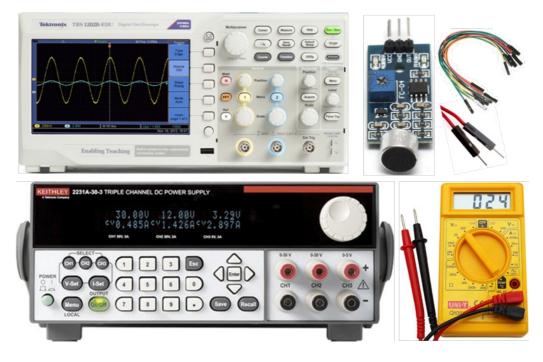
Sound_Sensor_Module -- Overview

Mukesh Soni Researcher / PhD Student Mechanical Engineering Department The University of Melbourne

Understanding Sound Sensor Module

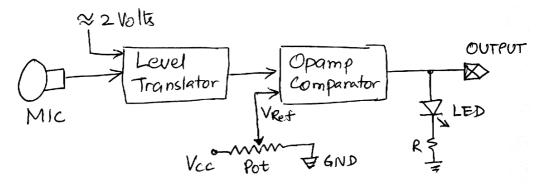
Objectives:


After performing this lab exercise, learner will be able to:

- Understand the working of sound sensor module (FC-04)
- Practice working with measuring equipment and laboratory tools like digital oscilloscope and DC Power Supply
- Use digital oscilloscope to debug/analyze the circuit

Equipment:

To perform this lab experiment, learner will need:


- Digital Storage Oscilloscope (TBS1000B-Edu from Tektronix or any equivalent)
- Power Supply (2231A-30-3 Power Supply from Keithley or any equivalent power supply capable of supplying +/- 10V DC)
- Multimeter (for voltage measurement)
- Sound Sensor module FC-04
- · Breadboard and connecting wires

Theory / Key Concepts:

Before performing this lab experiment, it is important to learn following concepts:

- Sound sensor module FC-04 uses a microphone that converts the accoustic signal (sound) to electrical signal.
- The functional block diagram for FC-04 module is shown below:

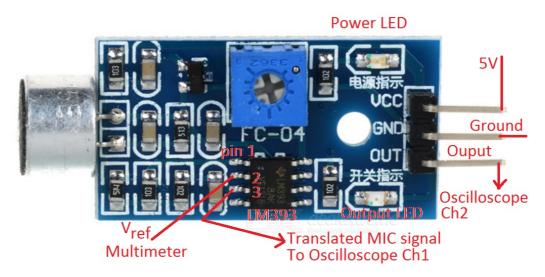
- Electrical signal from microphone (which is proportional to sound) is translated at about 2V using potential divider circuit.
- Signal is then amplified and compared (using LM393 Opamp) against a reference to product a digital output whenever sound signal is more than reference (threshold).
- The threshold can be adjusted using a potentiometer.

Sound_Sensor_Module -- Procedures

Step 1

Check Your Understanding:

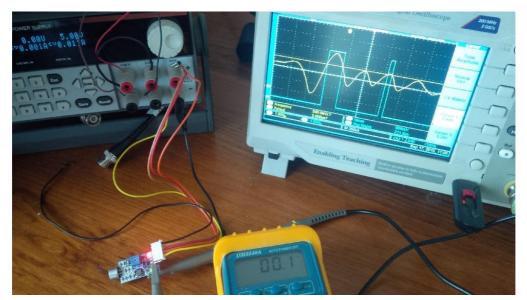
Before performing this lab experiment, learners can check their understanding of key concepts by answering these?


- Microphone is used to convert:
 - Sound to electrical signal
 - Light to electrical signal
 - Pressure to electrical signal
 - Distance to electrical signal
- A microphone, connected at non-inverting terminal of an opamp comparator, produces 2.7V. If the reference voltage at inverting pin is 2.2V, then what will be the comparator output ?
 - Voltage close to V_{CC}
 - Voltage close to ground
 - 2.2V
 - 2.7V
- What is the purpose of providing potentiometer on FC-04 sound sensor module?
 - To adjust brightness of output LED
 - To adjust DC power to LM393 comparator
 - To adjust threshold & sensitivity of the switching by sound

• To adjust the level translation of microphone output

Step 2

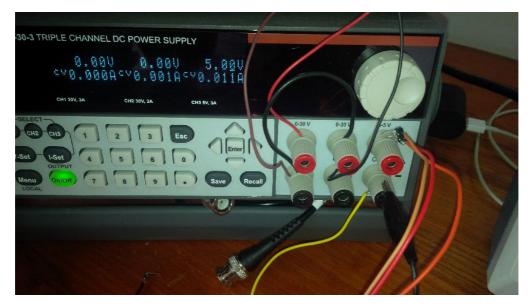
Circuit diagram / Connection Details


- Using the jumper / connecting wires prepare the circuit as shown below -
 - Pin 3 (MIC output after level translation) of LM393 goes to Ch1 of the oscilloscope
 - $_{\circ}$ Pin 2 (V_{ref}) is measured by mutimeter
 - Output pin goes to Ch2 of the oscilloscope
 - $_{\circ}$ 5V is applied between V_{CC} and Ground using DC power supply

Step 3

Experiment Setup

• Make the arrangement as shown in figure below -



- 5V supply is provided using 2231A power supply to the sound sensor module
- From the sound sensor module, Pin 3 of LM393 IC is fed to channel 1 of the osciloscope
- Connect output pin of sensor module to channel 2
- Multimeter is used to measue the V_{ref} (voltage at pin 2 of the LM393 IC on sensor module)

Step 4

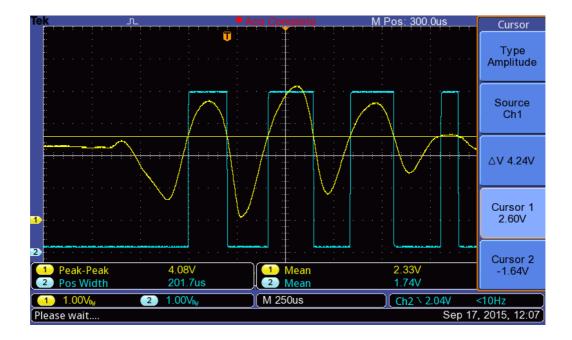
Make the Circuit Work

• Make sure 5V DC is supplied to the sensor module and its power LED is on - Use Channel 3 of 2231A power supply

- Turn the 'potentiometer' on the sensor module such that the output LED on the module glows without any sound.
- Then turn it in opposite direction so that LED is off for no sound input
- Make a sound by clapping or speaking -- output LED should glow

Step 5

Taking the Measurements


- Tune the potentiometer so that output LED is always off.
 - Measure the voltage at pin 2 of the LM393 IC on sensor module using multimeter - This will be the ref voltage

- Set up following measurements:
 - Mean voltage on Ch1 and Ch2
 - Cursor on Ch1 (MIC output)
- Without making any sound, acquire signal and measure mean value of Ch1 and Ch2.
- When Ch1 amplitude (MIC signal) is less than V_{ref}, the output (Ch2) will be low (0V).

Te <u>k</u>	R R	eady	M Pos: 300.0us	Cursor
	Ĵ			Type Amplitude
				Source Ch1
				∆V 4.24V
1				Cursor 1 2.60V
2 1 Peak-Peak 2 Pos Width	120mV 6.000us?	1 Mean 2 Mean	2.27V 169mV	Cursor 2 -1.64V
1.00V _№ Please wait	2 1.00V _{Ry}	M 250us		< <u>10Hz</u> 2015, 12:06

- Tabulate the measurements.
- Now make a sound clap! Capture the transition of output from low to high. User cursor to measure the voltage of Ch1 at which transition happens.

- Repeat the exercise by changing the V_{ref} to a lower value (say 1.7V) and verify the output transition.

Step 6

Analyzing the Result

Sound input	Ch1 (MIC -Pin 3 of LM393) Voltage	V_ref (Pin 2 of LM393) voltage	Ch2 (Output of sensor module) Voltage	Output Transition Level (oscilloscope cursor)	Remarks
No	Mean = 2.27, Pk- Pk = 120mV	2.594	0.000	Not Applicable	Output is normally low without sound input
Yes	Mean = 2.33, Pk- Pk = 4.08V	2.594	5.000	2.600	When sound makes transition beyond Vref, output is high
No	Mean = 2.27, Pk- Pk = 80mV	1.760	5.000	Not Applicable	Output is normally high without sound input
Yes	Mean = 2.23, Pk- Pk = 3.04V	1.760	0.000	1.750	When sound makes transition below Vref, output is low

• The observation can be summarized as below:

Step 7

Conclusion

The analysis of the observed results confirm that (As expected):

- Microphone on the sound sensor module picks up sound and compares it against a set threshold or V_{ref}
- If the V_{ref} is lower than MIC signal, the output is high and vice versa.
- Using potentiometer, we can change V_{ref} and hence the sensitivity or the output switching