
Keithley Instruments, Inc.
23xx Fast Transient Response Power Supply

Instrument Driver
Readme

1. Overview
Instrument Driver Technology LabVIEW Plug and Play (project-style)

Manufacturer Keithley Instruments, Inc.

Supported Language(s) LabVIEW

Supported Model(s) 2302, 2302-PJ, 2303, 2303-PJ, 2304A,

2306, 2306-PJ, 2306-VS, 2308

Model(s) Tested 2302, 2303, 2304A, 2306, 2306-PJ,

2306-VS, 2308

Interface(s) GPIB

Firmware Revision(s) Tested 2302: B17, 2303: A09, 2304A: A05,

2306: B17, 2306-PJ: B17, 2306-VS:

B17, 2308: A01

Certified No

NI Supported No

Source Code Available Yes

Driver Revision 1.0.0.0

Original Release Date 04/15/2010

Current Revision Date 04/15/2010

2. Required Software

Some software components need to be installed before using this instrument driver.

The minimum versions of these components are listed below, and can be downloaded

from the Download Site.

VISA 3.0 or later

LabVIEW 8.0 or later

Refer to the LabVIEW Help for more information about software requirements. You

access the LabVIEW Help by selecting Help»Search the LabVIEW Help.

3. Known Issues

To report issues or provide feedback about this instrument driver, please send an

email to applications@keithley.com.

There are no known issues with this driver.

4. Revision History

The latest version of this instrument driver can be downloaded at the Keithley

Instruments website.

REV 1.0.0.0, 04/15/2010

Modified by: Keithley Instruments Inc., Cleveland, OH

Original release

5. Driver Usage

This driver makes heavy use of typedefs – almost every control / indicator on the VIs

has a corresponding typedef, and these typedefs are typically instrument-specific.

Typedefs are used because they are useful for parameter coercion (i.e. allowing the

user to only enter values within a given parameter’s range and minimum

increment/granularity size), and in addition provide some level of type safety. For

example, consider the case where a user tries to wire a control designed for the 2308

(call this the ‘source’ control) to a 2304A-specific VI input (call this the ‘target’

control), the connection will often be broken. This will typically occur when the

source and target controls are clusters, but they are incompatible in the sense that they

don’t share the same elements. An example of this is trying to connect a 2308

‘Output Params’ control to a 2304A VI designed to set the output parameters. As the

pictures of the corresponding control typedefs show, they are incompatible: the 2308

supports ‘Output State’, ‘Bandwidth’, and ‘Impedance’ as output parameters, while

the 2304A supports ‘Output State’ and ‘Response’:

Note that even with controls that have the same base type, they are still individually

typedef’ed if their valid ranges and/or the increment size aren’t the same. For

example, consider the voltage setting for the 2308 and the voltage setting for the

2304A, both with base type ‘double’. The 2308 supports 0 to 15V, but the 2304A

supports 0 to 20V. Shown below is an example where a voltage control typedef’ed

for the 2308 is driving two instances of ‘KE23xx – Set Ch1 Voltage.vi’. The top

instance shows correct operation (polymorph selector set to 02 / 02-PJ / 06 / 06-PJ /

06-VS / 08), and the bottom instance shows incorrect operation (polymorph selector

set to 04A).

In this case, LabVIEW will allow the connection, but it lets you know that a coercion

has taken place via the red dot at the input. In general, make sure any red coercion

dots are not due to a typedef coercion – if they are, you are breaking the type

safety provided with the typedefs. So, to take advantage of the large number of

instrument-specific typedefs, the suggested programming approach is to find the VI

you need in the KE23xx palette, place it on the block diagram, then right-click on the

inputs to create the controls via the pop-up menu (this makes it trivial to add controls

since you don’t have to search through a directory to find the typedef you are looking

for). Finally, note that the range and increment coercion provided via the typedefs

only works if the inputs to a given VI are driven directly from a front panel control.

The implication here is that programmatically calculated values passed in to VIs will

not be coerced by LabVIEW (e.g., suppose that the voltage passed into the above VIs

was not directly from a front panel control, but was instead a calculated value

calculated based on some other control). For values that are out-of-range, the

instrument will report an error. However, the instrument will not report errors for

values that violate the minimum increment size, but will instead silently coerce the

value for you (e.g. trying to set the voltage of the 2304A to a 1mV resolution, where

the actual minimum resolution is 5mV). Every VI has two optional controls to help

deal with these situations, ‘Check for SCPI Errors?’ and ‘Read Back Set Values?’

(note that both default to True if left unconnected). If ‘Check for SCPI Errors?’ is

True, an error query is sent to the instrument after the command is sent, and if ‘Read

Back Set Value(s)?’ is True, the instrument will be queried for the actual set value,

which can then be checked to see if the instrument performed any coercion (the set

value is made available to the user via a VI output parameter). Note that both

controls default to True for ‘bullet-proofing’. Obviously, querying the instrument for

errors and coercions comes with a speed penalty. So, it is recommended that user-

created VIs have hooks to set these switch values to True or False (in the Example

VIs, the switches are propagated up to the front panel). During initial program debug,

it is best to leave these at their defaults (True). Once the user is satisfied that the VI is

operating correctly, they can be set to False to speed-up program operation.

Finally, it is suggested that you only use the VIs that are in the palette set, at least

when you are starting out (in particular, the Action-Status VIs are handy for getting

something working quickly, since they handle many details ‘underneath the covers’).

These are typically high-level VIs that set a number of parameters in the instrument

via a single VI and a cluster control. Refer to the ‘Examples’ palette to see how the

Action-Status VIs are used. Also note that almost every sub-palette has a ‘Test Code’

subpalette. If you are wondering whether or not a specific VI in a palette is working

correctly, you can use the VIs in the ‘Test Code’ palettes without writing a piece of

test code from scratch. Note that these are typically ‘set-then-get’ VIs, where the

user-specified control parameters are first sent to the instrument, then these settings

are ‘read back’ from the instrument and compared against what was sent. In this way,

you can make sure that the parameters are being set properly in the instrument.

Beware of issues when comparing floating point values – due to round-off errors in

LabVIEW, it is possible that the ‘set’ value will not be exactly equal to the ‘get’

value. This occurs because when LabVIEW sends the value to the instrument via a

string (the ‘set’ phase), it rounds the value to the specified instrument precision,

which is always less than LabVIEW’s default double precision. Conversely, when it

parses the response from the instrument (the ‘get’ phase), it converts this to the

nearest double-precision number. Note that the resulting value after string parsing

isn’t necessarily exactly equal to the original double precision value that LabVIEW

used for the ‘set’ phase. In practice, the difference is very small (in fact, the controls

will probably show the same value, but the ‘Set=Get?’ indicator on the test code VI

front panel will be False). Furthermore, if you look at the actual string values being

sent and received, they will be exactly the same – this implies that as far as the user is

concerned, the value LabVIEW sent is exactly the same as what the instrument sent

back.

