ActiveHighPassFilter -- Overview

Dr. B KanmaniDepartment Head,
Telecommunication Engineering

BMS College of Engineering (BMSCE), Bangalore, India

OBJECTIVES:

At the end of performing this experiment, learners would be able to:

- Describe the concept of active High Pass butterworth Filter
- Obtain the roll-off factor and cutoff frequency of the filter designed
- Compare the designed cut-off frequency with the desired cut-off frequency
- Understand the working of µA741 IC (Op Amp)

EQUIPMENT:

- IC μA741
- Signal generator
- Resistors
- Capacitor
- +/- 15V DC Power Supply
- Digital Storage Oscilloscope & probes
- Connecting wires & Bread Board

DESIGN:

• Given cut-off frequency f Hz, assume suitable R, and obtain C using equation

$$f_c = \frac{1}{2\pi RC} Hz$$

• Assume R1 and compute R2 using equation

$$A_F = \left(1 + \frac{R_2}{R_1}\right) = 1.586$$

THEORY:

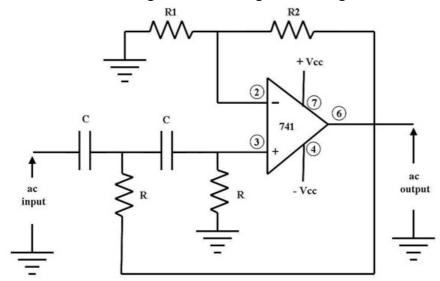
- Op Amp is a DC-coupled high-gain electronic voltage amplifier with a differential input and a output.
- The µA741 device is a general-purpose operational amplifier featuring offset-voltage null capability
- The low pass filter becomes a high pass filter when the Resistor

and Capacitor are interchanged.

Reference reading:

- 1) Theory and application of Digital SIgnal Processing, by Lawrence R Rabine and Bernard Gold, Prentice Hall, Easter Economy Edition
- 2) Integrated Electronics, by Millman and Halkias, Tata McGraw-Hill

Acknowledgement


Mr.Shreenivas B for converting laboratory experiment to Tektronix courseware format

ActiveHighPassFilter -- Procedures

Step 1

Circuit setup:

Build the following circuit with given designed values

Active second order High pass filter

Step 2

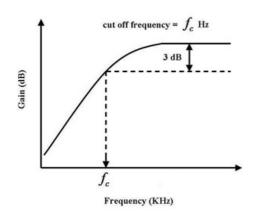
- Use a signal generator to generate analog input . The analog input will be set to 1 Vpp Sine wave
- Turn on the supply of the circuit and enable signal generator that is feeding signal to the circuit.

Step 3

- Connect the DSO probe CH1 at analog input (Sine wave), CH2 at output (pin # 6 of $\,\mu\text{A741 IC})$
- Perform Autoset on DSO and capture the output signal.

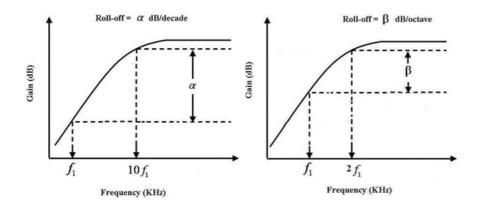
Step 4

- Configure PEAK-to-PEAK measurement on the input and output signal.
- Observe and record the signal input and output.


Step 5

Record the input and output peak-to-peak voltage for various input frequencies, and complete the table below

Frequency (Hz)	V input (v)	V output (v)	Gain (dB) = 20 log (Vout/Vin)
100Hz			
200Hz			
1KHz			
2KHz			
10KHz			
20KHz			
100KHz			
200KHz			
1MHz			


Step 6

Plot the frequency response of the designed filter (Plot of Frequency Vs. Gain on a semi-log sheet), and hence obtain the cut-off frequency

Step 7

Compute the Roll-off factor of the designed filter (The ideal value of roll-off factor is + 40dB/decade or +12dB/octave)

Step 8

Observations:

- i) The designed filter has a cut-off frequencyHz
- ii) The designed filter has a roll-off factor dB/decade

Step 9

Open-ended Question / Can you answer this?

What will be the result if:

- 1) We repeat the frequency response readings for Passive High Pass Filter. How does it compare Active High Pass Filter
- 2) We sketch the frequency response of the passive and active second order HPF on the same graph sheet. What is the observation?