
Arduino_Frequency_Counter -- Overview

Frequency Counting Using Arduino

Objectives:
After performing this lab exercise, learner will be able to:

Work with Arduino IDE
Program Arduino board as a simple frequency counter
Practice working with measuring equipment and laboratory tools
like digital oscilloscope and signal generator
Use digital oscilloscope to debug/analyze the circuit

Equipment:
To perform this lab experiment, learner will need:

Digital Storage Oscilloscope (TBS1000B-Edu from Tektronix or
any equivalent)
Signal generator (AFG1000 from Tektronix or equivalent) for
providing AC input to circuit
Arduino Uno or equivalent board (could be any other
openSource Arduino clone) with its USB cable
Electronic Components

Resistor (10K and 470 ohms)
Switche (Push-to-on)
LED

BNC cables
Breadboard and connecting wires

Theory / Key Concepts:
Before performing this lab experiment, it is important to learn
following concepts:

Arduino is a popular open-source microcontroller board that
support rapid prototyping of embedded systems.
Arduino also provide a custom, easy-to-use programming
environment (or IDE) for developing a program and flashing it on
the Arduino board. For more details, refer - www.arduino.cc
Arduino can be programmed as frequency counter:

Frequency input can be applied to pin # 2 of Arduino board.
This pin corresponds to interrupt 0 of the controller.
An Interrup Service Routine (ISR) can then be used to count
the number of pulses in a given time window.
Alternatively, we can find the period between successive
pulses and estimate frequency of the input signal.
A switch can be used to initiate 'counting' of the frequency
input applied to pin # 2.

The frequency estimated can be shown on the serial monitor.

Flowchart / Program:
Learner can understand the logic of frequency counter code using
given flowchart:

Arduino_Frequency_Counter -- Procedures

Step 1

Check Your Understanding:
Before performing this lab experiment, learners can check their
understanding of key concepts by answering these?

What is the command / instruction for enabling interrupt in
Arduino sketch (program)?

attachInterrupt
noInterrupts
yesInterrupts
interrrupts

For a pulse count of 12 in a measurement window of 10mS,
what will be the frequency of input signal?

12 Hz
120 Hz
1200 Hz
12000 Hz

What will happen to frequency counter if the signal input (pulse,
square wave or sinewave) has amplitude swing from 0 to 2V:

it will normal
it will report frequency as double of actual value
it will not work as signal amplitude is less than 2.5V
it will work intermittently

Step 2

Circuit diagram / Connection Details
Using the jumper / connecting wires prepare the circuit as
shown below - Choose Rpullup = 10K & RLED = 470 ohm.
Feed the output from AFG / Signal Generator to pin 2 of the
Arduino

Step 3

Experiment Setup
Make the arrangement as shown in figure below (Arduino clone is being

used here) -

PC is connected to Arduino via USB cable
Use AFG to generate a square wave and connect AFG output to
pin 2 of Arduino
Connect oscilloscope channel 1 to AFG output so that same
signal is viewable on oscilloscope (that is fed to Arduino)

Step 4

Make the Circuit Work
Flash the code on Arduino
Use signal from AFG/signal generator to feed at Pin 2 of Arduino
Set square wave from channel 1 of the AFG

amplitude = 0 - 3V
frequency = 1K Hz

Autoset the oscilloscope to see this waveforms
Press the button on Arduino pin 7 - You should see the
measurent LED getting ON for a moment and frequency value
appearing on Serial Monitor on PC.

Step 5

Taking the Measurements
Set input

Square wave, 0-3V peak-to-peak amplitude
100 Hz frequency
Continous mode (on AFG)
enable the channel 1 output on AFG

Autoset the oscilloscope to optimally see the signal
Set up following measurements:

On Ch1 - Frequency and Period
Keeping the amplitude of the square wave input fixed, vary its
frequency from 1Hz to 20kHz.
Measure frequency on oscilloscope
By pressing the push button, get measurements from Arduino,
for each input set.
Tabulate the measurements. You can also capture screenshot

for each measurement set.

Step 6

Analyzing the Result
The observation table would look like as shown below. Calculate
the % deviation of frequency measured by Arduino from actual.

Create a plot of Arduino Vs Actual frequency values

Plot the % deviation with respect to actual frequency values

Can you guess why the deviation increases to 4% for 20kHz
signal?

Step 7

Conclusion
The analysis of the observed results confirm that (As expected):

The Arduino can be used for frequency counter application
Frequency measured by Arduino system matches the actual
frequency value of the input
Deviation increases as the input frequency is increases beyond
10KHz

How to program Arduino?

STEP: 1. Obtain Arduino board (preferably Uno, Duemilanove or Leonardo model)

STEP: 2. Download the IDE from - http://arduino.cc/en/Main/Software - that is suitable for

your PC operating system (to program your Arduino board).

STEP: 3. Install the Arduino IDE software on your PC. This is how IDE would look like:

http://arduino.cc/en/Main/Software

STEP: 4. Connect the Arduino board using USB cable provided to your PC. Wait till the

necessary drivers are installed and device is recognized as COM port.

STEP: 5. Select the correct Arduino Board type as show below: Tools > Board >

STEP: 6. Ensure that COM Port identified for your Arduino board is correct. You can also

change / select appropriate COM Port your Arduino is connected as from following

menu: Tools > Serial Port >

STEP: 7. Once the setting is complete, we are ready to download the program on Arduino

board. We can test the setup by programming Arduino bard with an example code

(sketch). Go to : File > Examples > 01.Basics > Blink

STEP: 8. Click on the Right Arrow button (highlighted in orange color in the image below) to

compile and upload the binary to Arduino board. Once the upload is done, you will see

‘orange LED’ on board flashing – on for 1 second and off for 1 second.

STEP: 9. Now that setup is successfully completed and tested, open the relevant program (.ino

file as specified by the lab experiment) using menu option – File > Open

STEP: 10. Using UPLOAD button (circular button with arrow pointing to right) we can compile

the program and upload the compiled binary file to Arduino board.

STEP: 11. Once the board is programmed, it will start generating signals at specified pins. The

board is ready to probe (or to connect external RC circuits) as per lab needs.

	Arduino_Frequency_Counter
	Arduino_Frequency_Counter -- Overview
	Arduino_Frequency_Counter -- Procedures
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7

