The Model 2520 Pulsed Laser Diode Test System is an integrated, synchronized system for testing laser diodes early in the manufacturing process, when proper temperature control cannot be easily achieved. The Model 2520 provides all sourcing and measurement capabilities needed for pulsed and continuous LIV (light-current-voltage) testing of laser diodes in one compact, half-rack instrument. The tight synchronization of source and measure capabilities ensures high measurement accuracy, even when testing with pulse widths as short as 500ns.

Key Performance Specifications

- Simplifies laser diode LIV testing prior to packaging or active temperature control
- Integrated solution for in-process LIV production testing of laser diodes at the chip or bar level
- Sweep can be programmed to stop on optical power limit
- Combines high accuracy source and measure capabilities for pulsed and DC testing
- Synchronized DSP based measurement channels ensure highly accurate light intensity and voltage measurements
- Programmable pulse on time from 500ns to 5ms up to 4% duty cycle
- Pulse capability up to 5A, DC capability up to 1A
- 14-bit measurement accuracy on three measurement channels (VF, front photodiode, back photodiode)
- Measurement algorithm increases the pulse measurement’s signal-to-noise ratio
- Up to 1000-point sweep stored in buffer memory eliminates GPIB traffic during test, increasing throughput
- Digital I/O binning and handling operations
- IEEE-488 and RS-232 interfaces

Applications

Production testing of:
- Telecommunication laser diodes
- Optical storage read/write head laser diodes
- Vertical Cavity Surface-Emitting Lasers (VCSELs)
- Thermal impedance
- Junction temperature response
LIV Test Capability

The Model 2520 can perform pulsed LIV testing up to 5A and continuous LIV testing up to 1A. Its pulsed testing capability makes it suitable for testing a broad range of laser diodes, including the pump laser designs for Raman amplifiers. The instrument’s ability to perform both DC and pulsed LIV sweeps on the same device simplifies analyzing the impact of thermal transients on the LIV characteristics of the laser diode.

Maximize Throughput and Eliminate Production Bottlenecks

By working in cooperation with leading laser diode manufacturers, Keithley designed the Model 2520 specifically to enhance chip- and bar-level test stand yield and throughput. Its integrated design, ease of use, high speed, and high accuracy provides a complete solution to help laser diode manufacturers meet their production schedules. Producers of laser diodes face constant pressure to increase test throughput and optimize return on investment for their capital equipment used in production testing. Until recently, these producers were forced to use relatively slow and cumbersome test stands for testing laser diodes at the chip and bar level, which often led to production bottlenecks.

Higher Resolution for Higher Yields

To achieve the required signal-to-noise ratio, traditional chip- and bar-level LIV testing solutions have required the use of boxcar averagers or test system control software modifications to allow averaging several pulsed measurements. The resolution of these measurements is critical for the “kink” test and threshold current calculations. With earlier test system designs, particularly when performing the kink test, low resolution and poor linearity of the analog digitizer made it extremely difficult to discriminate between noise in the measurement and an actual device kink. The Model 2520’s unique DSP-based measurement approach automatically identifies the settled region of the pulsed waveforms measured. This means the Model 2520 stores only that portion of the pulse that is “flat” and contains meaningful data. All measurements made in the flat portion of the pulse are averaged to improve the Signal-to-Noise ratio still further. If greater resolution is required, the Model 2520 can be programmed to perform several pulse and measure cycles at the same pulse amplitude. By making it possible to conduct more thorough testing at the bar or chip level, the Model 2520 also eliminates the wasted time and costs associated with assembling then scrapping modules with non-compliant diodes.

Simple, One-Box Test Solution

The Model 2520 offers three channels of source and measurement circuitry. All three channels are controlled by a single digital signal processor (DSP), which ensures tight synchronization of the sourcing and measuring functions. The laser diode drive channel provides a current source coupled with voltage measurement capability. Each of the two photodetector channels supplies an adjustable voltage bias and voltage compliance, in addition to current measurement capability. These three channels provide all the source and measure capabilities needed for full LIV characterization of laser diodes prior to integration into temperature controlled modules. By eliminating the need for GPIB commands to perform test sweeps with multiple separate instruments, the Model 2520’s integrated sourcing and measurement allows a significant improvement in throughput.

Ordering Information

2520 Pulsed Laser Diode Test System with Remote Test Head

Accessories Supplied

Accessories Available

7007-1 Double Shielded GPIB Cable, 1m (3.3 ft.)
7007-2 Double Shielded GPIB Cable, 2m (6.6 ft.)
KPCI-488LPA IEEE-488 Interface/Controller for the PCI Bus
KUSB-488B IEEE-488 USB-to-GPIB Adapter for USB Port

Services Available

2520-3Y-EW 1-year factory warranty extended to 3 years from date of shipment
C/2520-3Y-DATA 3 (Z540-1 compliant) calibrations within 3 years of purchase*

*Not available in all countries
Remote Test Head Maximizes Signal-to-Noise Ratio

The mainframe and remote test head architecture of the Model 2520 is designed to enhance pulsed measurement accuracy, even at the sub-microsecond level. The remote test head ensures the measurement circuitry is located near the DUT, mounted on the fixture, minimizing cable effects. As the schematic in Figure 1 shows, traditional semi-custom systems typically employed in the past require significant integration. The architecture of the Model 2520 (Figure 2) offers a far more compact and ready-to-use solution.

High Speed Pulse and Measure to Minimize Thermal Effects

The Model 2520 can accurately source and measure pulses as short as 500 nanoseconds to minimize unwanted thermal effects during LIV testing. Users can program the pulse width from 500ns to 5ms and pulse off time from 20μs to 500ms. There is a software duty cycle limit of 4% for currents higher than 1A. To ensure greater accuracy, the instrument provides pulse width programming resolution levels of 10μs (off time) and 100ns (on time).

Prior to the introduction of the Model 2520, test instrument limitations often placed barriers on test performance. However, with the Model 2520, the limiting factor is not the test instrument, but the physics of the connections to the device. Keithley’s optoelectronics applications engineers have addressed these issues by studying and documenting the optimum cable configuration to enhance measurement accuracy with extremely fast pulses. Figure 3 illustrates the results of a typical pulse LIV sweep test with the Model 2520. In this test, a 100-point pulsed LIV sweep using a 1μs pulse width, at 1% duty cycle, was completed in just 110ms (including data transfer time), several orders of magnitude faster than existing, semi-custom test systems.
ESD Protection

A laser diode’s material make-up, design, and small size make it extremely sensitive to temperature increases and electrostatic discharges (ESDs). To prevent damage, prior to the start of the test and after test completion, the Model 2520 shorts the DUT to prevent transients from destroying the device. The instrument’s 500 nanosecond pulse and measure test cycle minimizes device heating during test, especially when a short duty cycle is used.

Test Sequencing and Optimization

Up to five user-definable test setups can be stored in the Model 2520 for easy recall. The Model 2520’s built-in Buffer Memory and Trigger Link interface can reduce or even eliminate time-consuming GPIB traffic during a test sequence. The Buffer Memory can store up to 1000 points of measurement data during the test sweep. The Trigger Link combines six independent software selectable trigger lines on a single connector for simple, direct control over all instruments in a system. This interface allows the Model 2520 to operate autonomously following an input trigger. The Model 2520 can be programmed to output a trigger to a compatible OSA or wavelength meter several nanoseconds prior to outputting a programmed drive current value to initiate spectral measurements.

Accessories and Options

The Model 2520 comes with all the interconnecting cables required for the main instrument and the remote test head. Production test practices vary widely (automated vs. semi-automated vs. manual), so the cable assemblies from the remote test head to the DUT can vary significantly. To accommodate these differing requirements, Keithley has developed the Model 2520 RTH to DUT Cable Configuration Guide to help customers determine the proper cable assemblies to use to connect the remote test head (RTH) to the DUT.

Interface Options

The Model 2520 provides standard IEEE-488 and RS-232 interfaces to speed and simplify system integration and control. A built-in digital I/O interface can be used to simplify external handler control and binning operations.

FIGURE 4. Model 2520 Remote Test Head
Laser Diode Pulse or DC Current Source Specifications

| Source Range | Programming Resolution | Approx. Electrical Resolution | Accuracy | RMS Noise (typical) 1kHz–20MHz | Off Current 1
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0–500 mA</td>
<td>10 µA</td>
<td>8 µA</td>
<td>0.2 + 0.45</td>
<td>70 µA</td>
<td>0.1 µA</td>
</tr>
<tr>
<td>0–1.0 A DC</td>
<td>100 µA</td>
<td>80 µA</td>
<td>0.2 + 4.5</td>
<td>800 µA</td>
<td>0.2 + 4.5</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C & 28°–50°C): ±(0.15 x accuracy specification)/°C.

Laser Diode Voltage Measure Specifications

<table>
<thead>
<tr>
<th>Range (V)</th>
<th>Minimum Resolution</th>
<th>Accuracy</th>
<th>RMS Noise (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.00 V</td>
<td>0.33 mV</td>
<td>0.3% + 6.5 mV</td>
<td>90 µV</td>
</tr>
<tr>
<td>10.0 V</td>
<td>0.66 mV</td>
<td>0.3% + 8 mV</td>
<td>180 µV</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C & 28°–50°C): ±(0.15 x accuracy specification)/°C.

Photodiode Current Measure Specifications

General
- DC FLOATING VOLTAGE: User may float common ground up to ±10VDC from chassis ground.
- COMMON MODE ISOLATION: >10Ω.
- OVER RANGE: 105% of range on all measurements and voltage compliance.
- SOURCE OUTPUT MODES:
 - Fixed DC Level
 - Fixed Pulse Level
 - DC Sweep (linear, log, and list)
 - Pulse Sweep (linear, log, and list)
 - Continuous Pulse (continuous – low jitter)
- PROGRAMMABILITY: IEEE-488 (SCPI-1995.0), RS-232, 5 user-definable power-up states plus factory default and *RST.
- DIGITAL INTERFACE:
 - Safety Interlock: External mechanical contact connector and removable key switch.
 - Aux. Supply: +5V @ 300mA supply.
 - Digital I/O: 2 trigger input, 4 TTL/Relay Drive outputs (33V @ 500mA max., diode clamped).
 - Trigger Link: 6 programmable trigger input/outputs.

** фотодиодная измерительная система**
- RANGE: 0 to ±20VDC.
- PROGRAMMING RESOLUTION: 10mV.
- ACCURACY: ±(1% + 50mV).
- CURRENT: 160mA max. with V-Bias shorted to I-Measure.
- RMS NOISE (1kHz to 5MHz): 1mV typical.

Photodiode Current Measure Specifications (each channel)

<table>
<thead>
<tr>
<th>Range (mA)</th>
<th>Minimum Resolution</th>
<th>DC Input Impedance</th>
<th>Accuracy</th>
<th>RMS Noise (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00 mA</td>
<td>0.7 µA</td>
<td>< 10 Ω</td>
<td>0.3% + 20 µA</td>
<td>90 nA</td>
</tr>
<tr>
<td>20.00 mA</td>
<td>1.4 µA</td>
<td>< 10 Ω</td>
<td>0.3% + 65 µA</td>
<td>180 nA</td>
</tr>
<tr>
<td>50.00 mA</td>
<td>3.4 µA</td>
<td>< 3 Ω</td>
<td>0.3% + 90 µA</td>
<td>420 nA</td>
</tr>
<tr>
<td>100.00 mA</td>
<td>6.8 µA</td>
<td>< 2.5 Ω</td>
<td>0.3% + 175 µA</td>
<td>640 nA</td>
</tr>
</tbody>
</table>

TEMPERATURE COEFFICIENT (0°–18°C & 28°–50°C): ±(0.15 x accuracy specification)/°C.

Photodiode Current Measure Specifications (each channel)

<table>
<thead>
<tr>
<th>Number of Source Points</th>
<th>To Memory</th>
<th>To GPIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.3</td>
<td>6.8</td>
</tr>
<tr>
<td>10</td>
<td>9.5</td>
<td>18</td>
</tr>
<tr>
<td>100</td>
<td>48</td>
<td>120</td>
</tr>
<tr>
<td>1000</td>
<td>431</td>
<td>1170</td>
</tr>
</tbody>
</table>

System Speeds
- **Reading Rates (ms):** 15, 16
FIGURE 1

Pulse Waveform Flatness - 500mA into 20 Ohms

FIGURE 2

Pulse Waveform Flatness - 5A into 2 Ohms

FIGURE 3

Pulse Output/Trigger Output Relationship

FIGURE 4

Typical Minimum Recommended Pulse Delay
Notes

1. 1 year, 23°C ±5°C.
2. If $\sqrt{\text{Duty Cycle}} \cdot I$ exceeds 0.2, accuracy specifications must be derated with an additional error term as follows:
 - 500mA Range: ±0.1% rdg. $\cdot \sqrt{D} \cdot I$
 - 5A Range: ±0.3% rdg. $\cdot \sqrt{D} \cdot I$
 where: $I = $ current setting
 $D = $ duty cycle
 This derating must also be applied for a period equal to the time that $\sqrt{D} \cdot I$ was ≥0.2.
3. Not including overshoot and setting time.
4. Pulse mode only.
5. Output: 500mA DC on 500mA range and 1A DC on 5A range.
7. Figures 1 and 2 are typical pulse outputs into resistive loads.
8. Typical.
10. Per ANSI/IEEE Std 181-1977 10% to 90%.
11. DC accuracy ±700mV @ output terminal. 0.2Ω typical output impedance.
12. At DC, 10μs measurement pulse width, filter off.
13. Standard deviation of 10,000 readings with 10μs pulse width, filter off, with I source set to 0A DC.
14. The A/D converter has 14 bit resolution. The useful resolution is improved by reading averaging. The useful resolution is:
 \[
 \text{Useful Resolution} = \frac{\text{Range}}{2^{14}} \cdot \sqrt{\frac{\text{Pulse Width (ns)}}{100ns}} \cdot \text{Averaging Filter Setting}
 \]
15. Excluding total programmed (Pulse ON time + Pulse OFF time).
16. Front panel off, calc off, filter off, duty cycle <10%, binary communications.
17. Returning 1 voltage and 2 current measurements for each source point.
18. Sweep mode.
19. Valid for both continuous pulse and sweep modes.
20. Duty Cycle = (pw/(pw+pd))
21. Valid for continuous pulse mode only. For all other modes, as the pulse width becomes large relative to the pulse delay, the actual pulse delay may be longer than the programmed pulse delay due to time required for measurement processing. Typical minimum pulse delay settings for a given pulse width can be seen in the graph in Figure 4.
Contact Information:

Australia* 1 800 709 465
Austria 00800 2255 4835
Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777
Belgium* 00800 2255 4835
Brazil +55 (11) 3759 7627
Canada 1 800 833 9200
Central East Europe / Baltics +41 52 675 3777
Central Europe / Greece +41 52 675 3777
Denmark +45 80 88 1401
Finland +41 52 675 3777
France* 00800 2255 4835
Germany* 00800 2255 4835
Hong Kong 400 820 5835
India 000 800 650 1835
Indonesia 007 803 601 5249
Italy 00800 2255 4835
Japan 81 (3) 6714 3010
Luxembourg +41 52 675 3777
Malaysia 1 800 22 55835
Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90
Middle East, Asia, and North Africa +41 52 675 3777
The Netherlands* 00800 2255 4835
New Zealand 0800 800 238
Norway 800 16098
People’s Republic of China 400 820 5835
Philippines 1 800 1601 0077
Poland +41 52 675 3777
Portugal 80 08 12370
Republic of Korea +82 2 565 1455
Russia / CIS +7 (495) 6647564
Singapore 800 6011 473
South Africa +41 52 675 3777
Spain* 00800 2255 4835
Sweden* 00800 2255 4835
Switzerland* 00800 2255 4835
Taiwan 886 (2) 2656 6688
Thailand 1 800 011 931
United Kingdom / Ireland* 00800 2255 4835
USA 1 800 833 9200
Vietnam 12060128

* European toll-free number. If not accessible, call: +41 52 675 3777

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.