer smu_4=0 in[0,1,2..64] --maximum 4 SMUs are supported. if not input '0'

double comp4=nil --SMU compliance (Unit:A for current;V for voltage)

double stress4=nil --SMU required stress value (Unit:A for current; V for
voltage)

Integer meas4=nil --1: current stress and make measurement 0: voltage
stress no measurement

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-29

Outputs
error --error message

time1 --time array of SMU1

Vg1 --voltage of SMU1

TBD1 --Tbd of SMU1

BD_type1 --breakdown type of SMU1:1 for HBD; 2 for timeout

time2 --time array of SMU2

Vg2 --voltage of SMU2

TBD2 --Tbd of SMU2

BD_type2 --breakdown type of SMU2

time3 --time array of SMU3

Vg3 --voltage of SMU3

TBD3 --Tbd of SMU3

BD_type3 --breakdown type of SMU3

time4 --time array of SMU4

Vg4 --voltage of SMU4

TBD4 --Tbd of SMU4

BD_type4 --breakdown type of SMU4

The next figure shows the dialog box for the TDDB_CCS test. A general description of this dialog box
is included below.

Figure 62: GUI for TDDB_CCS

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-30 ACS-907-01 Rev. F / November 2017

TDDB CCS GUI descriptions
Terminal setting: If the SMU is NONE, Stress, Measure and Compliance can be empty.
Measure: Set the Measure column to 1 if you want to measure the SMU; set it to zero if you only
want to run a stress test.
Hard BD limit & V minimum: Set the hard breakdown limit and voltage minimum. The unit is volts.
Time arrangement: Time Max can be left empty. In this case, the test will continue until all
devices fail.

Example call
local sample_interval=1
local time_max=50
local holdtime=0
local V_min = 0.06
local HBDL=0.6
local myPLC = 1
local smu_1=1
local comp1=20
local stress1=3e-6
local meas1=1
local smu_2=2
local comp2=0.1
local stress2=0
local meas2=0
local smu_3=0
local comp3=nil
local stress3=nil
local meas3=nil
local smu_4=0
local comp4=nil
local stress4=nil
local meas4=nil
TDDB_CCS(sample_interval, time_max, holdtime, V_min, HBDL, myPLC, smu_1, comp1,

stress1, meas1, smu_2, comp2, stress2, meas2, smu_3, comp3, stress3, meas3,
smu_4, comp4, stress4, meas4).

TDDB_per_pin
This function is used to perform a time-dependent dielectric breakdown (TDDB) test. Up to four SMUs
are supported, voltage is forced, and current is measured.

1. If the breakdown mode is 0, hard breakdown (HBD) will be monitored. If the breakdown mode is
1, soft breakdown (SBD) will also be monitored.

2. HBD occurs when Ig[now] = HBDL*Ig[prev].
3. To evaluate the SBD, calculate the noise of the gate-current (Inoi) from the formula listed in

JESD92. The base noise (Inoi_base) is calculated with the Inoi average value (AVL) and base
number (bas_num). When Inoi_base is set, SBD occurs if several sequential Inois conditions are
met: Inoi [now] = SBDL*Inoi_base.

4. If the DUT is a MOSFET, set the SMUs that do not need to measure to 0 (meas =0).
5. Intended outputs: time, Ig, Ig_noise (when SBD is required), and breakdown_type of SMUs

requiring measurement.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-31

Syntax
TDDB_per_pin(time_interval, HBDL, BD_mode, time_max, SBDL, AVL, holdtime,
bas_num, SBD_num, smu1, comp1, stress1, meas1, smu2, comp2, stress2, meas2,
smu3, comp3, stress3, meas3, smu4, comp4, stress4, meas4)

Inputs
Inputs:

double time_interval=0.01 --Time between sample (Unit: S)

integer HBDL=1000 --Limit of hard BD. When Ig[now]>=Ig[prev]*HBDL, then abort.

integer BD_mode=0 --0: HBD only. All the parameters related to SBD could be set to nil; 1:
also SBD

double time_max=nil --Max time of experiment; if 'nil' appears, test until BD

integer SBDL=500 --Limit of SBD; when Inoi[now] = Inoi[base]*SBDL, then abort

integer AVL=10 --Standard when calculating base noise current; if
Inoi[now]<=AVL*Inoi_base, Inoi [now] should be included into Inoi_base calculation

double holdtime=0 --Time before stress begins (Unit: S)

integer bas_num=6 --Number of noise current used to calculate Inoi_base value

integer SBD_num=5 --Number of noise used to determine SBD

integer smu1=1 --Maximum 4 SMUs are supported; if not input 'nil'

double comp1=0.1 --SMU compliance (Unit: A)

double stress1=3 --SMU required stress value (Unit: V)

integer meas1=1 --1: Make measurement on this smu 0; No measurement

integer smu2=2 --Maximum 4 SMUs are supported; if not input 'nil'

double comp2=0.1 --SMU compliance (Unit: A)

double stress2=3 --SMU required stress value (Unit: V)

integer meas2=1 --1: Make measurement on this SMU 0; No measurement

integer smu3=0 --Maximum 4 SMUs are supported; if not input 'nil'

double comp3=nil --SMU compliance (Unit: A)

double stress3=nil --SMU required stress value (Unit: V)

integer meas3=nil --1: Make measurement on this SMU; 0: No measurement

integer smu4=0 --Maximum 4 SMUs are supported; if not input 'nil'

double comp4=nil --SMU compliance (Unit: A)

double stress4=nil --Stress value required on the SMU (Unit: V)

integer meas4=nil --1: Make measurement on this SMU; 0: No measurement

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-32 ACS-907-01 Rev. F / November 2017

GUI
The next figure shows the dialog box for the TDDB test. A general description of this dialog box is
included below.

Figure 63: GUI for TDDB

Terminal setting: If the SMU is set to NONE in the SMU list, you will need to set the Measure(V),
Breakdown settings, and the Time arrangement.
Measure(V): Set the Measure(V) column to 1 if you want to measure the SMU; set to 0 if you only
want to run a stress test.
Breakdown settings: If Breakdown mode is set to Hard, the Soft Breakdown can be left empty.
For Soft Breakdown details, see next figure JESD92.
Time arrangement: Time Max can be left empty. In this case, the test will go on until all devices
fail.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-33

Example call
local time_interval=0.005
local HBDL=1000
local BD_mode=0
local time_max=20
local SBDL=500
local AVL=10
local holdtime=0
local bas_num=6
local SBD_num=5
local smu1=1
local comp1=0.1
local stress1=2
local meas1=1
local smu2=0
local comp2=nil
local stress2=nil
local meas2=nil
local smu3=0
local comp3=nil
local stress3=nil
local meas3=nil
local smu4=2
local comp4=0.1
local stress4=2
local meas4=1
TDDB_per_pin(time_interval, HBDL, BD_mode, time_max, SBDL, AVL, holdtime, bas_num,

SBD_num, smu1, comp1, stress1, meas1, smu2, comp2, stress2, meas2, smu3,
comp3, stress3, meas3, smu4, comp4, stress4, meas4)

NBTI
The negative bias temperature instability (NBTI) script is used to perform the NBTI test. It supports
two to four SMUs. The gate performs the stress test, and the drain performs the measurement test. In
most cases, the source and bulk are set to 0, or KI_GND.

Intended Outputs: Time, id0 (fresh value of drain-current), id (absolute value of drain-current), and
id_shift (relative shift of drain currentdrain-current).

Syntax
NBTI(smu_D, smu_G, smu_S, smu_B, vg_stress, vd_stress, vg_meas, vd_meas,
myNPLC, meas_delay, navg, t_array, modeflag, compliancei, time, did)

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-34 ACS-907-01 Rev. F / November 2017

Inputs
instid smu_D=SMU1 -- SMU1, SMU2, SMU3, ..., SMU64

instid smu_G=SMU2 -- SMU1, SMU2, SMU3, ..., SMU64

instid smu_S=KI_GND -- SMU1, SMU2, SMU3, ..., SMU64, KI_GND

instid smu_B=KI_GND -- SMU1, SMU2, SMU3, ..., SMU64, KI_GND

double vg_stress=-2.0 in [-40,40] -- Gate stress voltage

double vd_stress=0 in [-40,40] -- Drain stress voltage

double vg_meas=-1.2 in [-40,40] -- Gate measure voltage

double vd_meas=-1.2 in [-40,40] -- Drain measure voltage

double myNPLC=0.001 in [0.001,25] -- NPLC, 0.001 ~ 10

double meas_delay=0 in [0,] -- Measure delay after stress is off

integer navg=1 in [1,20] -- Double of points for average

table t_array={1,2,5,10,20,50,100} -- Stress time array

integer modeflag=1 in [0,1] -- Gate first or drain first

double compliancei=0.1 in [0,] -- Current compliance

Outputs
time={} -- Time table

did={} -- Drain-current shift table

GUI
The next figure shows the NBTI dialog box and illustrates the testing method. A general description of
this dialog box is included below.

Figure 64: GUI for NBTI

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-35

Terminal settings: SMUs are assigned to terminals source and bulk and KI_GND is manually set.
The voltage is changeable only on the gate and drain. A measurement is made on the drain only,
and compliance should be set.
Test Speed setting entry field: The Meas Delay entry field sets the time before each
measurement. The Test Speed entry field sets the PLC value. The Average # entry field decides
the number of measurements taken.
Gate/Drain: Voltages are applied on the gate and drain and change when the measurement
begins and ends. The gate/drain selection box is used to determine which terminal will change
first. If Gate Change First is selected, the gate terminal changes first. If the Gate Change First
deselected, the drain terminal changes first.
Stress Array: Used to input the time array.

Example call
local compliancei=1e-1
local modeflag=0
local vd_meas=0.1
local navg=1
local t_array={0,1,2,5,10,20}
local smu_B=SMU4
local smu_D=SMU2
local smu_G=SMU3
local myNPLC=0.01
local vg_meas=1.5
local meas_delay=0
local smu_S=SMU1
local vd_stress=0
local vg_stress=2
local time={}
local did={}
NBTI(smu_D,smu_G,smu_S,smu_B,vg_stress,vd_stress,vg_meas,vd_meas,myNPLC,meas_delay,

navg,t_array,modeflag,compliancei,time,did)

NBTI_meas
This module performs the negative bias temperature instability (NBTI) test, with pre-Id_Vg testing and
post-Id_Vg testing.

Syntax
NBTI_meas(smuD,smuG,smuS,smuB,flag0,flag1,flag2,p_Vg_lo,p_Vg_hi,p_Vg_points
,p_Vds,p_Drangei,p_sweepdelay,a,b,A,W,L,Vg_ini,Vd_ini,Vg_stress,Vd_stress,V
g_meas,Vd_meas,myNPLC,meas_delay,inter_delay,t_mode,t_max,npdec_delta,time_
input,modeflag,Gcompi,Dcompi,rng,Nsam)

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-36 ACS-907-01 Rev. F / November 2017

Inputs
instid smuD=SMU2 -- SMU1, SMU2, SMU3,..., SMU64

instid smuG=SMU1 -- SMU1, SMU2, SMU3,..., SMU64

instid smuS=KI_GND -- SMU1, SMU2, SMU3,..., SMU64, KI_GND

instid smuB=KI_GND -- SMU1, SMU2, SMU3,..., SMU64, KI_GND

integer flag0=1 in [0,1] -- flag of idvg test. "1" meas enable pre/post idvg
test, "0" meas disable it

integer flag1=1 in [0,1] -- flag of NBTI test. "1" means enable NBTI
stress-measure test, "0" means disable it

integer flag2=1 in [0,1] -- flag of Vcti test. "1" meas enable Vcti test, "0"
meas disable it

double p_Vg_lo=0 in [-40, 40] -- start of gate-voltage sweep in pre/post test

double p_Vg_hi=2 in [-40, 40] -- stop of gate-voltage sweep in pre/post test

double p_Vg_points=21 in [0, 4096] -- gate-voltage sweep number of points
in pre/post test

double p_Vds=1 in [-40, 40] -- drain-source bias in pre/post test

double p_Drangei=1e-3 in [0, 0.1] -- drain-current range in pre/post test

double p_sweepdelay=0 in [0,] -- sweep delay in pre/post test

double a=0 in [0,40] -- low extent of Vtci sweep

double b=1 in [0,40] -- high extent of Vtci sweep

double A=1 in [0,] -- target current density

double W=1 in [0,] -- wide of device

double L=1 in [0,] -- length of device

table Vg_ini in [-40, 40] -- gate-voltage for initial drain-current
measurement

table Vd_ini in [-40, 40] -- drain-voltage for initial drain-current
measurement

double Vg_stress=-2.0 in [-40, 40] -- gate stress voltage

double Vd_stress=0 in [-40, 40] -- drain stress voltage

table Vg_meas in [-40, 40] -- gate measure voltage

table Vd_meas in [-40, 40] -- drain measure voltage

double myNPLC=0.05 in [0.001, 25] -- NPLC, 0.001 ~ 25

double meas_delay=0.001 in [0,] -- measure delay after stress is off

double inter_delay=0.1 in [0,] -- delay between measure voltage trian pulses

integer t_mode=1 in [0,2] -- "0" for time array given by customer; "1" for
logrithmic time; "2" for linear time array

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-37

double t_max=20 in [0,] -- the maximum stress time. valid when t_mode
is 1 or 2

double npdec_delta in [0,] -- means number-of-point-per-decade when
t_mode is 1; means delta time when t_mode is 2

table time_input in [0,] -- if t_mode is 0, this array will be taken as stress
time list

integer modeflag=1 in [0, 1] -- measurement force gate first or drain first;
modeflag=0, drain first; modeflag=1, gate first

double Gcompi = 100e-6 in [0, 0.1] -- gate-voltage source compliance

double Dcompi = 100e-6 in [0, 0.1] -- drain-voltage source compliance

table rng in [0, 0.1] -- drain-current measure range

integer Nsam = 5 in [1, 20] -- number of sampling

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-38 ACS-907-01 Rev. F / November 2017

Outputs
error -- working condition flag

Vg_pre -- gate-voltage of pre test

Id_pre -- drain-current of pre test

Vg_pos -- gate-voltage of post test

Id_pos -- drain-current of post test

Vtci -- gate-voltage at target drain-current

Idini -- initial current of drain

Idend -- drain-current after stress sequence

time -- time table

Id1 -- drain-current table

Id2

Id3

Id4

Id5

Id6

Id7

Id8

Id9

Id10

Id11

Id12

Id13

Id14

Id15

Id16

Id17

Id18

Id19

Id20

The next figure shows the NBTI_meas test dialog box and illustrates the testing method. A general
description of this dialog box is included below.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-39

Figure 65: GUI for NBTI_meas

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-40 ACS-907-01 Rev. F / November 2017

Example call
local p_sweepdelay=1e-4
local Vd_ini={0.6,0.7,0.8}
local modeflag=1
local p_Vds=0.5
local Nsam=5
local npdec_delta=1
local meas_delay=1e-4
local t_max=10
local Dcompi=1e-1
local t_mode=2
local Gcompi=1e-1
local time_input={0,1,2,3,4,5,6,7,8,9,10}
local inter_delay=5e-4
local flag2=1
local flag1=1
local flag0=1
local Vd_stress=0
local myNPLC=0.005
local A=1e-5
local Vg_ini={0.8,0.9,1.0}
local rng={1e-5,1e-4,1e-4}
local L=1
local p_Drangei=0
local p_Vg_hi=2
local W=1
local p_Vg_points=101
local p_Vg_lo=0
local a=0.1
local b=0.1
local Vd_meas={0.6,0.7,0.8}
local smuS=KI_GND
local smuB=KI_GND
local Vg_meas={0.8,0.9,1.0}
local smuG=SMU1
local smuD=SMU2
local Vg_stress=2
NBTI_meas(smuD,smuG,smuS,smuB,flag0,flag1,flag2,p_Vg_lo,p_Vg_hi,p_Vg_points,p_Vds,p

_Drangei,p_sweepdelay,a,b,A,W,L,Vg_ini,Vd_ini,Vg_stress,Vd_stress,Vg_meas,Vd_mea
s,myNPL,meas_delay,inter_delay,t_mode,t_max,npdec_delta,time_input,modeflag,Gcom
pi,Dcompi,rng,Nsam)

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-41

NBTI_on_the_fly
• Reference: “on-the-fly characterization of NBTI in ultra-thin gate oxide PMOSFETs,” M. Denais,

et. al, IEDM 2004.
• The code is a Keithley Instruments copyright.
• This is a new methodology for monitoring threshold voltage degradation and relaxation for NBTI

and charge trapping on high K gate stacks.
• Vg_stress is for stress and measurement during the stress phase.
• Vg_relax is for measurement during recovery.
• 0 is set for recovery voltage during time other than measurement.
• This test can only be used for one device: once during the "stress-on" period and once during the

"stress-off" period.

Possible outputs
‘ERROR’ (possible error type) --1 stands for wrong inputs

‘Time_stress’, ‘dVt_stress’ and ‘Id_stress’ -- time, Vt shift and drain-current during
stress phase

‘Time_relax’, ‘dVt_ relax’ and ‘Id_ relax’ᾉ -- time, Vt shift and drain-current during
relax phase

Syntax
NBTI_on_the_fly (Test_mode, Vg_stress, Vg_relax, Vg_dist, Vd, Stress_time,
Monitor_time_stamp, GSMU, DSMU, SSMU, BSMU, myNPLC)

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-42 ACS-907-01 Rev. F / November 2017

Inputs
integer Test_mode=2 -- 0:Monitor Vt degradation during stress only; 1: Monitor Vt
relaxation during stress off only; 2: monitoring both degradation and relaxation during stress on and
off period

double Vg_stress=3 -- Voltage on gate during stress; measurement during stress is
also made at this voltage

double Vg_relax=1 -- Measure voltage on gate during recovery; the stress voltage
recovery is set as 0

double Vg_dist=0.05 -- Delta Vg for different Id measurement

double Vd=0.1 -- Drain-voltage only applied during monitoring, other times = 0V

integer Stress_time=1000 -- Time for stress in seconds

table Monitor_time_stamp={} -- Time in seconds; this is an input array for guiding time
between two monitorings; the actual time stamp for monitoring might not be exactly the same due to
measurement time; also, this time stamp is the same for both stress on (degradation monitoring) and
off (relaxation monitoring)

instid GSMU=SMU1 -- Gate SMU number, SMU1 for example

instid DSMU=SMU2 -- Drain SMU number, SMU2

instid SSMU=KI_GND -- source SMU number

instid BSMU=KI_GND -- bulk SMU number

double myNPLC=0.01 -- PLC setting

GUI
The next figure shows the NBTI_on_the_fly test dialog box and illustrates the testing method. A
general description of this dialog box is included below.

Figure 66: GUI for NBTI_on_the_fly

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-43

Terminal connection: SMUs are assigned to terminals source and bulk and KI_GND is manually set.
If specific SMUs are assigned to these two terminals, 0V will be applied internally.

Gate/Drain voltage setup: The voltage during the stress phase and relax phase on the gate and drain
should be set here.

Time setup: Arranges time during the stress and relaxation. For the Vt test mode, when On stress is
selected, there is no relax phase and stress is applied following the monitor time array. If On relax is
selected, a measurement is made during the relax phase only following the monitor time array, and
stress time is decided by Stress time. If both are selected, a measurement is made during both the
stress phase and the relax phase, and they both follow monitor time array.

Example call
local Test_mode = 2
local Vg_stress = 3
local Vg_relax = 1.5
local Vg_dist = 0.05
local Vd = 0.1
local Stress_time = 1000
local Monitor_time_stamp = {1,5,10,20}
local GSMU = SMU2
local DSMU = SMU1
local SSMU = KI_GND
local BSMU = KI_GND
local myNPLC = 0.1
NBTI_on_the_fly(Test_mode, Vg_stress, Vg_relax, Vg_dist, Vd, Stress_time,

Monitor_time_stamp, GSMU, DSMU, SSMU, BSMU, myNPLC)

QBD_rmpj
Function: Performs a charge-to-breakdown test using the QBD Ramp J test algorithm described in
JESD35-A, "Procedure for Wafer-level Testing of Thin Dielectrics." This algorithm forces a logarithmic
current ramp until the oxide layer breaks down. This algorithm is capable of a maximum current of +/-
1A, if a high power SMU is used.

Syntax
function qbd_rmpj(HiSMUId, LoSMUId1, LoSMUId2, LoSMUId3, myplc, v_use,
I_init, I_start, F, t_step, exit_volt_mult, V_max, I_max, q_max, area)

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-44 ACS-907-01 Rev. F / November 2017

Inputs
integer HiSMUId=1 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

integer LoSMUId1=0 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

integer LoSMUId2=0 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

integer LoSMUId3=0 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

double myplc=1 in[0.001,25] --PLC setting

double v_use=1 in[-200,200] --oxide voltage under normal operating
conditions (V). Typically the power supply voltage of the process; This voltage is to measure pre- and
post voltage ramp oxide current

double I_init=1e-5 in[-0.1,0.1] --Oxide breakdown failure current when biased at v_use.
(A); Typical value is 10uA/cm^2 and may change depending oxide area; For maximum sensitivity the
specified value should be well above the worse case oxide current ofa "good" oxide and well above
system noise floor; Higher value must be specified for ultra-thin oxide because of direct tunneling
effect.

double I_start=1e-5 in[-0.1,0.1] --Starting current for current ramp (A). Typical value is
I_init

double F=1.5 in[1,100] --Current multiplier between two successive current
steps.

double t_step=0.1 in(0,) --Current ramp step time in s

double exit_volt_mult=0.85 in(0,2] --multiplier factor of successive voltage
measurement. When the next measured voltage is below this factor multiplying previous measured
voltage, oxide is considered breakdown and test will exit. Typical value, 0.85

double V_max=20 in[-200,200] --the voltage limit; pay attention to interlock (A)

double I_max=0.1 in[-0.1,0.1] --maximum ramp up current (A)

double q_max=100 in(0,) --Maximum accumulated oxide charge per oxide
area(C/cm^2). Used to terminate a test where breakdown occurs but was not detected during the test.

double area=2 in(0,) --area of oxide structure (cm^2)

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-45

Outputs
V_stress --voltage array

I_stress --current array

T_stress --time stamp array representing when current is measured

q_stress --accumulated charge array PER OXIDE AREA

V_init_pre --voltage at I_init in pre test

V_init_post --voltage at I_init in post test

Q_bd --Charge to breakdown. Cumulative charge passing through the oxide prior to
breakdown (C)

q_bd --charge to breakdown density (C/cm^2)

v_bd --applied voltage at the step just before oxide breakdown

I_bd --measured current at v_bd just before oxide breakdown

t_bd --time stamp when measuring I_bd

Failure_mode --failure mode

 --1: Initial test failure

 --2: Catastrophic failure (initial test pass, ramp test fail, post test fail)

 --3: Masked Catastrophic (initial test pass, ramp test pass, post test fail)

 --4: non-Catastrophic (initial test pass, ramp test fail, post test pass)

 --5: Others (initial test pass, ramp test pass, post test pass)

Test_status --0: no test errors (exit due to measured voltage < exit_volt_mult*V_previous)

 --(-1): failed pre-stress test

 --(-2): cum charge limit reached

 --(-3): current limit reached

 --(-4): voltage limit reached

 --(-5): masked Catastrophic Failure

 --(-6): non-Catastrophic Failure

 --(-7): Invalid specified t_step

The next figure shows the QBD Ramp J dialog box and illustrates the testing method.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-46 ACS-907-01 Rev. F / November 2017

Figure 67: GUI for qbd-rmpj

If the above routine is modified, change the function name to avoid possible programming errors.

Example call
local HiSMUId=1
local LoSMUId1=2
local LoSMUId2=0
local LoSMUId3=0
local myplc=1
local v_use=0.005
local I_init=1e-8
local I_start=1e-8
local F=1.5
local t_step=0.1
local exit_volt_mult=0.85
local V_max=20
local I_max=1e-5
local q_max=0.1
local area=1
qbd_rmpj(HiSMUId, LoSMUId1, LoSMUId2, LoSMUId3, myplc, v_use, I_init, I_start, F,

t_step, exit_volt_mult, V_max, I_max, q_max, area).

QBD_rmpv
Function: Performs a charge-to-breakdown test using the QBD Ramp V Test algorithm described in
JESD35-A, "Procedure for Wafer-level Testing of Thin Dielectrics." This algorithm forces a linear
voltage ramp until the oxide layer breaks down. This algorithm is capable of a maximum voltage of +-
200 volts.

Syntax
qbd_rmpv(HiSMUId, LoSMUId1, LoSMUId2, LoSMUId3, myplc, v_use, I_init,
hold_time, v_start, v_step, t_step, measure_delay, I_crit, I_box, I_max,
exit_curr_mult, exit_slope_mult, q_max, t_max, v_max, area, exit_mode)

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-47

Inputs
Inputs:

integer HiSMUId=1 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

integer LoSMUId1=0 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

integer LoSMUId2=0 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

integer LoSMUId3=0 in[0,1,2..64] --maximum 4 smus are supported. if not input '0'

double myplc=1 in[0.001,25] --PLC setting

double v_use=1 in[-200,200] --oxide voltage under normal operating
conditions (V). Typically the power supply voltage of the process. This voltage is to measure pre- and
post-voltage ramp oxide current.

double I_init=0.001 in[-0.1,0.1] --Oxide breakdown failure current when biased at v_use.
Typical value is 10uA/cm^2 and may change depending oxide area. For maximum sensitivity the
specified value should be well above the worst-case; oxide current of a "good" oxide and well above
system noise floor; Higher value must be specified for ultra-thin oxide because of direct tunneling
effect.

double holdtime=0 in[0,) --time after Vuse is applied (Unit:s)

double v_start=0.01 in[-200,200] --starting ramp voltage (V). Typical value is v_use

double v_step=0.01 in[-200,200] --voltage ramp step size (V). This value has a maximum
value of 0.1MV/cm, for example, the maximum value can be calculated using Tox*0.1MV/cm, where
Tox is in unit of centimeters. This is 0.1V for a 10nm oxide.

double t_step=0.1 in(0,) --Voltage ramp step time(Unit:s). This is used to
determine the voltage ramp rate; This time should be less or equal than 100ms. Typically 40 - 100
ms.

double measure_delay=0.05 in(0,) --time delay for measurement after each voltage stress
step(Unit:s); This delay should be less than t_step.

double I_crit=5e-4 in[-0.1,0.1] --At least 10 times the test system current measurement
noise floor; This oxide current is the minimum value used in determining the change of slope
breakdown criteria. (A)

double I_box=3e-4 in[-0.1,0.1] --An optional measured current level for which a stress
voltage is recorded; This value provides an additional point on the current-voltage curve. A typical
value is 1uA.

double I_max=1e-3 in[-0.1,0.1] --Oxide breakdown criteria. I_bd is obtained from I-V
curves and is the oxide current at the step just prior to breakdown.

double exit_curr_mult=10 in(0,) --Change of current failure criteria. This is the ratio of
measured current over previous current level, which, if exceeded, will result in failure; recommended
value: 10-100.

double exit_slope_mult=3 in(0,) --Change of slope failure criteria. This is the factor of
change in FN slope, which, if exceeded, will result in failure; recommended value: 3.

double q_max=100 in(0,) --Maximum accumulated oxide charge PER OXIDE
AREA! Used to terminate a test where breakdown occurs but was not detected during the test.
(C/cm^2).

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-48 ACS-907-01 Rev. F / November 2017

double t_max=10 in(0,) --maximum stress time allowed(Unit:s); Reaching the
limit will result in test finish.

double v_max=2 in(-200,200) --The maximum voltage limit for the voltage ramp. This
limit is specified at 30MV/cm for oxides less than 20nm thick and 15MV/cm for thicker oxides. For
example, v_max can be estimated from Tox*30Mv/cm where Tox is in centimeters. This is 35V for a
10.0nm Oxide.

double area=2 in(0,) --area of oxide structure (cm^2)

integer exit_mode=0 in(0,1) --failure criteria mode 0:judge by current (I_max) and
(exit_curr_mult) and q_max, v_max, t_max 1:also judge slope (exit_slope_mult).

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-49

Outputs
V_stress --voltage stress array

I_stress --measured current array

T_stress --time stamp array representing when current is measured

q_stress --accumulated charge array PER OXIDE AREA

I_use_pre --Measured oxide current at v_use prior to starting the ramp

I_use_post --Measured oxide current at v_use after the ramp finished

Q_bd --Charge to breakdown. Cumulative charge passing through the oxide prior to
breakdown (C)

q_bd --charge to breakdown density (C/cm^2)

v_bd --applied voltage at the step just before oxide breakdown

I_bd --measured current at v_bd just before oxide breakdown

t_bd --time stamp when measuring I_bd

v_crit --applied voltage at the step when the oxide current exceeds I_crit

v_box --applied voltage at the step when the oxide current exceeds I_box

Failure_mode --failure mode

 --1: Initial test failure

 --2: Catastrophic failure (initial test pass, ramp test fail, post test fail)

 --3. Masked Catastrophic (initial test pass, ramp test pass, post test fail)

 --4. non-Catastrophic (initial test pass, ramp test fail, post test pass)

 --5. Others (initial test pass, ramp test pass, post test pass)

Test_status --2: no test errors (exit due to measured current > exit_curr_multi*I_previous

 --1: no test errors (exit due to measured current > calculated failure slope
ONLY)

 --0: no test errors (exit due to measured current > I_max ONLY)

 --(-1): failed pre-stress test

 --(-2): cumulative charge limit reached

 --(-3): voltage limit reached

 --(-4): maximum time limit reached

 --(-5): masked Catastrophic Failure

 --(-6): non-Catastrophic Failure

 --(-7): Invalid specified t_step, hold_time or measure_delay

The next figure shows the QBD Ramp V dialog box and illustrates the testing method.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-50 ACS-907-01 Rev. F / November 2017

Figure 68: GUI for qbd_rmpv

Example call
local HiSMUId=1
local LoSMUId1=2
local LoSMUId2=0
local LoSMUId3=0
local myplc=1
local v_use=1
local I_init=0.001
local hold_time=0
local v_start=0.01
local v_step=0.01
local t_step=0.1
local measure_delay=0.05
local I_crit=5e-4
local I_box=3e-4
local I_max=1e-3
local exit_curr_mult=10
local exit_slope_mult=3
local q_max=100
local t_max=100
local v_max=2
local area=2
local exit_mode=1
qbd_rmpv(HiSMUId, LoSMUId1, LoSMUId2, LoSMUId3, myplc, v_use, I_init, hold_time,

v_start, v_step, t_step, measure_delay, I_crit, I_box, I_max, exit_curr_mult,
exit_slope_mult, q_max, t_max, v_max, area, exit_mode).

Em_iso_test
Isothermal EM description: This script is used to run JEDEC 61-compliant isothermal Electromigration
tests. Data will be periodically printed.

Syntax
RunEmIsoTestEngine
(smun,test_mode,width,thickness,n_wide,n_narrow,TCR,Tref,Vlimit,Ilimit,init
_failR,Tinit,start_J,step_J,step_delay,equil_time,Ttarget,Terror,Rfail_fact
,max_time,max_count)

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-51

Inputs
integer smun = 4 --No. of SMUs (choose 1 to 4)

integer test_mode = 0 --0 = constant power; 1= constant current; 2 = constant
resistance (temp)

double width = 1 --Width of the structure (microns)

double thickness = 0.05 --Thickness of the structure (microns)

double n_wide = 1 --Number of wide squares in the structure (use 1 for straight line
structure)

double n_narrow = 1 --Number of narrow squares in the structure (use 1 for straight
line structure)

double TCR = 6.8e-3 --Temperature coefficient of resistance at Tref (per *C)

double Tref = 20 --(*C) reference temperature for TCR

double Vlimit = 40 --Voltage limit (V)

double Ilimit = 1 --Current limit (A)

double init_failR --Room temperature failure resistance (Ohm)

double Tinit = 24 --Initial temperature of the device (*C)

double start_J = 2e6 --Starting current density in A/cm2 (typical: 1e6 A/cm^2)

double step_J = 1e6 --Current density step in A/cm2

double step_delay = 0.01 --Delay after source & before measure (typical: 50-100ms)

double equil_time = 3 --(s) maximum time for convergence control loop

double Ttarget = 300 --(*C) target temp of metal line

double Terror = 0.5 --Error band allowed to control temperature (*C)

double Rfail_fact =1.5 -- % resistance increase for device failure (applies only in
constant stress mode)

double max_time = 60 --Maximum test time (s)

double max_count = 10000 --Maximum data points to measure

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-52 ACS-907-01 Rev. F / November 2017

Outputs
Time_smu1 --Timestamp for DUT 1, s

source_smu1 --Source value for DUT 1, A

Reading_smu1 --Readings for DUT 1, ohm

Temp_smu1 --Temperature for DUT 1, K

Time_smu2 --Timestamp for DUT 2, s

source_smu2 --Source value for DUT 2, A

Reading_smu2 --Readings for DUT 2, ohm

Temp_smu2 --Readings for DUT 2, ohm

Time_smu3 --Timestamp for DUT 3, s

source_smu3 --Source value for DUT 3, A

Reading_smu3 --Readings for DUT3, ohm

Temp_smu3 --Temperature for DUT 3, K

Time_smu4 --Timestamp for DUT 4, s

source_smu4 --Source value for DUT 4, A

Reading_smu4 --Readings for DUT 4, ohm

Temp_smu4 --Temperature for DUT 4, K

GUI
The next figure shows the GUI for the Iso_EM test.

Figure 69: GUI for ISO_EM test

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-53

Example call
local n_narrow=1
local Ttarget=50
local test_mode=0
local Ilimit=1
local n_wide=1
local width=1
local step_delay=0.01
local init_failR=10000
local TCR=6.8e-3
local Rfail_fact=1.5
local thickness=0.05
local step_J=1e6
local smun=2
local max_count=10000
local max_time=20
local Terror=0.5
local start_J=2e6
local Tref=20
local Vlimit=20
local equil_time=3
local Tinit=24

RunEmIsoTestEngine(smun,test_mode,width,thickness,n_wide,n_narrow,TCR,Tref,Vlimit,I

limit,init_failR,Tinit,start_J,step_J,step_delay,equil_time,Ttarget,Terror,Rfail
_fact,max_time,max_count

Python user library introduction
ACS has a Python user library (PTMLib), which includes CV test, matrix control, scope control and
other external instrument libraries. It is located in the following directory:
\\ACS\library\pyLibrary\PTMLib.

All test modules in the PTMLib can be imported to a PTM. You can also build a Python library to
import and use. For details about how to import a PTM user module, refer to the Configuring a Python
Language Test Module (PTM) topic in the ACS Reference Manual (document number: ACS-901-01).

Configure a capacitor meter library
These modules is used to test capacitive parameters at specified frequencies and AC drive voltages,
with measurements at the DC voltage bias or sweep.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-54 ACS-907-01 Rev. F / November 2017

CV_4200CVU
Add a PTM to the configuration navigator, then import the CVITM.py module from the PTMLib library.
The CV test GUI will display. Click the CVU4200 in the user module to open the Model 4200-CVU
test (see next figure).

Figure 70: Select 4200CVU user module

The details of the Model 4200-CVU GUI are indicated in the graphic with a description that follows
(see next figure).

Figure 71: CV_4200CVU setting example

The GUI inputs are as follows:

CVU_name: Instrument ID of the Model 4200-CVU, sub-list CVU1, CVU2, CVU3, CVU4

Force Func: bias or sweep

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-55

Timing:

• Hold Time: Hold time after force value changed
• Delay Time: Delay before each measurement (0 to 999s)
• Speed: KI_CVU_SPEED_FAST = 0; KI_CVU_SPEED_NORMAL = 1; KI_CVU_SPEED_QUIET = 2

Force Func Parameters:

PreSoak: Force voltage after the test starts and before the measurement sequence.
Bias Setup (enabled by selecting bias in Force Func)
• Bias: Force value for the bias
• Points: The number of bias points
Sweep Setup (enabled by selecting Sweep in Force Func)
• Start: Initial force value for the sweep (0.001V to 30V)
• Stop: Final force value for the sweep (-30V to 30V)
• Step: Step force value for the sweep (-30V to 30V)

AC Driver Conditions:

• Frequency: Frequency of the AC drive. Supported frequency: 10kHz to 100kHz in 10kHz steps, 100kHz
to 1MHz in 100kHz steps, 1MHz to 10MHz in 1MHz steps. If an entered value is not a supported
frequency, the closest supported frequency will be selected (for example, 15kHz input will change to
20kHz).

• Voltage: Voltage level of the AC drive (10mV to 100mVRMS).

Measure Setting:

• Parameter: Valid input ['Z,Theta', 'R+jx', 'Cp-Gp', 'Cs-Rs', 'Cp-D', 'Cs-D']
KI_CVU_TYPE_ZTH = 0
KI_CVU_TYPE_RJX = 1
KI_CVU_TYPE_CPGP = 2
KI_CVU_TYPE_CSRS = 3
KI_CVU_TYPE_CPD = 4
KI_CVU_TYPE_CSD = 5

• I Range: Current measure range for impedance measurements. Setting the range to zero enables
autorange.

Compensation Setting:

• Cable Length: Setting for connection compensation. Values from zero to three are valid, but only 0
meters, 1.5 meters, and 3 meters are supported lengths. Any other number from zero to three will be
changed to one of the three values. When you do not need compensation, the cable length should be
assigned to zero.

Connection Compensation:

• Open: Enable or disable compensation constants for an open
• Short: Enable or disable compensation constants for a short
• Load: Enable or disable compensation constants for a load

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-56 ACS-907-01 Rev. F / November 2017

Output parameter name setting:

• input the desired name for the output parameter

Output error list:
0: OK
-10000: Specified CVU does not exist
-10001: (INVAL_PARAM) Parameter setting error occurred
-10090: (GPIB_ERROR_OCCURRED) A GPIB communications error occurred

return dictionary:

result["DCV"]: Force DC voltage
result["result1"]: The first parameter of the result according to the measurement model
result["result2"]: The second parameter of the result according to the measurement model

Syntax:

CVITM.cv42CVU(CVU_name,force_func,preSoak,v_bias,v_biasPts,v_start,v_stop,v
_step,hold_time,delay_time,speed,freq_bias,v_AC,meas_param,meas_range,cable
_length,isCmpstOpen,isCmpstShort,isCmpstLoad,output_DCV,output_result1,outp
ut_result2,output_error)

CV_HP4284
Add a PTM to the configuration navigator, then import the CVITM.py module from the PTMLib library.
The CV test GUI will display. Click the CV4284 in the user module to open the Model 4200-CVU test
(see next two figures).

Figure 72: Select HP4284 user module

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-57

Figure 73: CV_HP4284 setting example

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-58 ACS-907-01 Rev. F / November 2017

The GUI inputs are as follows:

CMTR_name: Instrument ID of the CV_HP4284, sub-list CMTR1, CMTR2, CMTR3, CMTR4

Force Func: bias or sweep

Timing:

• Hold Time: Hold time after force value changed
• Delay Time: Delay before each measurement (0 to 999s)
• Speed: KI_CMTR_SPEED_FAST = 0; KI_CMTR_SPEED_NORMAL = 1; KI_CMTR_SPEED_QUIET =

2

Force Func Parameters:

PreSoak: Force voltage after the test starts and before the measurement sequence.
Bias Setup (enabled by selecting bias in Force Func)
• Bias: Force value for the bias
• Points: The number of bias points
Sweep Setup (enabled by selecting Sweep in Force Func)
• Start: Initial force value for the sweep (0.001V to 30V)
• Stop: Final force value for the sweep (-30V to 30V)
• Step: Step force value for the sweep (-30V to 30V)

AC Driver Conditions:

• Frequency: Frequency of the AC drive. Supported frequency: 10kHz to 100kHz in 10kHz steps, 100kHz
to 1MHz in 100kHz steps, 1MHz to 10MHz in 1MHz steps. If an entered value is not a supported
frequency, the closest supported frequency will be selected (for example, 15kHz input will change to
20kHz).

• Voltage: Voltage level of the AC drive (10mV to 100mVRMS).

Measure Setting:

• Parameter: Valid input ['Z,Theta', 'R+jx', 'Cp-Gp', 'Cs-Rs', 'Cp-D', 'Cs-D']
KI_AGCV_TYPE_ZTR = 0 "ZTR"
KI_AGCV_TYPE_RX = 1 "RX"
KI_AGCV_TYPE_CPG = 2 "CPG"
KI_AGCV_TYPE_CSRS = 3 "CSRS"
KI_AGCV_TYPE_CPD = 4 "CPD"
KI_AGCV_TYPE_CSD = 5 "CSD"

• Impedance Range: Current measure range for impedance measurements. Valid values for this
parameter are 0 (Auto), 100, 300, 1000, 3000, 10000, 30000, and 100000 Ohms.

Compensation Setting:

• Cable Length: Setting for connection compensation. Values from zero to three are valid, but only 0
meters, 1.5 meters, and 3 meters are supported lengths. Any other number from zero to three will be
changed to one of the three values. When you do not need compensation, the cable length should be
assigned to zero.

Connection Compensation:

• Open: Enable or disable compensation constants for an open
• Short: Enable or disable compensation constants for a short
• Load: Enable or disable compensation constants for a load

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-59

Output parameter name setting:

• input the desired name for the output parameter

Output error list:
0: OK
-10000: (INVAL_INST_ID): The specified instrument ID does not exist; specified CVU does not

exist
-10001: (INVAL_PARAM): An invalid input parameter is specified
-10090: (GPIB_ERROR_OCCURRED): A GPIB communications error occurred

return dictionary:

result["DCV"]: Force DC voltage
result["result1"]: The first parameter of the result according to the measurement model.
result["result2"]: The second parameter of the result according to the measurement model

Syntax:

CVITM.cv4284
(CMTR_name,force_func,preSoak,v_bias,v_biasPts,v_start,v_stop,v_step,hold_t
ime,delay_time,speed,freq_bias,v_AC,meas_param,meas_range,cable_length,isCm
pstOpen,isCmpstShort,isCmpstLoad,output_DCV,output_result1,output_result2,o
utput_error)

Figure 74: CV_HP4284 Data tab

Configure a switch matrix library
To configure a switch matrix library, you will need to add a PTM to the configuration navigator. See
the next two topics for more specific information.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-60 ACS-907-01 Rev. F / November 2017

Switch_Control
Add a PTM to the configuration navigator, then import the swichctrl.py module from the PTMLib
library. The Switch GUI will display (see next figure).

Figure 75: Switch_Control GUI

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-61

This module connects matrix row terminals and column pins, according to the row list and column list.
It supports two cards in one switch controller at maximum.

Instrument: Keithley Instruments Switch Matrix 707A, 708A

The Model 708A module can control two cards at most. Plus, the card involved does not need to be
configured in the hardware configuration panel.

Inputs:

switch_name (int): This is the global name that is displayed in the hardware
configuration panel.

open_all (int): A flag that controls if the switch matrix is first cleared before making any
new connections.

 1, all previous connections are cleared
 0, they are left intact

rowlist (list): Matrix row name which will be closed.['A','B']

collist (list): Matrix column name which will be closed.['1','2']

In the GUI, you can control the matrix:

• Select the switch matrix in the drop-down list for the Switch Name
• Click the cells on the panel and the related rows and columns of the matrix will connect. For example,

click A1, and the 1 column and A row will connect. The corresponding cell will highlight (see next
figure). Click the highlighted cells again, and the connections will be cancelled.

• The Clear All function will clear all connections.
• If the Open All option is selected, the matrix will open all old connections before connecting.

Figure 76: Switch_Control setting example

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-62 ACS-907-01 Rev. F / November 2017

KISeries 3700 System Switch
Add a PTM to the configuration navigator, then import the MDD.py module from the PTMLib library.
The 3700 Matrix GUI will display (see next two figures).

Instrument: Keithley Instruments Series 3700 System Switch/Multimeter Cards

This module supports two types of cards: 6x16, High Density, Matrix Card (Model 3730) and Dual
1x30 Multiplexer Card (3720).

Figure 77: Series 3700 System GUI

Figure 78: Series 3700 System Multiplexer GUI

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-63

To control the Model 3700 matrix from the GUI (see next figure):

1. Input the GPIB address number in the GPIB edit box.
2. Click the Matrix Card tab.
3. Select the slot number from 1 to 6.
4. Click the cells on the panel and the related rows and columns of the matrix will connect. For

example, click A1, and the 1 column and the A row will connect. The corresponding cell will
highlight (see next figure). Click the highlighted cells again, and the connections will be cancelled.

5. If you want to clear all connections, click the Open all button.

Figure 79: Matrix control setting example

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-64 ACS-907-01 Rev. F / November 2017

To control the multiplexer card from the GUI (see next figure):

1. Input the GPIB address number in the GPIB edit box.
2. Click the Multiplexer Card tab.
3. Select the slot number from 1 to 6.
4. Click the cells on the panel and the related rows and columns of the matrix will connect. For

example, click the A1, and the 1 column and the A row will connect. The corresponding cell will
highlight (see next figure). Click the highlighted cells again, and the connections will be cancelled.

5. If you want to clear all connections, click the Open all button.

Figure 80: Multiplexer control setting example

If want to accomplish a DMM function test, select the DMM Function, then set the range (0 means
autorange), NPLC, and select the function (see next figure).

Figure 81: DMM setting example

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-65

Script Inputs:

GPIB_Address: GPIB address

Open_all: Open all the channels

S1Channel1: Channel list for 6*16 High Density, Matrix Card

S1Channel1

S1Channel2

S1Channel3

S1Channel4

......

S1Channel16

List_1: Channel list for Multiplexer Card

List_1

List_2

......

List_8

SlotNumberCard1: Slot number for Matrix Card

SlotNumberCard2: Slot number for Multiplexer Card

ModuleCardNum:

Configure a scope library
To configure a scope library, you will need to add a PTM to the configuration navigator. See the topic
for more specific information.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-66 ACS-907-01 Rev. F / November 2017

TEKSCOPE_ReadWave
Add a PTM to the configuration navigator, then import the TEKSCOPE.py module from the PTMLib
library. The TEK SCOPE GUI will display (see next two figures).

This module reads data from one channel at a time. Some modifications are needed in order to
enable it to read data from more channels simultaneously.

Instrument: TEKSCOPE

Figure 82: TEKSCOPE read wave test module GUI

Figure 83: Waveform reading data

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-67

Configure a Series 23x library
The following modules will help you to configure your Series 23x library in order to bias voltage, take
current readings, sweep current, sweep voltage, and take high-voltage measurements for the drain
current while forcing drain voltage and stepping the gate voltage. See the following topics for more
information.

BiasVolt_SampleCurr
This module is used to bias voltage and take current readings for Models 236/237/238.

Instrument: Keithley Instruments Model 236/237/238 source measure unit.

Inputs:

instAddr: GPIB address, 0 through 30; default is 17; change the address according
to the instrument setting.

BiasV: Bias Voltage.

RangeV: Voltage range. If zero is selected, the instrument will autorange.

DelayV: Voltage delay. Zero through 65000 is the time in seconds for a delay and the
default is zero (0).

Compliance: Current-sweep compliance (1E-9 through 1E-1).

RangeCurr: Current measurement range (zero through nine is the range). If zero is selected,
the instrument will autorange.

NumSamples:

interval: Sampling interval. Valid input is zero to 1000 seconds.

Outputs:

output_Curr: Measured Current output.

output_time: Timestamp at each point.

output_error: Error value

0: OK
-10090: GPIB_ERROR_OCCUR

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-68 ACS-907-01 Rev. F / November 2017

Figure 84: 23x Bias V Sample standard GUI

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-69

Sweepsystem computer_23x
This module is used to sweep current and take current, voltage, and time readings for the Model
236/237/238.

Instrument: Keithley Instruments Model 236/237/238 source measure units.

Inputs:

instAddr: GPIB address, 0 through 30; default is 17; change the address according
to the instrument setting.

SweepMode: Sweep mode. 0 is a fixed bias. The sampling measurement 1 is linear sweep; 2
is log sweep.

StartI: Start the sweep current. If in sampling mode, this is the output source value.

StopI: Stop the sweep current.

NumofPoints: Number of sweep points. Valid input is 1 to 1000 for fixed bias mode and linear
mode. For the log sweep mode, valid input is:

 0: 5 points per decade sweep
 1: 10 points per decade sweep
 2: 25 points per decade sweep
 3: 50 points per decade sweep

ComplianceV: Voltage-sweep compliance.

sourceRange: Source range for current. If zero is selected, the instrument will autorange.
Otherwise, the range is the smallest that can accommodate the input value.

MeasureRange: Measurement range for current. If zero is selected, the instrument will autorange.
Otherwise, the range is the smallest that can accommodate the input value.

HoldTime: Hold time setting at the first sweep point. Valid inputs are zero to
9999.999 seconds.

SweepDelay: Delay time between each sweep point. Valid inputs are zero to 9999.999
seconds.

Integration: Analog/digital integration speed:

 0: fast
 1: medium
 2: long, 1PLC (60Hz)
 3: long, 1PLC (50Hz)

Outputs:

output_V: Measured voltage

output_I: Measured current

output_time: Timestamp at each point

output_error: Error value

0: OK
-10090: GPIB_ERROR_OCCUR
-10100: INVAL_PARAM

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-70 ACS-907-01 Rev. F / November 2017

Figure 85: 23x Sweep standard GUI

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-71

SweepVolt_23x
This module is used to sweep voltage and take current, voltage, and time readings for the Model
236/237/238.

Instrument: Keithley Instruments Model 236/237/238 source measure units.

Inputs:

instAddr: GPIB address, 0 through 30; default is 17; change the address according
to the instrument setting.

SweepMode: Sweep mode. 0 is a fixed bias. The sampling measurement 1 is linear sweep; 2
is log sweep.

StartV: Start the sweep voltage. If in sampling mode, this is the output bias value.

StopV: Stop the sweep voltage.

NumofPoints: Number of sweep points. Valid input is 1 to 1000 for fixed bias mode and linear
mode. For the log sweep mode, valid input is:

 0: 5 points per decade sweep
 1: 10 points per decade sweep
 2: 25 points per decade sweep
 3: 50 points per decade sweep

ComplianceI: Current-sweep compliance.

sourceRange: Source range for current. If zero is selected, the instrument will autorange.
Otherwise, the range is the smallest that can accommodate the input value.

MeasureRange: Measurement range for current. If zero is selected, the instrument will autorange.
Otherwise, the range is the smallest that can accommodate the input value.

HoldTime: Hold time setting at the first sweep point. Valid inputs are zero to
9999.999 seconds.

SweepDelay: Delay time between each sweep point. Valid inputs are zero to 9999.999
seconds.

Integration: Analog/digital integration speed:

 0: fast
 1: medium
 2: long, 1PLC (60Hz)
 3: long, 1PLC (50Hz)

Outputs:

output_V: Measured voltage

output_I: Measured current

output_time: Timestamp at each point

output_error: Error value

0 OK.
-1 23x not found on GPIB
-10000 (INVAL_INST_ID) The specified instrument ID does not exist.
-10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-72 ACS-907-01 Rev. F / November 2017

-10091 (GPIB_TIMEOUT) A timeout occurred during communications.
-10100 (Invalid Parameter) An error occurred on an input parameter.

Figure 86: 23x SweepV standard GUI

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-73

VdsIs_237
This module is used to take high-voltage measurements of the drain current while forcing drain
voltage and stepping the gate voltage.

Instruments: Keithley Instruments Model 236/237/238 source measure unit and Model 4200
Semiconductor Characterization System.

Inputs:

instAddr: GPIB address, 0 through 30; default is 17; change the address according
to the instrument setting.

GateSMU: The system terminal connected to the MOSFET gate. If 'GNDU' is chosen, the
terminal should be connected to ground manually.

sourceSMU: The system terminal connected to the MOSFET source. If 'GNDU' is chosen, the
terminal should be connected to ground manually.

SubSMU: The system terminal connected to the MOSFET substrate. If 'GNDU' is chosen,
the terminal should be connected to ground manually.

WellSMU: The system terminal connected to the MOSFET well. If 'GNDU' is chosen, the
terminal should be connected to ground manually. If there is not a well terminal, choose 'NONE'.

VgStart: Start the gate voltages.

VgStop: End the gate voltages.

VgPoint: Number of forced intervals.

VdStart: Start the drain voltages.

VdStop: End the drain voltages.

VdPoint: Number of forced drain voltage intervals.

IdLimit: Current limit on sites (measured in amps).

Integration: Analog/digital integration speed:

 0: fast
 1: medium
 2: long, 1PLC (60Hz)
 3: long, 1PLC (50Hz)

DelayTime: Delay time of measurements (in seconds).

VscForce: Source voltage bias force.

VsbForce: Substrate voltage bias force.

VwForce: Voltage bias force to Well.

VgMsrFlag: Flag to determine if the gate voltage is measured.

IgMsrFlag: Flag to determine if the gate current is measured.

VscMsrFlag: Flag to determine if the source voltage is measured.

IscMsrFlag: Flag to determine if the source current is measured.

VsbMsrFlag: Flag to determine if the substrate voltage is measured.

IsbMsrFlag: Flag to determine if the substrate current is measured.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-74 ACS-907-01 Rev. F / November 2017

VwMsrFlag: Flag to determine if the well voltage is measured.

IwMsrFlag: Flag to determine if the well current is measured.

Outputs:

output_error: Error value

 0 OK
 -1 23x not found on GPIB
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist.
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.
 -10091 (GPIB_TIMEOUT) A timeout occurred during communications.
 -10100 (Invalid Parameter) An error occurred on an input parameter.

Figure 87: Model 237 VdsId standard GUI

Figure 88: Model 237 VdsId test result

Configure a Series 3700 system switch DMM library
To configure a Series 3700 system switch DMM library, you will need to add a PTM to the
configuration navigator. See the next two topics for more specific information.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-75

Series 3700 System Switch DMM two-wire
Add a PTM to the configuration navigator, then import the Gpibresistor.py module from the PTMLib
library. The 3700 DMM resistor test GUI will display (see next figure).

Figure 89: Series 3700 Switch DMM 2-wire standard GUI

Instrument: Keithley Instruments Series 3700 System Switch/Multimeter and plug-in cards.

DUT: Two-terminal generic device.

Function: Measure resistance using a DMM.

Pin Connection: If the multiplexer card is used, connect each terminal of the resistor to one channel
on the multiplexer card. Otherwise, connect one terminal to Pin1 of the analog backplane connector
and connect another terminal to Pin (2 or 9).

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-76 ACS-907-01 Rev. F / November 2017

Series 3700 System Switch DMM four-wire
Add a PTM to the configuration navigator, then import the FourWireResistor.py module from the
PTMLib library. The 3700 DMM resistor test GUI will display (see next figure).

Figure 90: Series 3700 Switch DMM 4-wire standard GUI

Instrument: Keithley Instruments Series 3700 System Switch/Multimeter and plug-in cards.

DUT: Four-terminal generic device.

Function: Measure resistance using a DMM.

Pin Connection: If a multiplexer card is used, a channel pair is used for 4-wire measurement;
channels 1 through 20 are used as the INPUT terminals and channels 21 through 40 are used as the
SENSE terminals. Otherwise, connect the Input HI terminal of the resistor to Pin1 of the analog
backplane connector, the Input LO terminal to Pin (2 or 9), the Sense HI to Pin3, and Sense LO to
Pin4.

Configure a Series 2400 SourceMeter instruments library
To configure a Series 2400 SourceMeter instruments library, add a PTM to the configuration
navigator. See the next topics that will help you to choose the appropriate test module from the Test
Module drop-down list.

Series 2400 drain-current test
Add a PTM to the configuration navigator, then import the HiPower_24.py module from the PTMLib
library. The Series 2400 SourceMeter test library GUI will display. Choose the appropriate test
module from Test Module drop-down list.

Instrument: Keithley Instruments Model 2430 SourceMeter.

Function: This module is used to test the drain-current at a specified drain-voltage, during a gate-
voltage sweep.

Pin Connection: Sweep the gate and bias the drain. The bulk and source are connected to ground, if
there is no applied voltage.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-77

Results
• Get the drain-current measurement during the gate-voltage sweep.
• Get the Vtx and Vt0 results.

Inputs

drain_addr (int): Model 2430 GPIB drain-terminal address.

gate_addr (int): Series 2400 SourceMeter GPIB gate-terminal address.

vg_start (double): Start the gate-voltage pulse (valid input is from -200V to 200V).

vg_stop (double): Stop the gate-voltage pulse (valid input is from -200V to 200V).

points (int): Number of drain-sweep points (valid input 1 to 2500).

vd (double): Drain the bias voltage.

hold_time (double): Hold time in second before gate sweep. Valid inputs are zero to
9999.999 seconds.

delay_time (double): Delay time between each sweep point. Valid inputs are zero to 9999.999
seconds.

limiti (double): Drain-voltage force compliance value (valid input is from -10A to 10A).

rangei (double): Range for drain-current measurement. For pulse mode, autorange is not
allowed (valid input is from -10 through 10).

plc (double): A/D integration time in terms of power line cycles (PLCs)(valid input
0.004 to 0.10).

Outputs

Id (D_ARRAY_T) Drain-current measured at gate sweep voltage

Vg (D_ARRAY_T) Gate-voltage programmed

Gm (D_ARRAY_T) Gm=dId/dVg

Vtx (double*) Vtx= Vt0-Vs/2

Error Error value

 0 OK
 -1 Series 2400 SourceMeter instruments not found on GPIB
 -200 Instrument initialize error
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist
 -10100 (INVAL_PARAM) Parameter setting error occurred
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred

 -10091 (GPIB_TIMEOUT) A timeout occurred during communications

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-78 ACS-907-01 Rev. F / November 2017

Figure 91: Series 2400 instruments IdVg

Figure 92: Series 2400 instruments IdVg test results

Model 2430 gate-voltage sweep test
Module Type: PTM

Instrument: Keithley Instruments Model 2430 SourceMeter.

Function: This module is used to test the drain-current during a gate-voltage sweep, at a specified
drain-voltage, while using the Model 2430 SourceMeter (controlled over a GPIB bus only), with a
measurement at the drain-terminal in sweep pulse mode.

Pin Connection: Sweep the gate and bias the drain. The bulk and source are connected to ground, if
there is no applied voltage.

Results
• Get the drain-current measurement during the gate-voltage sweep, with the drain in pulse mode.
• Get Vtx and Vt0 results.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-79

Inputs

drain_addr (int): Model 2430 GPIB drain-terminal address.

gate_addr (int): Series 2400 SourceMeter GPIB gate-terminal address.

vg_start (double): Start the gate-voltage pulse (valid input is from -200V to 200V).

vg_stop (double): Stop the gate-voltage pulse (valid input is from -200V to 200V).

points (int): Number of drain-sweep points (valid input 1 to 2500).

vd (double): Drain the bias voltage.

hold_time (double): Hold time in second before gate sweep. Valid inputs are zero to
9999.999 seconds.

delay_time (double): Delay time between each sweep point. Valid inputs are zero to 9999.999
seconds.

limiti (double): Drain-voltage force compliance value (valid input is from -10A to 10A).

rangei (double): Range for drain-current measurement. For pulse mode, autorange is not
allowed (valid input is from -10 through 10).

plc (double): A/D integration time in terms of power line cycles (PLCs)(valid input
0.004 to 0.10).

pulse_width (double): Duration of the output ON time (valid value is from 0.15ms to 5ms).

Pulse width should be longer than 200 us if the measurement is in pulse mode. If the pulse width is
shorter than the measurement time (which is based on NPLC and line frequency) the pulse width will
broaden automatically.

pulse_delay (double): Duration of the output OFF time (valid value is from zero to 9999.999s).

Outputs

Id (D_ARRAY_T) Drain-current measured at gate sweep voltage.

Vg (D_ARRAY_T) Gate-voltage programmed

Gm (D_ARRAY_T) Gm=dId/dVg

Vtx (double*) Vtx= Vt0-Vs/2

Vt0 (double*) Calculate Gm=dId/dVg. Find Gmmax and extrapolate back to Ids=0 to find Vt0

Error Error value

 0 OK.
 -1 Series 2400 SourceMeter instruments not found on GPIB.
 -2 2430 not found on GPIB.
 -200 Instrument initialize error.
 -300 Configuration error occurred.
 -400 Reading error occurred.
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist.
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.
 -10091 (GPIB_TIMEOUT) A timeout occurred during communications.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-80 ACS-907-01 Rev. F / November 2017

Figure 93: Model 2430 IdVg Pulse

Figure 94: Series 2400 instruments IdVg Pulse test results

Series 2400 gate-voltage test
Module Type: PTM

Instrument: Keithley Instruments Model 2430 SourceMeter.

DUT: MOSFET, source and bulk are grounded.

Function: This module is used to test the drain-current at a specified gate-voltage during a drain-
voltage sweep.

Pin Connection: Sweep the drain, and bias the gate. The bulk and source are connected to ground, if
there is no applied voltage.

Results: Get the drain-current measurement during the drain-voltage sweep at 10 gate-bias voltages.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-81

Inputs

drain_addr (int): Model 2430 GPIB drain-terminal address.

gate_addr (int): Series 2400 SourceMeter GPIB gate-terminal address.

vd_start (double): Start the voltage-drain pulse.

vd_stop (double): Stop the voltage-drain pulse.

points (int): Number of drain-sweep points (valid input 1 to 2500).

limiti (double): Drain-voltage force compliance value (valid input is from -10A to 10A).

rangei (double): Range for drain-current measurement. For pulse mode, autorange is not
allowed (valid input is from -10 through 10).

plc (double): A/D integration time in terms of power line cycles (PLCs)(valid input
0.004 to 0.10).

vg_start (double): Start the voltage-gate pulse.

vg_stop (double): Stop the voltage-gate pulse.

vg_step (double): Step the voltage-gate pulse.

hold_time (double): Hold time setting at the first sweep point. Valid inputs are zero to
9999.999 seconds.

delay_time (double): Delay time between each sweep point. Valid inputs are zero to 9999.999
seconds.

Outputs

Vd (D_ARRAY_T) Drain-voltage programmed.

Id1 (D_ARRAY_T) Drain-current measured at the first gate bias voltage.

Id2 (D_ARRAY_T) Drain-current measured at the second gate bias voltage.

Id3 (D_ARRAY_T) Drain-current measured at the third gate bias voltage.

Id4 (D_ARRAY_T) Drain-current measured at the fourth gate bias voltage.

….

Error Error value

 0 OK.
 -1 Series 2400 SourceMeter instruments not found on GPIB.
 -200 Instrument initialize error.
 -400 Reading error occurred.
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist.
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.
 -10091 (GPIB_TIMEOUT) A timeout occurred during communications.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-82 ACS-907-01 Rev. F / November 2017

Figure 95: Series 2400 instruments IdVd

Figure 96: Series 2400 instruments IdVd test results

Model 2430 drain-voltage sweep test
Module Type: PTM

Instrument: Keithley Instruments Model 2430 SourceMeter.

Function: This module is used to perform a voltage pulse and current measurement with a Model
2430 in pulse mode (controlled over a GPIB bus only).

Function: This module is used to test the drain-current at a specified gate-voltage, during a drain-
voltage sweep, while using the Model 2430 SourceMeter (controlled over a GPIB bus only), with a
measurement at the drain terminal in sweep pulse mode.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-83

Inputs

drain_addr (int): Model 2430 GPIB drain-terminal address.

gate_addr (int): Series 2400 SourceMeter GPIB gate-terminal address.

vd_start (double): Start the voltage-drain pulse.

vd_stop (double): Stop the voltage-drain pulse.

points (int): Number of drain-sweep points (valid input 1 to 2500).

limiti (double): Drain-voltage force compliance value (valid input is from -10A to 10A).

rangei (double): Range for drain-current measurement. For pulse mode, autorange is not
allowed (valid input is from -10 through 10).

plc (double): A/D integration time in terms of power line cycles (PLCs)(valid input
0.004 to 0.10).

vg_start (double): Start the voltage-gate pulse.

vg_stop (double): Stop the voltage-gate pulse.

vg_step (double): Step the voltage-gate pulse.

pulse_width (double): Duration of the output ON time (valid value is from 0.15ms to 5ms).

pulse_delay (double): Duration of the output OFF time (valid value is from zero to 9999.999s).

Outputs

Vd (D_ARRAY_T) Drain-voltage programmed.

Id1 (D_ARRAY_T) Drain-current measured at the first gate bias voltage.

Error Error value

 0 OK.
 -1 Series 2400 SourceMeter instruments not found on GPIB.
 -2 2430 not found on GPIB.
 -200 Instrument initialize error.
 -300 Configuration error occurred.
 -400 Reading error occurred.
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist.
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.
 -10091 (GPIB_TIMEOUT) A timeout occurred during communications.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-84 ACS-907-01 Rev. F / November 2017

Figure 97: Series 2400 instruments IdVd pulse

Figure 98: Series 2400 instruments IdVd pulse test results

Model 2430 voltage-pulse test
Module Type: PTM

Instrument: Keithley Instruments Model 2430 SourceMeter.

Function: This module is used to perform a voltage pulse and current measurement with a Model
2430 in pulse mode (controlled over a GPIB bus only).

Results: Force the voltage pulse.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-85

Inputs

gpib_addr (int): Instrument GPIB address. Valid input: 1 through 30.

voltage (double): Pulse level forced.

points (int): Number of forced pulses (valid input 1 to 2500).

pulse_width (double): Duration of the output ON time (valid value is from 0.15ms to 5ms).

pulse_delay (double): Duration of the output OFF time (valid value is from zero to 9999.999s).

plc (double): A/D integration time in terms of power line cycles (PLCs)(valid input
0.004 to 0.10).

limiti (double): Current-sweep compliance value.

rangev (double): Range for voltage measurement. If zero is selected, the instrument will
autorange. Otherwise, the range is the smallest that can accommodate the input value.

Outputs

Error Error value

 0 OK.
 -1 Series 2400 SourceMeter instruments not found on GPIB.
 -2 2430 not found on GPIB.
 -200 Instrument initialize error.
 -300 Configuration error occurred.
 -400 Reading error occurred.
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist.
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.
 -10091 (GPIB_TIMEOUT) A timeout occurred during communications.

time

I

V

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-86 ACS-907-01 Rev. F / November 2017

Figure 99: Series 2400 instruments BiasV pulse standard GUI

Model 2430 current-pulse test
Module name: BiasIMeasV_Pulse

Instrument: Keithley Instruments Model 2430 SourceMeter.

Function: This module is used to perform a current pulse and voltage measurements with a Model
2430 in pulse mode (controlled over a GPIB bus only).

Results: Force the current pulse.

Inputs

Inputs:

gpib_addr (int): Instrument GPIB address. Valid input: 1 through 30.

current (double): Pulse level forced.

points (int): Number of forced pulses (valid input 1 to 2500).

pulse_width (double): Duration of the output ON time (valid value is from 0.15ms to 5ms).

pulse_delay (double): Duration of the output OFF time (valid value is from zero to 9999.999s).

plc (double): A/D integration time in terms of power line cycles (PLCs)(valid input
0.004 to 0.10).

limiti (double): Voltage-sweep compliance value.

rangev (double): Range for voltage measurement. If zero is selected, the instrument will
autorange. Otherwise, the range is the smallest that can accommodate the input value.

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-87

Outputs
I

V

time

Error Error value

 0 OK.
 -1 Series 2400 SourceMeter instruments not found on GPIB.
 -2 2430 not found on GPIB.
 -200 Instrument initialize error.
 -300 Configuration error occurred.
 -400 Reading error occurred.
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist.
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.
 -10091 (GPIB_TIMEOUT) A timeout occurred during communications.

Figure 100: Series 2400 instruments BiasI pulse standard GUI

Series 2400 voltage-sweep test
Module name: SweepV_MeasI

Instrument: Keithley Instruments Models 2400/2410/2420/2425/2430 SourceMeter.

Function: This module is used to sweep the voltage signal and take I/V/Time readings for the Models
2400/2410/2420/2425/2430 instruments.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-88 ACS-907-01 Rev. F / November 2017

Inputs

gpib_addr (int): Instrument GPIB address. Valid input: 1 through 30.

startv (double): Start the voltage sweep signal.

stopv (double): Stop the voltage sweep signal.

points (int): Number of sweep points (valid input 1 to 2500).

sweepMode (int): Sweep mode. 0 is a fixed bias. The sampling measurement 1 is linear
sweep; 2 is log sweep.

limiti (double): Current-sweep compliance value.

srangev (double): Source range for voltage current. If zero is selected, the instrument will
autorange. Otherwise, the range is the smallest that can accommodate the input value.

mrangei (double): Measurement range for current. If zero is selected, the instrument will
autorange. Otherwise, the range is the smallest that can accommodate the input value.

hold_time (double): Hold time setting at the first sweep point. Valid inputs are zero to
9999.999 seconds.

delay_time (double): Delay time between each sweep point. Valid inputs are zero to 9999.999
seconds.

plc (double): A/D integration time in terms of power line cycles (PLCs) (valid input 0.01
to 10).

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-89

Outputs
I

V

time

Error Error value

 0 OK.
 -200 Instrument initialize error.
 -300 Configuration error occurred.
 -400 Reading error occurred.
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist.
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.
 -10091 (GPIB_TIMEOUT) A timeout occurred during communications.

Figure 101: Series 2400 instruments SweepV standard GUI

Series 2400 current-sweep test
Module name: SweepI_MeasV

Instrument: Keithley Instruments Models 2400/2410/2420/2425/2430 SourceMeter.

Function: This module is used to sweep the current signal and take I/V/Time readings for the Models
2400/2410/2420/2425/2430 instruments.

Section 4: Series 2600B Library and Python Library Automated Characterization Suite (ACS) Programmer's Manual

4-90 ACS-907-01 Rev. F / November 2017

Inputs

gpib_addr (int): Instrument GPIB address. Valid input: 1 through 30.

starti (double): Start the current sweep signal.

stopi (double): Stop the current sweep signal.

points (int): Number of sweep points (valid input 1 to 2500).

limitv (double): Voltage-sweep compliance value.

srangei (double): Source range for current. If zero is selected, the instrument will
autorange. Otherwise, the range is the smallest that can accommodate the input value.

mrangev (double): Measurement range for voltage. If zero is selected, the instrument will
autorange. Otherwise, the range is the smallest that can accommodate the input value.

hold_time (double): Hold time setting at the first sweep point. Valid inputs are zero to
9999.999 seconds.

delay_time (double): Delay time between each sweep point. Valid inputs are zero to 9999.999
seconds.

plc (double): A/D integration time in terms of power line cycles (PLCs) (valid input 0.01
to 10).

 Automated Characterization Suite (ACS) Programmer's Manual Section 4: Series 2600B Library and Python Library

ACS-907-01 Rev. F / November 2017 4-91

Outputs
I

V

time

Error Error value

 0 OK.
 -200 Instrument initialize error.
 -300 Configuration error occurred.
 -400 Reading error occurred.
 -10000 (INVAL_INST_ID) The specified instrument ID does not exist.
 -10090 (GPIB_ERROR_OCCURRED) A GPIB communications error occurred.
 -10091 (GPIB_TIMEOUT) A timeout occurred during communications.

Figure 102: Series 2400 instruments SweepI standard GUI

In this section:

Overview .. 5-1
Global variables ... 5-2
Global functions ... 5-7
Tools for UAP routines ... 5-22
How to use UAPs ... 5-26

Overview
User access points (UAPs) allow you to extend the features and functions of the Keithley-provided
test execution engine at the test, device, subsite, site, wafer, and cassette (lot) levels. This is
accomplished by executing the python test module (PTM), the C language Test Module (CTM), or the
Script Test Module (STM) at the entry or exit of each level of automation within ACS.

ACS global variables and functions are used in a UAP routine to get test information, to control the
testing process, or to write custom data file results.

This document will describe the global data and global functions that are available within ACS and
provide some application examples. All of these descriptions and examples are based on PTMs.

Section 5

UAP and Global variable definitions

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-2 ACS-907-01 Rev. F / November 2017

Global variables
Global data variables can be accessed from a UAP PTM (see the next table). All global variables start
with the characters ACS_xxxx.

ACS global variables

Variable name Type Comment UAP level Example
ACS_frame string The frame of ACS Any UAP Object
ACS_uap_level string Current UAP level Any UAP 'wafer_begin', site_end
ACS_proj_path string Current path Any UAP 'C:\ACS\Projects\default

'
ACS_proj_name string Current project name Any UAP 'default'
ACS_lot_id string Current lot ID Any UAP except lot begin 'lotid001' (if single wafer)
ACS_slot_no int Current slot number Wafer level and below 1, 2, …25
ACS_wafer_id string Current wafer ID Wafer level and below 'waferid001'
ACS_pattern_id string Current pattern ID Pattern level and below 'Pattern1'
ACS_site_id string Current die ID Site level and below 'Site_n1p1'
ACS_site_coord tuple Current die coordinates Subsite level and below (-1, 1)
ACS_ssite_id string Current subsite ID Subsite level and below 'subsite1'
ACS_ssite_loop int Current subsite index of

subsite loop
Subsite level and below 1

ACS_ssite_loopNum int Total loop number of the
current subsite

Subsite level and below 1

ACS_ssite_coord tuple Current subsite
coordinates

Subsite level and below (0.0,0.0)

ACS_dut_id string Current DUT ID DUT level and below 'Resistor'
ACS_test_id string Current test ID Test level 'sweepv'
ACS_test_data dictionary Current test data Test end level See the next topic
ACS_wdf_head dictionary WDF header information Wafer level and below See the next topic
ACS_wdf_nonexist dictionary WDF erased sites

dictionary
Any UAP See the next topic

ACS_t_start string Test start time Any UAP '08-Aug-2008 20:08'
ACS_t_end string Test end time Any UAP '08-Aug-2008 20:10'
ACS_first_wafer bool Is this the first wafer in

the cassette?
Wafer level and below True or False

ACS_last_wafer bool Is this the last wafer in the
cassette?

Wafer level and below True or False

ACS_first_site bool Is this the first site of the
wafer?

Site level and below True or False

ACS_last_site bool Is this the last site of the
wafer?

Site level and below True or False

ACS_output_list list All tests' output list Any UAP See the next topic
ACS_temp_klf string Temporary klf file location Any UAP 'C:\DOCUME~1\kiadmin

\LOCALS~1\Temp'
ACS_prb_errcode int Prober error code Any UAP 0, -1013
ACS_operator string Operator field from

automation panel
Any UAP, from
Automation

Same as entry

ACS_die_type string Die type from automation
panel

Any UAP, from
Automation

Same as entry

ACS_remark string Remark from automation
panel

Any UAP, from
Automation

Same as entry

ACS_session_name string Session name from
automation panel

Any UAP, from
Automation

Same as entry

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-3

ACS_equipment_id string Equipment from
automation panel

Any UAP, from
Automation

Same as entry

ACS_fixture_id string Fixture ID from
automation panel

Any UAP, from
Automation

Same as entry

ACS_testplan_ver string Test Plan Version from
automation panel

Any UAP, from
Automation

Same as entry

ACS_process_level string Test Process Level from
automation panel

Any UAP, from
Automation

Same as entry

ACS_userdata_path string Full path of user data Any UAP 'C:\ACS\user_data'
ACS_ptm_path string PTM directory setting in

preference
Any UAP 'C:\ACS\library\pyLibrary

\PTMLib'
ACS_site_passfail_info string Did the current site pass

or fail?
Any UAP 'pass' or 'fail'

ACS_test_wafer_ids list Save the IDs of the tested
wafers

Any UAP, from
Automation

['01', '02', '03', '04']

ACS_rpt_each_wafer int Create a kdf file for each
wafer? (1= yes, 0 = no)

Any UAP 0

ACS_ktxe_exit int Stop the execution of ktxe Any UAP 1
ACS_ktxe_loop_wafer int Current wafer loop flag Any UAP except for lot

end
1

ACS_run_mode string Indicate automation or
manual run

Any UAP 'automation' or 'manual'

ACS_Disable_Subsite_LIst list If the subsite name is in
this list, the subsite is
skipped.

Test end level ['pre_test']

ACS_Disable_DUT_List list If the subsite name is in
this list, the subsite is
skipped.

Test end level ['DEV']

ACS_Disable_Test_List list If the subsite name is in
this list, the subsite is
skipped.

Test end level ['MOS']

ACS_Stress_Time float The accumulated time for
the measure stress loop.
Changed to different
value according to subsite
loop number.

Any UAP 10

ACS_Stress_Duration float Stress duration time for
each subsite loop.

Any UAP 5

Most global variables are available at any UAP level, however, the value is accurate only when it is
accessed at the level documented in the "UAP Level" column in the previous table.

Each of these variables can be accessed directly by the name. You can view the variable values by
using the logMessage function which is defined in LogManager.py. The messages are viewable in
the log window at the bottom of the ACS GUI.

If the variable type is string, you can view its value by using the following code in a UAP routine:
import LogManager as log
log.logMessage(ACS_lot_id)

If the variable type is not string, you need to add the str() function to change the variable type to
string.
import LogManager as log
log.logMessage(str(ACS_test_data))

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-4 ACS-907-01 Rev. F / November 2017

Examples are shown below for some of the more complicated variable data types:

• ACS_output_list
• Type: list

Structure:
[outputName@testID, …]

Example:
['V_Pos@itm', 'I_Pos@itm']

• ACS_test_data
• Type: dictionary

Structure:
{
'GROUP1' : {var1: […], var2: […],…},
'GROUP2' : { var1: […], var2: […],…},
...
}

Example:
{
'GROUP1': {'V_Pos': [0.39491547641171859],
'I_Pos': [0.16948805017700203]
}
}

ACS_test_data is assigned when the test ends and the test data resets to {} when the test begins.

• ACS_wdf_nonexist
• Type: dictionary

Structure:
{(x, y):Site_pxny, …}

Example:
{(1, 3): 'Site_p1p3', (3, 3): 'Site_p3p3'}

• ACS_wdf_head
• Type: dictionary

Structure:
{
 "version" : string version,

 "file" : string filename,
 "date" : string date,
 "comment" : string comment,
 "project" : string Single,
 "diameterunits" : string Metric|English,
 "diameter" : float diameter,
 "units" : string Metric|English,
 "squarewaferx" : float width, wafer width in square wafer,
 "squarewafery" : float height, wafer height in square wafer,
 "diesizex" : float diesizex, or Glass width in LCD,
 "diesizey" : float diesizey, or Glass length in LCD,
 "orientation" : (string Flat|Notch,
 string Top|Bottom|Left|Right,
 string Top|Bottom|Left|Right),

 "waferoffset" : (float xoffset, float yoffset),
 "axis" : int 1|2|3|4,

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-5

 "origin" : (int xdistance_to_target,int ydistance_to_target),
 "target" : (int targetx, int targety),
 "autoalignlocation" : (float alignx, float aligny),
 "optimize" : int 0-9,
 "siteusage" : int usage,
 "chipsperreticle" : (float, float),
 "reticletarget" : (float, float), or Mark1 position in LCD
 "reticleoffset" : (float, float), or Mark2 position in LCD
 "partial": int 0-1, or whether to show coordinate on glass map in LCD
 "margin": float,
 "color": {"default": string, "margin": string, "target": string, "target

selected": string,
 "current": string, "touched": string, "pass": string, "fail": string},
 "numx": int Site num in x direction, added for LCD
 "numy": int Site num in y direction, added for LCD
 "squareflag": int 0-1, default 0
 "userdefvalue1" : string,
 "userdefvalue2" : string,
 :
 :
 "userdefvalue10" : string
 }

Example:

 {'comment': '',
'diameter': 8.0,
'partial': 0,
'orientation':('Flat','Left','Bottom'),
'squareflag': 0,
'color': {'targetsel': (255, 255, 0),
 'target': (255, 0, 0),
'default': (129, 243, 235),
'invalid': (193, 193, 193),
'current': (0, 0, 255),
'grid': (157, 149, 130),
'touched': (0, 255, 0),
'pass': (0, 255, 0),
'fail': (255, 0, 0),
'margin': (171, 168, 217)},
'optimizepriority': 'die',
'userdefvalue10': '',
'file': '',
'axis': 2,
'diameterunits':'English',
'scale': 1,
'autoalignlocation': (0.0, 0.0),
'siteusage': 0,
'userdefvalue6': '',
'userdefvalue7': '',
'userdefvalue4': '',
'userdefvalue5': '',
'userdefvalue2': '',
'userdefvalue3': '',
'version': 1.1000000000000001,
'userdefvalue1': '',
'units': 'Metric',

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-6 ACS-907-01 Rev. F / November 2017

'reticleoffset': (0.0, 0.0),
'userdefvalue8': '',
'userdefvalue9': '',
'logicrow': 1,
'numx': 4,
'numy': 4,
'diesizey': 20.0,
'logiclist': [(0, 0)],
'reticletarget': (0.0, 0.0),
'date': '',
'diesizex': 20.0,
'optimize': 0,
'origin': (5, 5),
'movestepdiv': 10,
'target': (0, 0),
'solid': 1,
'waferoffset': (0.0, 0.0),
'project': 'Single',
'logiccol': 1,
'chipsperreticle': (0.0, 0.0),
'squarewaferx': 100.0,
'squarewafery': 100.0,
'margin': 2}

• ACS_temp_klf
• Type: string

Usage: Defines the location of a temporary limits file. You can construct a Keithley limits file (.klf) object
and get limits information. The .klf object has two common properties: head and limits. Head is
dictionary type and limit is a list type.
.klf head Structure:

 {
 "version" : string, # Version of the limits file
 "file" : string, # Name of the limits file
 "date" : string, # Update date of the limits file
 "comment" : string # Comments
 }

.klf limits structure:
 [{
 "id" : string, # ID of result
 "nam" : string, # Friendly name of result
 "unt" : string, # Unit of result
 "rpt" : int, # Report flag, 0/1
 "crt" : int, # Critical level, 0~9
 "tar" : float, # Target value
 "val" : (float, float), # Valid limits
 "spc" : (float, float), # Spec limits
 "cnt" : (float, float), # Control limits
 "eng" : (float, float), # Engineer limits
 "af" : int, # Abort limit
 "al" : int, # Abort level
 "ena" : int # Enable/Disable (requires adaptive test)
},
…
]

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-7

Example:
import LogManager as log
import KLF

klf = KLF.KLF(ACS_temp_klf)
log.logMessage(str(klf.head))
log.logMessage(str(klf.limits))

• Usage of ACS_Stress_Time/ ACS_Stress_Duration/ ACS_Disable_Subsite_List/ ACS_
Disable_DUT_List/ ACS_Disable_Test_List - you can find the DC stress-measure loop project in
the folloing location: (C:\ACS\Projects\ DC_Stress_Measure_loop) and Pulse stress-measure
loop project (C:\ACS\Projects\ Pulse_Stress_Measure_Loop). Note that the Pulse stress-
measure loop project is only available when ACS is installed on the Model 4200-SCS.

Global functions
Functions that can be accessed in the UAP PTMs are listed in the next Table:

ACS global functions
 Function type Function name Comment

 User Global Data Functions FUNC_SET_GLOBAL_VALUE
(name, value)

Update global variable with a value. Only this
function can change a global variable value.

FUNC_GET_GLOBAL_VALUE
(name)

Get a global variable’s value

FUNC_SET_USER_GLOBAL Define new variable in user global data pool.
Only used between UAP

FUNC_SYS_GLOBAL (name,
value)

Set system global variable value

 Execution Engine Related
Functions

FUNC_EXIT_KTXE Exit ktxe execution
FUNC_SET_KTXE_SUBSITES Set subsites list used by the execution

engine
FUNC_SET_KTXE_LOOP_WAFER Set wafer loop flag
FUNC_EXEC_TEST Execute the specified test module

 KDF Manipulation Related
Functions

FUNC_GET_KDF_HEADER Get kdf header; returns data as a dictionary
FUNC_SAVE_KDF_HEADER Save kdf header dictionary into a kdf file
FUNC_SAVE_KDF_WAFERID Save kdf wafer id into a kdf file
FUNC_SAVE_KDF_EOW Save kdf wafer delimiter (<EOW>) into a kdf

file
FUNC_SAVE_KDF_SITEID Save kdf site id into a kdf file
FUNC_SAVE_KDF_EOS Save kdf site delimiter (<EOS>) into a kdf file
FUNC_GET_KDF_DATA Get kdf data for the specified wafer and site

id
FUNC_GET_NEW_KDF_DATA Get the latest kdf data for the specified wafer

and site id
FUNC_SAVE_KDF_DATA Save kdf data into a kdf file
FUNC_SITE_COORD_2_ID Translate site coordinate to site id
FUNC_SITE_ID_2_COORD Translate site id to site coordinate

 Get Object Functions FUNC_GET_WDF_OBJ Get the wdf object used by the execution
engine

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-8 ACS-907-01 Rev. F / November 2017

FUNC_GET_KDF_OBJ Get kdf object from the test tree used by the
execution engine

FUNC_GET_SUBSITE_OBJ Get the subsite object from the test tree used
by the execution engine according to the
subsite name

FUNC_GET_DUT_OBJ Get the DUT object from the test tree used
by the execution engine according to the
DUT’s name

FUNC_GET_TEST_OBJ Get the test object from the test tree
according to the test name

 Get Test Info Functions GET_EXEC_TEST_DIC Get content of the test dictionary
GET_EXEC_TEST_LIST Get test list. It is the key in test dictionary
FUNC_GET_DUT_NAME Get the DUT's name

FUNC_SET_GLOBAL_VALUE (name, value)
Function: Update the global variable with a value. Only this function can be used to change a global
variable’s value.

Parameter:

Name: string; global variables are listed in Table 1

Value: string

Example:
FUNC_SET_GLOBAL_VALUE('ACS_wafer_id', 'wafer_1')

A variable must have quotation marks. For example, ‘ACS_wafer_id’ or "wafer_1." This function can
update the value of the corresponding global variable, but it cannot update the value saved the .kdf
file. If you want the updated value stored in the .kdf file, use the KDF Manipulation Related
Functions.

FUNC_GET_GLOBAL_VALUE (name)
Function: Get global variable’s value. You can also use the variable’s name directly.

Parameter:

Name: string, variables which are listed in Table 1

Return: string

Example:
FUNC_GET_GLOBAL_VALUE('ACS_wafer_id')
Or ACS_wafer_id

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-9

FUNC_SET_USER_GLOBAL (name)
Function: Add a global user variable to the data pool. After the variable is set, this user global
variable can be used by name directly at current UAP and below.

Parameter:

Name: string

Example:
g_site_id_list = []
g_site_id_list must be declared in advance
FUNC_SET_USER_GLOBAL("g_site_id_list ")

FUNC_SET_KTXE_LOOP (value)
Function: Set the ACS_ktxe_loop_wafer global variable which is the current wafer loop flag. If the
value is 1, then the current wafer will be tested repeatedly until the flag is set to 0. This function is
only effective in single wafer mode.

Parameter:

Value: int. 1 or 0

Example:
FUNC_SET_KTXE_LOOP_WAFER(1)

FUNC_SYS_GLOBAL (name, value)
Function: Set the system global variable’s value.

Parameter:

Name: string, global variables which are listed in Table 1

Value: string

Example:
FUNC_SYS_GLOBAL('ACS_wafer_id', 'wafer_1')

FUNC_EXIT_KTXE ()
Function: Exit the execution engine.

Example:
FUNC_EXIT_KTXE()

FUNC_SET_KTXE_SUBSITES (subsite list)
Function: Change the subsite list in the execution engine. Used on the site level UAP and below.

Parameter:

subsitelist: list, in format of [(x1,y1), (x2, y2), …]

Example:
FUNC_SET_KTXE_SUBSITES([(0.0,0.1),(0.2,0.3)])

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-10 ACS-907-01 Rev. F / November 2017

FUNC_GET_KDF_HEADER ()
Function: Get the kdf header.

Return: dictionary; If a kdf exists. If a kdf does not exist = False.

Example: Use this function at the beginning of the UAP lot.

Return Structure:
{
"typ" : string type,
"lot" : string lot ID,
"prc" : string process ID,
"dev" : string device ID,
"tst" : string test program name,
"sys" : string tester name,
"tsn" : int tester number,
"opr" : string operator name,
"stt" : string start time,
"sk1" : string search key 1,
"sk2" : string search key 2,
"sk3" : string search key 3,
"lmt" : string limit file name,
"wdf" : string wafer description file name,
"com" : comment
}

Example data:
{
'tsn': 1,
'stt': '26-Feb-2009 10:55',
'opr': 'wendy',
'prc': '1',
'lmt': '',
'dev': 'exampledietype',
'sys': 'WENDY',
 'lot': 'lotid',
'tst': 'Keithley S500',
'com': 'exampleremark',
'wdf': ''
}

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-11

FUNC_SAVE_KDF_HEADER (kdf_file, header)
Function: Save kdf header dictionary into a corresponding kdf file.

Parameter:

kdf_file: string, the full name of kdf file.

header: dictionary, kdf header information.

Return:

True: If write to file was successful.

False: If write to file was not successful.

Example:
FUNC_SAVE_KDF_HEADER('C://a.kdf', {'tsn': 1, 'stt': '26-Feb-2009 10:55', 'opr':

'wendy', 'prc': '1', 'lmt': '', 'dev': 'exampledietype', 'sys': 'WENDY', 'lot':
'lotid', 'tst': 'Keithley S500', 'com': 'exampleremark', 'wdf': ''})

FUNC_SAVE_KDF_WAFERID (kdf_file, wafer_id)
Function: Save kdf wafer id into a corresponding kdf file.

Parameter:

kdf_file: string, the full name of kdf file.

wafer_id: string, ID of wafer

Return:

True: If write to file was successful.

False: If write to file was not successful.

Example:
FUNC_SAVE_KDF_WAFERID('C://a.kdf', '01')

FUNC_SAVE_KDF_EOW (kdf_file)
Function: Save kdf wafer delimiter (<EOW>) into a kdf file.

Parameter:

kdf_file: string, the full name of kdf file.

Return:

True: If write to file was successful.

False: If write to file was not successful.

Example:
FUNC_SAVE_KDF_EOW('C://a.kdf')

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-12 ACS-907-01 Rev. F / November 2017

FUNC_SAVE_KDF_SITEID (kdf_file, site_id, site_x, site_y)
Function: Save kdf site id into a kdf file

Parameter:

 kdf_file: string, the full name of kdf file

 site_id: string, ID of site

 site_x: string, x-coordinate of the site

 site_y: string, y-coordinate of the site

Return:

True: If write to file was successful.

False: If write to file was not successful.

Example:
FUNC_SAVE_KDF_SITEID('c:\\a.kdf', 'Site_p4p5', '4','5')

FUNC_SAVE_KDF_EOS (kdf_file)
Function: Save kdf site delimiter (<EOS>) into a kdf file.

Parameter:

 kdf_file: string, the full name of kdf file

Return:

True: If write to file was successful.

False: If write to file was not successful.

Example:
FUNC_SAVE_KDF_EOS('c:\\a.kdf')

FUNC_SAVE_KDF_DATA (kdf_file, data)
Function: Save kdf data into a kdf file.

Parameter:

 kdf_file: string, the full name of kdf file data: list, the data which is to be written into the kdf file

Return:

True: If write to file was successful.

False: If write to file was not successful.

Example:
FUNC_SAVE_KDF_DATA('c:\\a.kdf',
[['I_Pos@itm@HOME#1@GROUP1', 0.033643178212167946], ['I_Pos@itm@HOME#2@GROUP1',

0.44579186631844625]])

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-13

FUNC_GET_KDF_DATA (wafer_id, site_id)
Function: Get the kdf data for the specified wafer and site id

Parameter:

 wafer_id: string, ID of wafer.

 site_id: string, ID of site.

Return:

List of data: If the kdf data file was read successfully.

False: If the read from the kdf data file was not successful.

Return Structure:
[[padname@testname@subsitename#subsitlistid@groupname],…]

Example:
import LogManager as log
log.logMessage(str(FUNC_GET_KDF_DATA(ACS_wafer_id, ACS_site_id)))
output:
[['I_Pos@itm@HOME#1@GROUP1', 0.033643178212167946], ['I_Pos@itm@HOME#2@GROUP1',

0.44579186631844625], ['I_Pos@itm_2@HOME_2#1@GROUP1', 0.36503035785604399],
['I_Pos@itm_2@HOME_2#2@GROUP1', 0.012356422404429968]]

[['V_Pos@sweepv@subsite', [0.002973165938638308, 0.0059463318772766159,
0.0089194978159149244, 0.011892663754553232, 0.014865829693191539]]]

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-14 ACS-907-01 Rev. F / November 2017

FUNC_GET_NEW_KDF_DATA (wafer_id, site_id)
Function: Get the latest kdf data for the specified wafer and site id. It differs from the function
FUNC_GET_KDF_DATA (wafer_id, site_id) only when the site sequence priority is pattern first and
the same site is selected in multiple patterns.

Parameter:

 wafer_id: string, ID of wafer.

 site_id: string, ID of site.

Return:

list: If the read of the kdf data was successful.

False: If the read from kdf file was not successful.

Return Structure:
[[padname@testname@subsitename#subsitlistid@groupname],…]

Example:

Build a project with two patterns and select the same site in both patterns. Work in single mode.
Execute the following code at site end UAP for an example of how to use this function.
import LogManager as log
log.logMessage(str(FUNC_GET_KDF_DATA(ACS_wafer_id, ACS_site_id)))
log.logMessage(str(FUNC_GET_NEW_KDF_DATA(ACS_wafer_id, ACS_site_id)))
Line OUTPUT:
[['I_Pos@itm@HOME#1@GROUP1', 0.033643178212167946], ['I_Pos@itm@HOME#2@GROUP1',

0.44579186631844625], ['I_Pos@itm_2@HOME_2#1@GROUP1', 0.36503035785604399],
['I_Pos@itm_2@HOME_2#2@GROUP1', 0.012356422404429968]]

Line OUTPUT:
[['I_Pos@itm_2@HOME_2#1@GROUP1', 0.36503035785604399],

['I_Pos@itm_2@HOME_2#2@GROUP1', 0.012356422404429968]]

FUNC_SITE_COORD_2_ID (coord)
Function: Translate the site coordinate to site id.

Parameter:

coord: tuple, site coordinates

Return:

string: If the translation was successful, in the form of Site_p1n2

None: If the translation was not successful.

Example:
import LogManager as log
log.logMessage(str(FUNC_SITE_COORD_2_ID((1,-2))))

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-15

FUNC_SITE_ID_2_COORD (site_id)
Function: Translate the site id to site coordinate.

Parameter:

 siteid: string

Return:

coord: tuple, site coordinates. : In form of (1,-2)

None: If the translation was not successful.

Example:
import LogManager as log
log.logMessage(str(FUNC_SITE_ID_2_COORD(Site_p1n2))))

FUNC_GET_WDF_OBJ ()
Function: Get the wdf object used by the execution engine. Use this wdf object to get properties and
to be able to call functions. All properties and functions can be called by '.' operator after getting the
wdf object

WDF object Property:
self.head # Same as ACS_wdf_head
self.patterns
self.subsites
self.touchedsites
self.passsites
self.failsites
self.currentsite
self.finishsite #For LCD
self.nonexist # the nonexistent dice defined by user
self.diemapping

WDF object Operation:
load(wdf_file): load .wdf file into a wdf object
save(wdf_file): save wdf object to .wdf file
clear(): clear wdf object.
reset(): reset wdf object’s all properties to default values.

Parameter

Return:

wdf_object : object, if wdf object is in the execution engine.

None: if no wdf object in execution engine.

Example:
import LogManager as log
log.logMessage(str(FUNC_GET_WDF_OBJ().head))
FUNC_GET_WDF_OBJ().clear()

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-16 ACS-907-01 Rev. F / November 2017

GET_EXEC_TEST_DIC ()
Function: Get the contents of the test dictionary.

Parameter:

Return:

test_dict: dictionary, site coordinates. : In form of (1,-2)

None: If failure to extract contents.

Return Structure:
 {(waferid, pattern_name, site_id, subsite_name, device_name, test_name):

test_Object, …}

Example:
import LogManager as log
log.logMessage(str(GET_EXEC_TEST_DIC()))
OUTPUT:
{('01', 'Pattern_1', 'Site_p2p1', 'HOME', 'device_26', 'itm'): <testtree.TEST

instance at 0x063BBFD0>, ('01', 'Pattern_1', 'Site_p2p1', 'HOME', 'device_26',
'itm_1'): <testtree.TEST instance at 0x063D87B0>}

FUNC_EXEC_TEST (location)
Function: Execute a test.

Parameter:

location: tuple, with format of (waferid, pattern_name, site_id, subsite_name, device_name,
test_name)

Return:

test data: dictionary,

None: If execution was unsuccessful.

Return Structure:

Example:
import LogManager as log
log.logMessage(str(FUNC_EXEC_TEST(('03', 'Pattern_1', 'Site_n2p2', 'subsite',

'Resistor_1k', 'sweepv'))))
OUTPUT:
{ 'V_Pos':[0.12319012835262809,0.24638025670525618,

0.36957038505788425,0.49276051341051236,
0.61595064176314041],
'I_Pos': [0.153436046185253, 0.306872092370506, 0.46030813855575897,
0.613744184741012, 0.76718023092626497]}

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-17

GET_EXEC_TEST_LIST ()
Function: Get the execution test list.

Parameter:

Return:

test_list: list

None: If fail.

Return Structure:
[(waferid, pattern_name, site_id, subsite_name, device_name, test_name),…]

Example:
import LogManager as log
log.logMessage(str(GET_EXEC_TEST_LIST()))

OUTPUT:
[('01', 'Pattern_1', 'Site_p2p1', 'HOME#1', 'device_26', 'itm'), ('01',

'Pattern_1', 'Site_p2p1', 'HOME#1', 'device_26', 'itm_1'), ('01', 'Pattern_1',
'Site_p2p1', 'HOME#2', 'device_26', 'itm'), ('01', 'Pattern_1', 'Site_p2p1',
'HOME#2', 'device_26', 'itm_1')]

FUNC_GET_TEST_OBJ (test_name)
Function: Get the test object from the test tree used by the execution engine.

Parameter:

test_name: string, ID of test

Return:

test_object: Object

None: If fail.

Test Object property:
self.msg
self.commonSetting
self.SMU
self.outputs
self.limit
self.dut

Test Object function:
reset()
clear()

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-18 ACS-907-01 Rev. F / November 2017

Example:
import LogManager as log
log.logMessage(str(FUNC_GET_TEST_OBJ(ACS_test_id)))

Output:
<testtree.TEST instance at 0x064CC6E8>

log.logMessage(str(FUNC_GET_TEST_OBJ(ACS_test_id).limit))

Output:
[{'Target': 0,
'ValidHigh': 9.9999999999999997e+098,
'ConsFail': 0,
'ValidLow': -9.9999999999999997e+098,
'Critical': 0,
'Exit': 'None',
'SpecLow': -9.9999999999999997e+098,
'Report': 1,
'Sigma': 1.0,
'Unit': 'A',
'SpecHigh': 9.9999999999999997e+098}, …]

FUNC_GET_SUBSITE_OBJ (subsite_name)
Function: Get the subsite object from the test tree used by the execution engine.

Parameter:

subsite_name: string, ID of subsite

Return:

subsite_object: Object

None: If fail.

Subsite Object property:
self.name
self.id
self.checked
self.DUTList
self.DUTMaps
self.location
self.ssiteList
self.loop
self.site
self.msg'

Subsite Object function:
getTest(test_name)

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-19

Example:
import LogManager as log
log.logMessage(str(FUNC_GET_SUBSITE_OBJ(ACS_ssite_id)))

Output:
<testtree.SUBSITE instance at 0x068CD0A8>

log.logMessage(str(FUNC_GET_SUBSITE_OBJ(ACS_ssite_id).name))
Output:
subsite

FUNC_GET_DUT_OBJ (dut_name)
Function: Get the DUT object from the test tree used by the execution engine. Use the DUT object to
get properties and to be able to call functions

DUT object property:
self.info= {
 'devType' : default 'NMOS',
 'checked' : default '1',
 'expand' : default '0',
 'comment',
 'bitmapFile' : bitmap file path and name,
 'numberOfSubdev' : default 1,
 'subdevList' : [
 [
 string subdev_ID, [[string padID, [int SMUID,

string padName]]
 ...
]
],
 ...
]
 }

DUT object function:
getSMUInfo(subDevNo=-1):Get SMU information according to subdevice No.
reset(): Reset SMU information to default setting

Parameter:

dut_name: string

Return:

dut_object: If success

None: If fail.

Example:
import LogManager as log
log.logMessage(str(FUNC_GET_DUT_OBJ(ACS_dut_id)))
output:
<testtree.DUT instance at 0x06293CD8>

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-20 ACS-907-01 Rev. F / November 2017

FUNC_GET_DUT_NAME (test_name)
Function: Get the DUT’s name according to the test name. Same value as ACS_dut_id

Parameter:

test_name: string

Return:

dut_name: string, If successful

None: If not successful

Example:
import LogManager as log
log.logMessage(ACS_dut_id)
log.logMessage(FUNC_GET_DUT_NAME(ACS_test_id))

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-21

FUNC_GET_KDF_OBJ (dut_name)
Function: Get the kdf object from the test tree used by the execution engine.

The KDF object contains the following members:
 head {
 "typ" : string type,
 "lot" : string lot ID,
 "prc" : string process ID,
 "dev" : string device ID,
 "tst" : string test program name,
 "sys" : string tester name,
 "tsn" : int tester number,
 "opr" : string operator name,
 "stt" : string start time,
 "sk1" : string search key 1,
 "sk2" : string search key 2,
 "sk3" : string search key 3,
 "lmt" : string limit file name,
 "wdf" : string wafer description file name,
 "com" : comment
 }
 wafers [
 {
 "ID" : string ID,
 "split" : int split,
 "boat" : int cassette,
 "slot" : int slot,
 "sites" : [
 {
 "ID" : string ID,
 "coord" : (int x, int y),
 "data" : [
 [string ID, float scalar | [float arrayitem, ...]]
 :
 :
]
 }
 :
 :
]
 }
 :
 :
]
 waferIDs [[string ID, int count], ...]
 siteIDs [[string ID, int count], ...]
 dataIDs [[string ID, int count], ...]
 msg string or None

Example:
import LogManager as log
log.logMessage(str(FUNC_GET_KDF_OBJ()))
output:
<KDF.KDF instance at 0x064CB738>

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-22 ACS-907-01 Rev. F / November 2017

Tools for UAP routines
Defined modules can be reused by another program by using the import command. See the next
topics to learn how to use these modules for your program.

Importing python modules
Here are the ways to import a module:

• import "X": imports the module "X". After you have run this statement, you can use the "X" name
to refer to things defined in module "X".

• import "X" as "Y": rename the module "X" as "Y". If "X" is a long name, you should use a short
name for "Y".

• from "X" import *: imports all public objects from the module "X". This allows you to simply use the
name to refer to things defined in module "X". "X" itself is not defined, so the "X" name is not
valid. If the name is already defined, it is replaced by the newer version. If the name in "X" is
changed to point to some other object, your module will not recognize it. So it is strongly
recommended to NOT import since the module will be recognized.

From the "X" import a, b, c: imports a, b, c objects from the module "X". You can now use a, b, and c
in your program. It is recommended that you always use the import "X" statement.

Modules in ACS

If you want to use these modules, you must import them into a UAP routine using the import
statement. For example, import LogManager.

• LogManager: This module provides functions to print information to log window, there are six
functions to print information according to log level.

logMessage(message)
logDebug(message)
logInfo(message)
logWarning(message)
logError(message)
logCritical(message,color=False): when color is True, message will be printed in

red.

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-23

• .klf: This module provides functions to operate on a limits file and is used with the global variable
ACS_temp_klf. You must construct a .klf object before using these functions. Refer to the ACS
Reference manual (document number: ACS-901-01) for more information. The .klf functions are
provided as an example (see next example).

Example .klf functions:
KLF.KLF(klf): Construct klf object. .klf file is loaded into the KLF object.
.load(klf): Load a KLF file.
.clear(): Clear the KLF object. head is set to {}, limits is set to [],and msg is

set to None.
.save(klf, limits): Save limit list into a KLF file.
.find(ID): Search ID through the limit list, return reference of the item if found.
.remove(ID): Remove an item from the limit list according to the ID given.
.new(ID = ""): Create a new limit item with all default values.
.reset(ID_or_lim): Reset a limit item with default values, its ID is reserved.
.update(ID_or_lim, **attrib): Update a limit item with the new attributes given.
.insert(index, ID_or_lim): Insert an item at the specified index of the limit list.
.append(ID_or_lim): Append an item at the end of the limit list.
.validate(ID_or_lim, autofix = False): Validate a limit item.
.test(ID, value): Test whether a parameter is in spec, valid, or invalid.

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-24 ACS-907-01 Rev. F / November 2017

• kimisc: This module provides some common operations used in ACS. Functions are shown
below.

atoi(str, base = 10) : Convert a string into integer using the optional
base(default is decimal). The difference between this function and Python
standards string.atoi(x[,base]) is, this function allows you to input a string
with characters other than decimal digits. atoi attempts to parse as many
characters as it can to build an integer.

atof(val): Convert a string into float. The difference between this function and
Python standards string.atof(x) is, this function does not force you to input a
pure float. atof() attempts to parse as many characters as it can to build a
float.

isnan(num): whether num is -1.#IND
getSetting(filename, section, item, openc = '[', closec = ']', asignc = '=',

multi_asignc = False, matchFlag = 0): operation for ini file,
 Extract a setting from a file. The file has a format similar to
 [Section 1]
 Item1=Setting 1
 Item2=Setting 2
 Item3=Setting 3
 :
 [Section 2]
 Item1=Setting 1
 Item2=Setting 2
 :
 :
putSetting(filename, section, item, value, openc = '[', closec = ']', asignc =

'='): an operation for ini file, corresponding to getSetting, put the section's
item value.

delSetting(filename, section, item, openc = '[', closec = ']', asignc = '='): an
operation for ini file, delete the section's item.

avgsdev(data): Get average and standard deviation of data.
 if data's type is float or int :return(data,0) if data's type is list and

len(data)=1: return (data[0],0)
 if data is float list, return [average,standard deviation]
copy_tree(src, dest): copy directory from src to dest.
getfoldersize(dir): compute directory's size, unit as KB.

Modules in python

All of python’s standard and extension modules can be used in a UAP. If you want to use these
modules, you must import them to a UAP routine using the import statement. For example, import
scipy.

Also, all python modules can use the help() function to get the module’s or function’s documentation
in a PythonWin interactive window. The next Figure is an example.

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-25

Figure 103: Sample help() description

• copy
deepcopy(obj): Deep copy operation on arbitrary Python objects. Mostly used with

recursive objects(object contains another object)

• numpy
sin(): get sin value
pi: const pi
array: Return an array from object with the specified data-type.
sum: Sum the array over the given axis.

• os
os.path module provides many useful common pathname manipulations. Please see

help(os.path) for details in a PythonWin window.
os.path.join(a, *p): Join two or more pathname components, inserting "\" as needed.
os.mkdir(path): Create a directory. If an intermediate directory doesn’t exist, an

error is raised.
os.makedirs(path): Super-mkdir. Recursive create a directory. If a directory

doesn’t exist, create it.

• scipy
min, max, median, average, stddev

• shutil
shutil.copy2(srcname, destname): Copy data and all state info

Section 5: UAP and Global variable definitions Automated Characterization Suite (ACS) Programmer's Manual

5-26 ACS-907-01 Rev. F / November 2017

• string
 string.atof(s): Return the floating point number represented by the string s.

• time
time.sleep(t): Delay execution for a given number of seconds.
time.strftime (format[, tuple]): Return format string. For example:
time.strftime("%Y.%m.%d %H:%M:%S", time.localtime())

• types: Define names for all type symbols known in the standard interpreter. For additional detail,
use the help(types) in PythonWin after you import types.

• xls: Excel module with xml format. For additional detail, use the help(xls) in PythonWin after you
import xls

Modules in wxpython
• wx.MessageDialog(): Popup message window
• wx.TextEntryDialog: Popup text entry dialog, get the input value
• wx.grid

.dll modules
• KIGPIB_KATS

File operation
Refer to the help (file) description in PythonWin. Also, refer to help (os.path) to get information
regarding common pathname manipulation routines.

• file(name[, mode[, buffering]]): Open a file. The mode can be 'r', 'w' or 'a' for reading (default),
writing or appending.

• open(): an alias for file().
• write(str): Write string str to file.
• read([size]): read at most size bytes, returned as a string.
• close(): Close the file

All library and module names are case sensitive.

How to use UAPs
UAP routines are used for two purposes:

• Monitor the test process
• Write a user data file

The following describes how to use a UAP in these two different conditions.

 Automated Characterization Suite (ACS) Programmer's Manual Section 5: UAP and Global variable definitions

ACS-907-01 Rev. F / November 2017 5-27

Control test process
You can change the normal test process by changing some global variable flags according to a
certain condition. For example, FUNC_SET_KTXE_LOOP_WAFER() and FUNC_EXIT_KTXE(). You
can also halt the execution process by popping up a text input dialog or message dialog under some
conditions. There are three example files, ChooseFileToSave.py OKCancelDialog.py and
QueryEntryDlg.py in pylibray, that show how to call a wxpython dialog from a UAP routine.

Write data to a file
There are two example files provided in ACS software that show how to write data to a file from a
UAP routine. Refer to the code in ChooseFileToSave.py or the site_ACS_to_file.py for additional
details.

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments.

All other trademarks and trade names are the property of their respective companies.

Keithley Instruments
Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-800-935-5595 • www.tek.com/keithley

3/17

	ACS Programmer's Manual
	Safety precautions
	Table of contents
	1 Programming overview
	Test modules
	ACS programming methods
	Creating PTM (or STM) test libraries and modules

	2 LPT Library Reference
	Series 2600B TSP LPT library commands
	avgi/avgv
	clrscn
	crtbf
	delay/rdelay
	devclr
	devint
	enable
	disable
	forceclr
	forcei/forcev
	intgi/intgv
	ioli/iolv/ioliv
	limiti/limitv
	lorangei/lorangev
	measi/measv/meast
	moli/molv/moliv
	postscript
	postbuffer
	postbuftime
	postdata
	posterror
	postglobal
	postsmuinfo
	posttable
	rangei/rangev
	savgi/savgv
	scnmeas
	setauto
	setcount
	setitv
	setmode
	sintgi/sintgv
	slorangei/slorangev
	smeasi/smeasv/smeast
	srangei/srangev
	ssetauto
	sweepi/sweepv
	sysinit
	syquery
	LPT library command example 1
	LPT library command example 2

	Python LPT library
	Python LPT functions
	ACS LPT library commands
	abort
	addcon
	addpth
	avgi/avgv
	checkparam
	clrattrset
	clrcon
	clrscn
	clrtrg
	conpin
	conpth
	delay
	delcon
	delpth
	devclr
	devint
	disable
	enable
	execut
	forcei/forcev
	get common
	getinstattr
	getinstid
	getstatus
	gpibenter
	gpibsend
	gpibspl
	insbind
	imeast
	intgi/intgv
	limiti/limitv
	lorangei/lorangev
	measi/measv
	measz
	rangei/rangev
	rdelay
	setauto
	setfreq
	setlevel
	setmode
	smeasz_sweepv
	srangei/srangev
	tstsel

	PTM examples

	3 Python Test Module (PTM) Debug Tool
	PTM debug tool introduction
	PythonWin description
	PTM debugging
	Enable debug tool
	Start debugging
	PTM debug flow chart
	Python debugging toolbar icons
	Variables in the Watch window
	View the Stack view window
	View the Breakpoint list and Toggle Breakpoints
	Clear All Breakpoints
	Step, Step over, Step out, and Go functions
	Close the debugger
	Python toolbar icons
	Import/Reload a python script
	Run a script
	Check a script
	Interactive Window

	Debug tool limitations
	Debug hardware limitations
	GPIB control
	KXCI control
	LXI control
	Step in mode
	PTM auto update

	4 Series 2600B Library and Python Library
	Series 2600B library introduction
	Create a library without Script Editor
	Create a library using Script Editor

	Device library
	BJT library overview
	Three_term_BJT_BVCBO
	Three_term_BJT_BVCEI
	Three_term_BJT_BVCEO
	Three_term_BJT_BVCES
	Three_term_BJT_BVCEV
	Three_term_BJT_BVEBO
	Three_term_BJT_BVECO
	Three_term_BJT_HFE_sw
	Three_term_BJT_HFE_trial
	Three_term_BJT_IBCO
	Three_term_BJT_IBEO
	Three_term_BJT_ibicvbe
	Three_term_BJT_ibvbe
	Three_term_BJT_ICBO
	Three_term_BJT_ICEO
	Three_term_BJT_ICES
	Three_term_BJT_ICEV
	Three_term_BJT_icvcb
	Three_term_BJT_icvce_biasIB
	Three_term_BJT_icvce_biasVB
	Three_term_BJT_icvce_stepib
	Three_term_BJT_icvce_stepvb
	Three_term_BJT_IEBO
	Three_term_BJT_IECO
	Three_term_BJT_ieveb
	Three_term_BJT_VBCO
	Three_term_BJT_VCE

	MOSFET library overview
	Four_term_MOSFET_BVDSS
	Four_term_MOSFET_BVDSV
	Four_term_MOSFET_BVGSO
	Four_term_MOSFET_BVGDS
	Four_term_MOSFET_BVGDO
	Four_term_MOSFET_IDL
	Four_term_MOSFET_IDS_ISD
	Four_term_MOSFET_idvd
	Four_term_MOSFET_idvd_vg
	Four_term_MOSFET_idvg
	Four_term_MOSFET_idvg_vd
	Four_term_MOSFET_idvg_vsub
	Four_term_MOSFET_IGL
	Four_term_MOSFET_igvg
	Four_term_MOSFET_ISL
	Four_term_MOSFET_isubvg
	Four_term_MOSFET_Vth_ci
	Four_term_MOSFET_Vth_ex
	Four_term_MOSFET_Vth_llsq
	Four_term_MOSFET_Vth_sense

	Diode library overview
	Diode_DynamicZ
	Diode_Ifd_Vfd
	Diode_Ifd_Vfd_vsweep
	Diode_Ileakage_Vrd
	Diode_Ird_Vrd_vsweep
	Diode_Vbr_Ird
	Diode_Vfd_Ifd
	Diode_Vrd_Ird

	Resistor library overview
	Resistor_single
	Resistor_sweep

	WLR library overview
	HCI
	Intended outputs
	Syntax
	Inputs
	GUI
	Example call

	TDDB_CCS
	Syntax
	Inputs
	Outputs
	TDDB CCS GUI descriptions
	Example call

	TDDB_per_pin
	Syntax
	Inputs
	GUI
	Example call

	NBTI
	Syntax
	Inputs
	Outputs
	GUI
	Example call

	NBTI_meas
	Syntax
	Inputs
	Outputs
	Example call

	NBTI_on_the_fly
	Possible outputs
	Syntax
	Inputs
	GUI
	Example call

	QBD_rmpj
	Syntax
	Inputs
	Outputs
	Example call

	QBD_rmpv
	Syntax
	Inputs
	Outputs
	Example call

	Em_iso_test
	Syntax
	Inputs
	Outputs
	GUI
	Example call

	Python user library introduction
	Configure a capacitor meter library
	CV_4200CVU
	CV_HP4284

	Configure a switch matrix library
	Switch_Control
	KISeries 3700 System Switch

	Configure a scope library
	TEKSCOPE_ReadWave

	Configure a Series 23x library
	BiasVolt_SampleCurr
	Sweepsystem computer_23x
	SweepVolt_23x
	VdsIs_237

	Configure a Series 3700 system switch DMM library
	Series 3700 System Switch DMM two-wire
	Series 3700 System Switch DMM four-wire

	Configure a Series 2400 SourceMeter instruments library
	Series 2400 drain-current test
	Model 2430 gate-voltage sweep test
	Series 2400 gate-voltage test
	Model 2430 drain-voltage sweep test
	Model 2430 voltage-pulse test
	Model 2430 current-pulse test
	Series 2400 voltage-sweep test
	Series 2400 current-sweep test

	5 UAP and Global variable definitions
	Overview
	Global variables
	Global functions
	FUNC_SET_GLOBAL_VALUE (name, value)
	FUNC_GET_GLOBAL_VALUE (name)
	FUNC_SET_USER_GLOBAL (name)
	FUNC_SET_KTXE_LOOP (value)
	FUNC_SYS_GLOBAL (name, value)
	FUNC_EXIT_KTXE ()
	FUNC_SET_KTXE_SUBSITES (subsite list)
	FUNC_GET_KDF_HEADER ()
	FUNC_SAVE_KDF_HEADER (kdf_file, header)
	FUNC_SAVE_KDF_WAFERID (kdf_file, wafer_id)
	FUNC_SAVE_KDF_EOW (kdf_file)
	FUNC_SAVE_KDF_SITEID (kdf_file, site_id, site_x, site_y)
	FUNC_SAVE_KDF_EOS (kdf_file)
	FUNC_SAVE_KDF_DATA (kdf_file, data)
	FUNC_GET_KDF_DATA (wafer_id, site_id)
	FUNC_GET_NEW_KDF_DATA (wafer_id, site_id)
	FUNC_SITE_COORD_2_ID (coord)
	FUNC_SITE_ID_2_COORD (site_id)
	FUNC_GET_WDF_OBJ ()
	GET_EXEC_TEST_DIC ()
	FUNC_EXEC_TEST (location)
	GET_EXEC_TEST_LIST ()
	FUNC_GET_TEST_OBJ (test_name)
	FUNC_GET_SUBSITE_OBJ (subsite_name)
	FUNC_GET_DUT_OBJ (dut_name)
	FUNC_GET_DUT_NAME (test_name)
	FUNC_GET_KDF_OBJ (dut_name)

	Tools for UAP routines
	Importing python modules
	Modules in ACS
	Modules in python
	Modules in wxpython
	.dll modules
	File operation

	How to use UAPs
	Control test process
	Write data to a file

	Contact us

