
Experiment Name: Energy_Storage_in_Inductors

Overview

Fundamental Concepts in Electrical Engineering
Lab5 - Transient Currents and Energy Storage in 
Inductors

Objectives

Learn an intuitive and an analytical view of inductance and inductors
Analyze the mechanisms of energy storage in inductors
Built an experimental circuit to study the transient transfer of energy from an inductor to the circuit

Components
Resistor: 1 kOhm (10%, 0.25W)
Inductor: 1mH
Push-type electric switch (normally open)
Circuit prototyping breadboard
Electric wires

Equipment
Tektronix TBS 1202B-EDU Oscilloscope
Function Generator (1Hz - 2MHz)
Power Supply (5V 1A)

Theory
What is Inductance 

Most of us are familiar with the inductance of coils and how it relates to geometry, number of turns, and 
magnetic permeability of the core material.  We also learned that Maxwell equations can be used to solve 
the magnetic fields of any given structure.  However, for all other than very basic geometrical objects, the 
direct application of Maxwell equations becomes very complicated.  So, in practice, software tools using 
numerical methods are used to solve the magnetic fields.

While these tools can provide very precise results, the overall accuracy depends mainly on setting up the 
boundary conditions.  This becomes significantly complicated and requires many approximations, 
especially in the power distribution circuits on chip, package, and PCB.  Thus, the accuracy of the field 
solver tools simulations depends primarily on the human factor.  Therefore, when using field solver tools, it 
is important to understand the physical principles governing the magnetic fields and induction in power 
distribution circuits.  This helps us analyze the circuits, make better trade-off decisions, and improve the 
performance of our designs.  So in the following sections, I will present an intuitive approach for the 
analysis of inductance.

 
Electric Current Flowing Through a Wire
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An electric current flowing through a wire generates circular magnetic field lines around the wire as 
illustrated in the figure (a) below. 

To determine the direction of the magnetic field, we point the right hand thumb towards the current flow and 
the fingers curl in the positive direction of the magnetic field lines (b).  Alternately, we can imagine rotating 
a screw to advance in the direction of the electric current, and the rotation shows the direction of the 
magnetic field lines (c). 

The magnetic field increases with electric current and decreases rapidly with distance, as shown in the 
following figure.

Conductive Wire Encircled by Magnetic Field

 Let’s see now what happens when magnetic field lines surround a wire, as illustrated in the figure below.

 

If the magnetic field is constant in time, the electric charge inside the wire is not affected.  However, if the 
magnetic field varies, then the electric charge displaces inside the wire inducing a voltage.  Figure (a) 
above illustrates the charge displacement and the induced voltage, VINDUCED, generated by an 
increasing transient magnetic field, B.

To determine the polarity of the induced voltage, we relate the charge displacement to an induced current, Ii 
as shown in part (b) of the figure.  We then set the direction of this induced current so that its own 
generated magnetic field, Bi, opposes the direction of the initial magnetic field B.
 

Time Varying Current Flowing through a Wire

We have learned so far that an electric current generates a magnetic field, and a time-varying magnetic 
field surrounding a conductor induces a voltage in the conductor. We will now combine these two effects to 
understand what happens when a time-varying current, called here excitation current, flows through a wire. 

First, the excitation current generates circular magnetic field lines around the wire, and the intensity of the 
magnetic field is proportional to the intensity of the current.  Consequently, a time-varying excitation current 
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magnetic field is proportional to the intensity of the current.  Consequently, a time-varying excitation current 
generates a time-varying magnetic field, which then produces charge displacement and induced voltage 
back in the same wire. 

If we determine the directions of the magnetic field and the induced voltage, we find out that the induced 
charge displacement opposes the variation of the excitation current.  If the excitation current increases, the 
induced charge displacement current flows in the opposite direction, subtracting from the excitation current. 
Similarly, if the excitation current decreases, the induced displacement current flows in the same direction, 
adding to the excitation current. 

The “always opposing” charge displacement current can be seen as a reluctance of the wire to changes in 
the electric current.  This reluctance is measured by the quantity called inductance.  The inductance uses 
the symbol L, and it is measured in Henries (H).  Analytically, the inductance is defined as the ratio between 
the magnetic flux and the current generating that flux:

For a single wire the inductance is referred to as self-inductance. 

When a variable current flows through a wire, the self-induced voltage into that wire is equal to:

 

 

Self-Inductance of a Straight Wire Segment

 Let’s start with a very thin (filamentary) wire, which carries an electric current. The magnetic field B is 
calculated using the equation: 

 

Let’s now calculate the self-inductance using as the ratio between magnetic flux and electric current.  
Knowing the magnetic field from the equation above, we can calculate the total flux by integrating over the 
area through which the magnetic field lines are passing.  The self-inductance will be then equal to the total 
flux divided by the intensity of the electric current.  While this seems relatively easy and straightforward, in 
reality things are more complicated. 

First, the magnetic flux cross-section area expands all the way to infinity, and since the magnetic field 
depends on materials, we will need to know the magnetic permeability of all the materials surrounding the 
wire. 

Second, for thicker non-filamentary wires the current is distributed within the volume of the wire and 
generates circular magnetic field lines, both inside and outside the wire.  While constant and low frequency 
currents typically flow uniformly within the wire, high frequency currents concentrate closer to the surface 
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due to the skin effect. This changes the distribution of the magnetic field inside the wire, and complicates 
the calculation of the magnetic flux.  Notice that due to the skin effect, the magnetic flux inside the wire 
depends on frequency, and thus the self-inductance depends also on frequency.

As a result, the integration of magnetic flux often becomes impractical, and thus, in the power distribution 
analysis we often use approximation formulas, which provide reasonably accurate results.  We look at self-
inductance as a sum of an internal inductance due to the magnetic field lines inside the wire, and an 
external inductance due to the magnetic field lines outside the wire.  The internal inductance of a cylindrical 
straight wire segment can be calculated as:

Notice that the internal inductance does not depend on the wire diameter.  This formula is valid only at low 
frequencies, where the electric current is assumed uniformly distributed inside the wire. At high 
frequencies, due to the skin effect, the current flows closer to the surface.  For very high frequencies, we 
can assume that all the current flows only on the surface and, thus, no magnetic field exists inside the wire.  
In this case, the internal inductance becomes zero. 

The external inductance can be calculated as: 

The self-inductance of the wire is the sum of internal and external inductance, LSELF = LINT + LEXT. The 
self-inductance depends on the wire geometry, magnetic permeability of the wire, and magnetic 
permeability of the surrounding materials.  The table below compares the relative magnetic permeability of 
some materials. 

Notice that the inductance can increase by a factor as large as 10,000, depending on the material of the 
wire and the materials that surround it. 

For non-ferromagnetic wires, the self-inductance is dominated by the external component.  Thus, in most 
applications, the self-inductance can be approximated with only the external component, which makes it 
independent of frequency.   We also need to keep in mind that the inductance of a wire increases with 
length and decreases with thickness.  When the wire or surroundings are made of ferromagnetic materials, 
the inductance increases significantly.

Wanted and Unwanted Inductors

I like to categorize inductors as “wanted” and “unwanted”.  I will start first with unwanted inductors: these are 
the parasitic inductors of various circuits, for example the power distribution to an integrated circuit.  
Transient currents generated on the silicon chip flow through the power distribution network on the package 
and printed circuit board (PCB) and due to the parasitic inductance generate transient voltages following 
the formula V=LdI/dt. These transient voltages are seen as power supply noise by the circuits connected to 
the same power/ground rails. So when designing the power distribution network of an integrated circuit, we 
want to lower the inductance as much as possible.
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want to lower the inductance as much as possible.

In other applications inductors are “wanted”, for example in radio frequency (RF) circuits or switching power 
supplies, inductors are used as part of the active circuits.  In these applications we need much higher 
inductance than we can obtain from a simple wire.  One method is to shape the wire geometry in a coil.  
The figure below shows the magnetic field generated by electric current flowing through a coil.

Notice: all the way to the left, the circular magnetic field line surrounding the straight wire, as we discussed 
earlier.  As current flows through the coils, these circular magnetic field lines overlap through the center of 
the coil, creating a high intensity magnetic field inside the coil and increasing the inductance.   To further 
increase the inductance, ferromagnetic materials are placed inside the coil.  The inductance of a coil can 
be calculated using the equation:

L=u0*ur*N^2*A/length

where:
L=inductance (Henries (H))
u0=permeability of free space (Wb/A*m)
ur = relative permeability of the material inside the coil
A= cross-section area inside the coil (m^2)
length = length of the coil (m)

Inductors have also parasitic capacitance between coils and series resistance, which makes them RLC 
resonant circuits at high frequencies.

Energy Stored in an Inductor

Inductors store energy when electric current flows through them.  The energy stored can be expressed by 
the formula:

W = ½*L*Î 2

Based on this formula, higher inductance stores more energy and higher current flow stores more energy.  
So what happens with this energy when the current stops flowing?  Let’s say we have a switch that can 
interrupt the current flow through the circuit.  When we turn the switch OFF, the energy stored in the inductor 
will maintain the current flow at the output of the inductor until all energy dissipates.  However, since the 
electric circuit is open, this current has no place to go.  Intuitively, we can think that electric charge is 
“pushed” into that node of the circuit and accumulates there.  This results in an increase of voltage to very 
high values, much higher than the nominal voltage supply of typical circuits.  As an example, 
electromagnetic relays have this problem when switching. This is why there is a reverse-biased diode 
mounted in parallel with the coil.  When the current through the coil turns off, the energy stored in the coil 
dissipates through that diode, avoiding high voltages that would typically damage semiconductor devices.

Let’s take a look now at an experiment that stores energy in an inductor and then releases it.  The setup is 
shown in the figure below:
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On the breadboard, there is a circuit made of a 100uH inductor in series with a 3.9kOHm resistor and a 
switch.  The schematic is shown, annotated in yellow on the picture.  The Vout node is probed by channel 1 
(yellow trace) of the Tektronix TBS1202B-EDU oscilloscope.  The current through the circuit is probed as 
voltage drop on the 3.9kOhms resistor using channel 2 (blue trace) of the oscilloscope. 

As current flows through the circuit, energy stores in the inductor.  Then, when I push the switch button, the 
flow of electric current is interrupted and the energy stored in the inductor dissipates in the form of electric 
current pushed into the Vout node.  The resulted transient charge accumulation at Vout then dissipates into 
voltage source node (Vdc=4V node on the schematic) through the resonant RLC equivalent circuit of the 
inductor, as we can see by the resonant oscillation on the yellow waveform. 

 

Experiment Name: Energy_Storage_in_Inductors

Procedure

Step 1
Construct the circuit showing in the diagram below:

Here is a picture of the testbench setup:
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And here is a more detailed picture of the circuit on the breadboard:

Step 2
Connect Channel 1 of the oscilloscope to node A of the circuit and Channel 2 to node B, as shown in 
the diagram below:
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Set the function generator to rectangular wave mode with amplitude of about 2V and frequency of 
about 30kHz.

Set Channel 1 and Channel 2 of the oscilloscope to DC coupling and 1V/div.

Configure the trigger function to Auto mode, trigger on rising edge, source Channel 1, and adjust the 
trigger level to be within the range of Channel 1 waveform.

Configure the built-in Math function of the oscilloscope to display Ch1 - Ch2 with 2V/div.

The oscilloscope should display similar waveforms as shown in the screenshot below:

Channel 1 (yellow trace) represents the output signal of the functions generator (node A).  When this 
signal is high (at around 2V level) electric current flows through R1=1k and L1=1mH.  This current can 
be determined using Ohm's law from the voltage drop on R1, which is measured by the Math trace 
(red trace).

Immediately when the voltage at node A increases from zero to 2V these is no current flowing through 
the inductor and the voltage on the inductor (blue trace) follows Node A voltage.

Then current starts flowing through the inductor (red trace) and settles to a value close to 
V(Node_A)/R1, since the resistance of the inductor is very low (we can approximate it to zero).  As 
current starts flowing through the inductor the voltage o the inductor (Node B) starts decreasing 
towards zero.

Insert a screenshot of the oscilloscope waveforms in this step.

Why during discharge the voltage on the inductor becomes momentarily negative?
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Step 3
Use the built-in cursor functions of the oscilloscope to measure the time constant of the current 
variation through the inductor during the charging phase, as shown in the screenshot below:

In the example shown above cursor 1 has been placed at the beginning of the charging phase and 
cursor 2 has been placed so that delta V = 1.48V, which is close to 0.707*2.12V amplitude.  The 
voltage of the Math trace can be translated into current through the inductor using Ohm's law as I = 
V_Math(t)/R1.  This With these settings, delta T = 1.36us represents the time constant of the circuit, 
which theoretically should be equal to L/R.  If we divide T=1mH / R=1kOhms = 10us; however, notice 
that the measured value is larger = 1.36us.  The difference comes from additional inductance of the 
wires used in this circuit setup and from the variation of the L1 inductance and R1 resistance from the 
nominal values.

Insert a screenshot of the oscilloscope displayed waveforms and cursor readings.

From the delta V and delta T measurements in your experiment determine the measured time 
constant of the circuit.

Calculate the time constant and compare the result with the measured value.  Comment on any 
discrepancy between calculated and measured values.

Step 4
Construct the circuit showing in the diagram below:
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This circuit is derived from the previous one by adding a switch and replacing the function generator 
with a power supply.  Here is a picture of the testbench setup:

And here is a more detailed picture of the circuit on the breadboard:

Step 5
Connect Channel 1 of the oscilloscope to node A of the circuit and Channel 2 to node B, as shown in 
the diagram below:

This lab courseware is created using Courseware Editor Tool from Tektronix. Find more lab courseware at: www.tek.com/courseware

http://www.tek.com/courseware


Set the power supply to 5V

Set Channel 1 of the oscilloscope to DC coupling and 1V/div

Set Channel 2 of the oscilloscope to DC coupling and 2V/div

Configure the trigger function to Normal mode, trigger on rising edge, source Channel 2, and adjust 
the trigger level to about 2V.

Configure the built-in Math function of the oscilloscope to display Ch1 - Ch2 with 2V/div.

Set the timebase of the oscilloscope to 25us/div.

Set the oscilloscope to single acquisition by pressing the "Single" button on the front panel.

With these settings the oscilloscope will wait for a trigger event to happen and then it will acquire the 
signals and display them on the screen.  The trigger event here is the rising of the voltage on node B 
after releasing the push-down switch.

Push down the switch to close the electric circuit and hold it pushed.  

Release the switch.  The voltage on node B increases quickly activating the trigger of the 
oscilloscope which displays a waveform similar to the one in the screenshot below.  Notice that the 
timebase was set to 25us/div; you will need to magnify the timebase to 5us/div after the acquisition 
completes and the oscilloscope displays the waveforms.
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When the switch is pushed down electric current flows through the circuit resulting in almost zero volts 
at node B (blue trace in the first half of the screenshot above). The current can be determined using 
Ohm's law from the voltage drop on R1, which is measured by the Math trace (red trace), in this 
example I = 5.28V/1kOhm = 5.28mA.  The energy stored by this inductor can be calculated as: W = 
1/2 * L * Î 2 = 1/2 * 1mH * (5.28mA)^2.

Due to this current, energy is stored in the inductor during this time.

After we release the push-down switch the electric circuit becomes open and current stops flowing.  
At this moment the energy stored in the inductor is released and it makes the voltage at node B 
increase above the power supply level of 5V.  Due to parasitic capacitance and resistance in the 
electric path of the circuit and power supply the released energy generates resonance ringing as 
seen in the second half of the screenshot above.  The ringing settles after all the energy stored in the 
inductor is dissipated, and the voltage at node B settles to 5V.

Insert a screenshot of the waveforms measured in this step.

Calculate the current flowing through the inductor during the time the switch is closed.

From the value of the current calculate the energy stored in the inductor.
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