Arduino_Frequency_Counter -- Overview

Mukesh Soni Researcher / PhD Student Mechanical Engineering Department The University of Melbourne

Frequency Counting Using Arduino

Objectives:

After performing this lab exercise, learner will be able to:

- Work with Arduino IDE
- Program Arduino board as a simple frequency counter
- Practice working with measuring equipment and laboratory tools like digital oscilloscope and signal generator
- Use digital oscilloscope to debug/analyze the circuit

Equipment:

To perform this lab experiment, learner will need:

- Digital Storage Oscilloscope (TBS1000B-Edu from Tektronix or any equivalent)
- Signal generator (AFG1000 from Tektronix or equivalent) for providing AC input to circuit
- Arduino Uno or equivalent board (could be any other openSource Arduino clone) with its USB cable
- Electronic Components
 - Resistor (10K and 470 ohms)
 - Switche (Push-to-on)
 - LED
- BNC cables
- Breadboard and connecting wires

Theory / Key Concepts:

Before performing this lab experiment, it is important to learn following concepts:

- Arduino is a popular open-source microcontroller board that support rapid prototyping of embedded systems.
- Arduino also provide a custom, easy-to-use programming environment (or IDE) for developing a program and flashing it on the Arduino board. For more details, refer - www.arduino.cc
- Arduino can be programmed as frequency counter:
 - Frequency input can be applied to pin # 2 of Arduino board. This pin corresponds to interrupt 0 of the controller.
 - An Interrup Service Routine (ISR) can then be used to count the number of pulses in a given time window.
 - Alternatively, we can find the period between successive pulses and estimate frequency of the input signal.
 - A switch can be used to initiate 'counting' of the frequency input applied to pin # 2.
- The frequency estimated can be shown on the serial monitor.

Flowchart / Program:

Learner can understand the logic of frequency counter code using given flowchart:

Arduino_Frequency_Counter -- Procedures

Step 1

Check Your Understanding:

Before performing this lab experiment, learners can check their understanding of key concepts by answering these?

- What is the command / instruction for enabling interrupt in Arduino sketch (program)?
 - attachInterrupt
 - noInterrupts
 - yesInterrupts
 - interrrupts
- For a pulse count of 12 in a measurement window of 10mS, what will be the frequency of input signal?
 - 。12 Hz
 - 。120 Hz
 - 。1200 Hz
 - 。12000 Hz
- What will happen to frequency counter if the signal input (pulse, square wave or sinewave) has amplitude swing from 0 to 2V:
 - it will normal
 - it will report frequency as double of actual value
 - $_{\circ}\,$ it will not work as signal amplitude is less than 2.5V
 - it will work intermittently

Step 2

Circuit diagram / Connection Details

- Using the jumper / connecting wires prepare the circuit as shown below Choose $R_{pullup} = 10K \& R_{LED} = 470$ ohm.
- Feed the output from AFG / Signal Generator to pin 2 of the Arduino

Step 3

Experiment Setup

• Make the arrangement as shown in figure below (Arduino clone is being used here) -

- PC is connected to Arduino via USB cable
- Use AFG to generate a square wave and connect AFG output to pin 2 of Arduino
- Connect oscilloscope channel 1 to AFG output so that same signal is viewable on oscilloscope (that is fed to Arduino)

Step 4

Make the Circuit Work

- Flash the code on Arduino
- Use signal from AFG/signal generator to feed at Pin 2 of Arduino
- Set square wave from channel 1 of the AFG
 - amplitude = 0 3V
 - frequency = 1K Hz
- Autoset the oscilloscope to see this waveforms
- Press the button on Arduino pin 7 You should see the measurent LED getting ON for a moment and frequency value appearing on Serial Monitor on PC.

Step 5

Taking the Measurements

- Set input
 - Square wave, 0-3V peak-to-peak amplitude
 - 100 Hz frequency
 - Continous mode (on AFG)
 - enable the channel 1 output on AFG

- Autoset the oscilloscope to optimally see the signal
- Set up following measurements:
 - On Ch1 Frequency and Period
- Keeping the amplitude of the square wave input fixed, vary its frequency from 1Hz to 20kHz.
- Measure frequency on oscilloscope
- By pressing the push button, get measurements from Arduino, for each input set.
- Tabulate the measurements. You can also capture screenshot

for each measurement set.

Step 6

Analyzing the Result

• The observation table would look like as shown below. Calculate the % deviation of frequency measured by Arduino from actual.

	INPUT	FREQUENCY (Hz)	MEASURED BY	PERIOD (uS) M	EASURED BY	DEVIA	TION
#	freq (Hz)	Oscillosocpe	Arduino	Oscillosocpe	Arduino	Frequency	Period
1	20,000	20,000	20833.0	49.99	48	4.17	-0.04
2	10,000	10,000	10204.0	100.00	98	2.04	-0.02
3	5,000	5,000	5000.0	200.00	200	0.00	0.00
4	1,000	1,000	998.0	1,000.00	1002	-0.20	0.00
5	500	501	499.5	2,000.50	2002	-0.30	0.00
6	200	200	199.9	5,001.00	5002	-0.04	0.00
7	100	100	99.9	10,000.00	10002	-0.10	0.00
8	50	50	49.9	20,000.00	20002	-0.20	0.00
9	10	10	10.0	1,00,000.00	100002	0.00	0.00
10	5	5	5.0	2,00,000.00	200002	0.00	0.00
11	1	1	1.0	10,00,000.00	1000018	0.00	0.00

Create a plot of Arduino Vs Actual frequency values

Frequency Measurement

• Plot the % deviation with respect to actual frequency values

• Can you guess why the deviation increases to 4% for 20kHz signal?

Step 7

Conclusion

The analysis of the observed results confirm that (As expected):

- The Arduino can be used for frequency counter application
- Frequency measured by Arduino system matches the actual frequency value of the input
- Deviation increases as the input frequency is increases beyond 10KHz

How to program Arduino?

STEP: 1. Obtain Arduino board (preferably Uno, Duemilanove or Leonardo model)

- **STEP: 2.** Download the IDE from http://arduino.cc/en/Main/Software that is suitable for your PC operating system (to program your Arduino board).
- STEP: 3. Install the Arduino IDE software on your PC. This is how IDE would look like:

STEP: 4. Connect the Arduino board using USB cable provided to your PC. Wait till the necessary drivers are installed and device is recognized as COM port.

STEP: 5. Select the correct Arduino Board type as show below: **Tools > Board >**

💿 Dual_Sine_Wave_Pha	ase_Controlled: Arduino ER	W 1.0.4		
File Edit Sketch Tools	Help			
Oual_Sine_Wa	Auto Format Ct Archive Sketch Fix Encoding & Reload Serial Monitor Ct	trl+T		اهر ▼
// DDS Sine Ge // Modified by		þ)	N	1 1
//	Board Serial Dort		Arduino Uno	=
// You can det //	Senarron		Arduino Duemilanove w/ ATmega328	
	Programmer Purp Poetlonder	1	Arduino Diecimila or Duemilanove w/ ATmega168	
#include "avr/pgmsp	ace.n		Arduino Nano w/ ATmega328	
// table of 256 giv	a values / ene cine	period /	Arduino Nano w/ ATmega168	
PROGMEM prog_uchar	sine256[] = {	period / s	Arduino Mega 2560 or Mega ADK	
127,130,133,136,1	139,143,146,149,152,1	155,158,16	Arduino Mega (ATmega1280)	5,198,200,203
242,243,244,245,2	247,248,249,249,250,2 212 210 208 205 203 2	251,252,252	Arduino Leonardo	3,253,252,252
76,73,70,67,64,62	2,59,56,54,51,49,46,4	44,42,39,3	Arduino Esplora	.0,9,7,6,5,5,4
33,35,37,39,42,44	4,46,49,51,54,56,59,6	52,64,67,70	Arduino Micro	115,118,121,1
}:			Arduino Mini w/ ATmega328	
#define cbi(sfr, bi	t) (_SFR_BYTE(sfr) &	k= ∼_BV(bii	Arduino Mini w/ ATmega168	
#define sbi(sfr, bi	t) (_SFR_BYTE(sfr)	= _BV(bit)	Arduino Ethernet	
int ledPin = 13;	// LEC	pin 7	Arduino Fio	
int testPin = 7;			Arduino BT w/ ATmega328	-
•	III		Arduino BT w/ ATmega168	•
Done uploading.			LilyPad Arduino USB	
Binary sketch size	: 5,272 bytes (of a)	32,256 byt	LilyPad Arduino w/ ATmega328	
Estimated used SRA	M memory: 241 bytes	(of a 2048	LilyPad Arduino w/ ATmega168	
			Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega328	
			Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega168	
4			Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328	no Uno on COM42
			Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega168	
			Arduino NG or older w/ ATmega168	
			Arduino NG or older w/ ATmega8	

STEP: 6. Ensure that COM Port identified for your Arduino board is correct. You can also change / select appropriate COM Port your Arduino is connected as from following menu: Tools > Serial Port >

💿 Dual_Sine_Wave_F	hase_Controlled: Arduino	ERW 1.0.4			x		
File Edit Sketch To	ols Help						
Oual_Sine_Wa	Auto Format Archive Sketch Fix Encoding & Reload Serial Monitor	Ctrl+T Ctrl+Shift+M					
// Modified by	Board	• va	/e	1	E		
// You can def	Serial Port		COM1				
tinclude "avr (Programmer Burn Bootloader		COM6 COM42				
<pre>PROGMEM prog_uct 127,130,133,136 242,243,244,244 221,219,217,215 76,73,70,67,64, 33,35,37,39,42, }; #define cbi(sfr, #define sbi(sfr, int ledPin = 13; int testPin = 7;</pre>	<pre>lar sine256[] = { S;139,143,146,149,157 S;247,248,249,249,249 S;212,210,208,205,203 62,59,56,54,51,49,44 44,46,49,51,54,56,55 bit) (_SFR_BYTE(sfr] bit) (_SFR_BYTE(sfr] // 1</pre>	2,155,158,161,11 9,251,252,252,23 3,200,198,195,11 5,44,42,39,37,3 9,62,64,67,70,7) &= ~_BV(bit)) = _BV(bit)) LED pin 7	54,167,176 53,253,253 92,190,187 5,33,31,29 3,76,78,81	0,173,176,178,181,184,187,190,192,195,198,200, ,254,254,254,254,254,254,254,254,253,253,253,252, 7,184,181,178,176,173,170,167,164,161,158,155, ,27,25,23,21,20,18,16,15,14,12,11,10,9,7,6,5, ,84,87,90,93,96,99,102,105,108,111,115,118,12	203 252 152 5,4 1,1		
<	m				•		
Done uploading.							
Binary sketch size: 5,272 bytes (of a 32,256 byte maximum) Estimated used SRAM memory: 241 bytes (of a 2048 byte maximum)							
4				Arduino Uno on COM	142		

STEP: 7. Once the setting is complete, we are ready to download the program on Arduino board. We can test the setup by programming Arduino bard with an example code (sketch). Go to : File > Examples > 01.Basics > Blink

New		Ctrl+N		.	
Open		Ctrl+O			
Sketchbo	ook	•	l l	•	
Example	5	1	01.Basics	1	AnalogReadSerial
Close		Ctrl+W	02.Digital	1	BareMinimum
Save		Ctrl+S	03.Analog	1	Blink
Save As		Ctrl+Shift+S	04.Communication	1	DigitalReadSerial
Unload		Ctrl+U	05.Control		Fade
Unload a	and then Onen Serial Monitor	Ctrl+M	06.Sensors	1	ReadAnalogVolta
Upload L	Ising Programmer	Ctrl+Shift+U	07.Display		
			08.Strings		
Page Set	up	Ctrl+Shift+P	09.USB		
Print		Ctrl+P	09.USB(Leonardo)		
Preferen	ces	Ctrl+Comma	10.StarterKit		
			ArduinoISP		
Quit		Ctrl+Q	EEPROM	•	
			Esplora	•	
			Ethernet	+	
			Firmata	•	
			GSM	•	
			LiquidCrystal	+	
			SD	+	
			Servo	•	
		Arduino Duemilan	SoftwareSerial	•	
			CDI	. E	J

STEP: 8. Click on the Right Arrow button (highlighted in orange color in the image below) to compile and upload the binary to Arduino board. Once the upload is done, you will see 'orange LED' on board flashing – on for 1 second and off for 1 second.

- STEP: 9. Now that setup is successfully completed and tested, open the relevant program (.ino file as specified by the lab experiment) using menu option File > Open
- **STEP: 10.** Using UPLOAD button (circular button with arrow pointing to right) we can compile the program and upload the compiled binary file to Arduino board.
- **STEP: 11.** Once the board is programmed, it will start generating signals at specified pins. The board is ready to probe (or to connect external RC circuits) as per lab needs.