Notchfilters -- Overview

Dr. B Kanmani Department Head, Telecommunication Engineering Statute of File

BMS College of Engineering (BMSCE), Bangalore, India

OBJECTIVES:

At the end of performing this experiment, learners would be able to:

- Describe the concept of Narrow band filter
- Obtain the Rejection Band and cutoff frequency of the filter designed

Compare the designed cut-off frequency with the desired cut-off frequency

• Understand the working of µA741 IC (Op Amp)

EQUIPMENT:

- IC µA741
- Signal generator
- Resistors
- Capacitor
- +/- 15V DC Power Supply
- Digital Storage Oscilloscope & probes
- Connecting wires & Bread Board

DESIGN:

The rejection frequency f_R , is given by

$$f_R = \frac{1}{2\pi RC}$$

Assuming capacitor, the resistance can be computed. Better accuracy is obtained

by using two resistors and two capacitors of value R and C, instead of single resistor and capacitor of values R/2 and capacitor 2C.

Given frequency 1KHz, Let C = 0.1μ F

 $f = 1/2\pi RC$

 $R = 1.59 k\Omega$

THEORY:

• The μ A741 device is a general-purpose operational amplifier

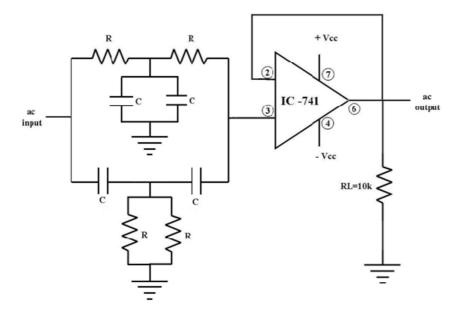
featuring offset-voltage null capability

• Narrow band reject filters are also known as Notch filters. They are designed to reject a single frequency.

Reference reading:

 Theory and application of Digital SIgnal Processing, by Lawrence R Rabine and Bernard Gold, Prentice Hall, Easter Economy Edition
Integrated Electronics, by Millman and Halkias, Tata McGraw-Hill

Acknowledgement


Mr.Shreenivas B for converting laboratory experiment to Tektronix courseware format

Notchfilters -- Procedures

Step 1

Circuit setup:

Build the following circuit with designed values

Step 2

 ${\mbox{\cdot}}$ Use a signal generator to generate analog input . The analog input will be set to 1 Vpp Sine wave

• Turn on the supply of the circuit and enable signal generator that is feeding signal to the circuit.

Step 3

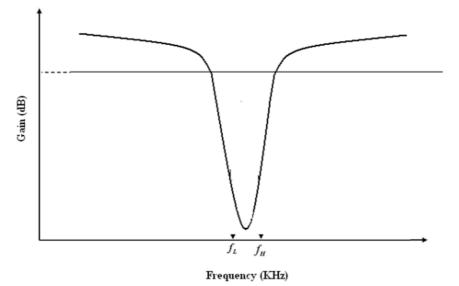
- Connect the DSO probe – CH1 at analog input (Sine wave), CH2 at output (pin # 6 of $\,\mu\text{A741}$ IC)

• Perform Autoset on DSO and capture the output signal.

Step 4

Configure PEAK-to-PEAK measurement on the input and output signal

• Observe and record the signal – input and output.


Step 5

Record the input and output peak-to-peak voltage for various input frequencies, and complete the table below.

Frequency (Hz)	Vin(v)	Vout(v)	Gain (dB) = 20log (Vout/Vin)

Step 6

Plot the frequency response of the designed filter (Plot of Frequency Vs. Gain on a semi-log sheet)

Step 7

Observation:

1) The lower cut-off frequency FI and the higher cut-off frequency

Fh .

2) The bandwidth BW = Fh - FI

Step 8

Open-ended Question / Can you answer this? If the designed parameters are not equal to the desired ones, give

reasons.