Activenarrowbandpass -- Overview

Dr. B Kanmani Department Head, Telecommunication Engineering

BMS College of Engineering (BMSCE), Bangalore, India

OBJECTIVES:

At the end of performing this experiment, learners would be able to:

- Describe the concept of Resonant filter
- Obtain the Quality factor, Bandwidth and cutoff frequency of the filter designed

• Compare the designed cut-off frequency with the desired cut-off frequency

Understand the working of µA741 IC (Op Amp)

EQUIPMENT:

- IC µA741
- Signal generator
- Resistors
- Capacitor
- Inductor
- +/- 15V DC Power Supply
- Digital Storage Oscilloscope & probes
- Connecting wires & Bread Board

DESIGN:

• Given second order active Bandpass filter with a centre frequency 5KHz, quality factor 10, and voltage gain 25

Centre frequency

 $f_0 = \frac{1}{2\pi\sqrt{LC}} \,\mathrm{Hz}$

Choose L, compute C

Given voltage gain Ao, choose R1 and compute R2

$$A_{\mathcal{O}} = \left(1 + \frac{R_2}{R_1}\right)$$

• Given quality factor Q , compute resistor R, using

$$R = \frac{1}{Q} \sqrt{\frac{L}{C}}$$

THEORY:

 The µA741 device is a general-purpose operational amplifier featuring offset-voltage null capability

• Band pass filters have a frequency response as shown in figure 1. The difference between the two cut-off frequencies fl (the lower cut-off) and fh(the upper cut-off) is known as the bandwidth Bw.

Figure 1: Frequency response of a narrow band-pass filter

• When the bandwidth Bw is small compared to either fl or fh the circuit is known as a resonant circuit with frequency response shown in figure 1.

• Resonant filters are characterized by the center or resonant frequency fo, and a high quality factor Q, where,

 $Q = f_0 / Bw$ and $f_0 = \sqrt{f_L f_H}$

Reference reading:

1) Theory and application of Digital SIgnal Processing, by Lawrence R Rabine and Bernard Gold, Prentice Hall, Easter Economy Edition 2) Integrated Electronics, by Millman and Halkias, Tata McGraw-Hill

Acknowledgement

Mr.Shreenivas B for converting laboratory experiment to Tektronix courseware format

Activenarrowbandpass -- Procedures

Step 1

Circuit setup:

Build the following circuit with designed values

Active resonant/narrow band pass filter

Step 2

 ${\mbox{ \bullet}}$ Use a signal generator to generate analog input . The analog input will be set to 1 Vpp Sine wave

• Turn on the supply of the circuit and enable signal generator that is feeding signal to the circuit.

Step 3

- Connect the DSO probe – CH1 at analog input (Sine wave), CH2 at output (pin # 6 of $\,\mu\text{A741}$ IC)

• Perform Autoset on DSO and capture the output signal.

Step 4

Configure PEAK-to-PEAK measurement on the input and output signal

• Observe and record the signal - input and output.

Step 5

Record the input and output peak-to-peak voltage for various input frequencies, and complete the table below.

Frequency (Hz)	Vin(v)	Vout(v)	Gain (dB)= 20 log (Vout/Vin)
100Hz			
200Hz			

1MHz		

Step 6

Plot the frequency response of the designed filter (Plot of Frequency Vs. Gain on a semi-log sheet)

Step 7

Observations:

- i) The lower cut-off frequency f_L and the higher cut-off frequency f_H
- ii) The bandwidth $Bw = f_H f_L$
- iii) The quality factor, $Q = f_0 / Bw$
- iv) The voltage gain $A_0 = (V_0/V_i)$, in the pass band of the filter

Step 8

Open-ended Question / Can you answer this?

If the designed parameters are not equal to the desired ones, give reasons.