Sine_to_Square_Converter -- Overview

Dr. Alex Noel Joseph Raj Professor Embedded Division Research Scholar

hi GV Ir

School of Electronics (SENSE) Vellore Institute of Technology (VIT), Vellore, Tamilnadu (India)

Square to Sine Wave Converter

OBJECTIVES

At the end of this experiment, learner would be able to:

- Design a filter using Opamp
- Understand the concept of signal processing using hardware
- Determine the fundamental frequency of a square wave
- Converter (filter out) square wave to a sine wave
- Use TBS1000B-EDU oscilloscope for signal analysis

EQUIPMENT

To perform this experiment, you would need:

- Opamp µA741 IC
- Signal Generator (AFG3000 Series from Tektronix or equivalent)
- Resistors 3.3KΩ, 10KΩ, 5.6 KΩ
- Capacitor 0.01µF
- Oscilloscope (TBS1000B-EDU series from Tektronix or equivalent)
- Connecting wires and breadboard

FILTER DESIGN

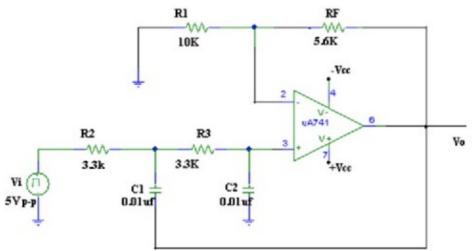
- For a second order filter, A_f = 1. 586 and f_c = 5 kHz
 - The passband gain of filter = $A_f = (1 + R_f / R_1)$
 - So R_f / R₁ = 1.568 -1 = 0.568
 - Take $R_1 = 10 k\Omega$ then
 - 。R_f = 5.68 kΩ
- $f_c = 5 \text{ kHz} = 1 / (2\pi \text{RC})$
 - Assume C = 0. 01μ F
 - $_{\circ}$ then R = 3.3 k Ω

THEORY

• The low pass filter is the one that allows low frequencies

through the circuit and stops (attenuates) frequencies higher than the cut off frequency.

- The transition from passband (frequencies that are allowed to pass) to stopband (frequencies that are attenuated) happens at a frequency called cut-off frequency.
- At cut-off frequency, the output of the filter is 3dB below the input power. So cut-off frequency is also called as 3dB down frequency.
- The transition from passband to stop band and stopband attenuation varies based on type of filter used (e.g., Butterworth, Bessel, Tschebyscheff) and order of filter (1st, 2nd, etc).
- The roll off (attenuation) of the filter can be given by the formula: roll off = (- 20 * n) dB / decade where n is the order of the filter.
- Filters are applied in radio circuits, TV, Telephone, Radar and Biomedical Equipments.


Reference Reading:

- Introduction to Analog and Digital Communication by Simon Haykin.
- Linear Integrated Circuits by D Roy Choudhary

Sine_to_Square_Converter -- Procedures

Step 1

Build the circuit as shown below:

Step 2

- Ensure the value of the circuit components follow the design procedure mentioned in the Overview.
- Parameters given for design of the circuit is:
 - $_{\circ}$ Filter gain A_f = 1.568
 - Cut-off frequency f_c = 5kHz

Step 3

- Set the signal generator output to 2V peak to peak & frequency = 5kHz
- Set the signal type as Square Wave.
- Feed the signal generator output to circuit input.

Step 4

- Observe the output of the filter circuit.
- Measure peak-to-peak voltage of input and output
- Take screenshot of output waveform

Step 5

Question:

- What is shape of the output signal?
- What is the frequency of the output signal?

Step 6

The filtered output represents the fundamental frequency of the square wave