Arduino_Sound_Switch -- Overview

Mukesh Soni Researcher / PhD Student Mechanical Engineering Department The University of Melbourne

Sound-Controlled Switch Using Arduino

Objectives:

After performing this lab exercise, learner will be able to:

- Work with Arduino IDE
- Use sound sensor module FC-04 to detect sound input
- Program Arduino board as a sound controlled switch
- Practice working with measuring equipment and laboratory tools like digital oscilloscope and signal generator
- Use digital oscilloscope to debug/analyze the circuit

Equipment:

To perform this lab experiment, learner will need:

- Digital Storage Oscilloscope (TBS1000B-Edu from Tektronix or any equivalent)
- Arduino Uno or equivalent board (could be any other openSource Arduino clone) with its USB cable
- Electronic Components
 - Resistor (470 ohms) for optional external LED
 - Switch (Push-to-on)
 - LED (optional if you want bigger light / indication)
- Breadboard and connecting wires

Theory / Key Concepts:

Before performing this lab experiment, it is important to learn following concepts:

- Arduino is a popular open-source microcontroller board that support rapid prototyping of embedded systems. Arduino also provide a custom, easy-to-use programming environment (or IDE) for developing a program and flashing it on the Arduino board. For more details, refer - www.arduino.cc
- Sound sensor module FC-04 detects sound input through a microphone and provides digital ouput (0V or V_{cc}) depending upon the level of sound against a threshold (V_{ref}).
- The functional block diagram for FC-04 module is shown below:

- The threshold can be adjusted using a potentiometer.
- Arduino can be programmed read the digital output of the sound sensor and drive an digital output line (for LED or relay) on/off based on sound level.
- The output can be toggled on/off with a clap or sound this is the principle of clap switch.

Flowchart / Program:

Learner can understand the logic of sound-controlled switch using given flowchart:

Arduino_Sound_Switch -- Procedures

Step 1

Check Your Understanding:

Before performing this lab experiment, learners can check their understanding of key concepts by answering these?

- What is the command / instruction for reading the state of a sensor output connected to digital input of Arduino?
 - digitalRead
 - analogRead
 - isDigitalOn
 - isAnalogOn
- A debounce period is used in the code to?
 - Bouncing the input state
 - Bouncing the output state
 - Avoid rapid switching due to consecutive input sound
 - Extend the duration of output

- LED state is toggled with each clap. For our code, how should the FC-04 potentiometer be set?
 - To give stream of HIGH going pulse output for Arduino
 - To give a HIGH pulse for sound detected
 - To give a LOW pulse for sound detected
 - To give a stream of LOW going pulses

Step 2

Circuit diagram / Connection Details

- Using the jumper / connecting wires prepare the circuit as shown below Choose R_{LED} = 470 ohm.
- Feed the output from sound sensor to pin 2 of the Arduino

Step 3

Experiment Setup

• Make the arrangement as shown in figure below (Arduino clone is being used here) -

- PC is connected to Arduino via USB cable
- Sound sensor V_{cc}, Ground and Output pins are connected to Arduino pin 4, 3 and 2 respectively.
- Connect oscilloscope channel 1 to Arduino pin 13 (clap switch output) and Channel 2 to pin 2 (sound sensor output)

Step 4

Make the Circuit Work

- Flash the code on Arduino
- Set the potentiometer of sound sensor in such a way that there is no HIGH output without sound only sound / clap should generate a HIGH pulse.
- Make a sound / clap the LED on pin 13 of Arduino should toggle (on and off) with each clap

Step 5

Taking the Measurements

- Set the time base of the oscilloscope to about 50ms/div.
- Clap / make sound capture Ch1 and Ch2 waveforms.
- Correlate the sound sensor output (Ch2) and Clap-Switch ouput (Ch1)
- You can also capture screenshot for each measurement set.

Tek	n • /	Acq Complete N	M Pos: 216.0ms					
1	· · · · · · · · · · · · · · · · · · ·			 				
2	· · · · · · · · · · · · · · · · · · ·		1002	••				
Pos width Peak-Peak 1 00%	4.68V	2 Pos Puise Cht 2 Mean	329mV	 				
Please wait			Sep 17, 2015, 1	5:50				

 Cough to make a longer sound or series of pulses from sound sensor FC-04. You will see because of debounce time, clapswitch will generate only 1 pulse (ignores the consecutive pulses for debounce duration)

Te	k															cq Complete										M Pos: 200.0ms													
			۰ .	-				: :				: :						: :	Ţ			: :			: :			: :				: :			: :			÷	
					1. Č 4						-			-																	-								
				•																																		· ··	
	i.																																						
	·· ·																																						
			+				-	-			-			+	-	+	+				+		-	+	-		-			-	-	-		+		-			
			•																																			• ••	
1																																							
	de 1			4									-	ц	¥,		•														-								
2																																							
	1 Pos Width 2											2 Pos Pulse Cot										_	3	00	2	-				ń.									
1 Peak-Peak 4 68V											2 Moan										318m\/																		
										\exists																													
$(1) 1.00V_{B_0}$ (2) $1.00V_{B_0}$										M 50.0ms											Ch1 - 7 2.52V · ·								ΟH	Z									
(PI	ea	se w	ait.																													S	ер	17	7, 2	01	5,	15:5	57

Step 6

Analyzing the Result

- Try finding delay between 1st pulse from sound sensor and toggling of clap-switch. This will give an estimate of how long Arduino takes to process the pulse and drive the LED on/off.
- Try playing with debounce time make is low (say 10ms) or very high (1s). Find the effect on clap-switch output.

Step 7

Conclusion

The analysis of the observed results confirm that (As expected):

- The Arduino can be used as sound-controlled switch using sound sensor
- Debounce time is used to ignore the consecutive pulses from sound sensor and avoid false switching