The economical Model 2401 is the latest member of Keithley’s Series 2400 SourceMeter family, designed specifically for low voltage test applications that demand tightly coupled sourcing and measurement. Like all Series 2400 SourceMeter models, the Model 2401 provides precision voltage and current sourcing and measurement capabilities (1μV–20V and 10pA–1A). It is both a highly stable DC power source and a true instrument-grade 6½-digit multimeter. The power source characteristics include low noise, precision, and readback. The multimeter capabilities include high repeatability and low noise. The result is a compact, single-channel, DC parametric tester. In operation, it can act as a voltage source, a current source, a voltage meter, a current meter, and an ohmmeter.

Model 2401 Applications

Manufacturers of components and modules for the communications, semiconductor, computer, automotive, and medical industries will find the Model 2401 invaluable for a wide range of characterization and production test applications. Its 20V@1A output makes it ideal for characterizing the current-voltage (I-V) performance of photovoltaic (solar) cells, high brightness LEDs (HBLEDs), low voltage materials, CMOS circuits and low-power semiconductor devices, as well as resistance measurements on these devices.

The Model 2401 is well suited for use as a gate bias in applications involving devices with three or more terminals such as HBLEDs and photovoltaic cells, reducing total system hardware costs. It also provides sufficient range for characterizing low voltage materials and devices (including graphene and other nano- and MEMs-type structures), which are inherently low voltage oriented.

TYPICAL APPLICATIONS

- High brightness LEDs (DC and pulse)
- Photovoltaic cell efficiency (source and sink)
- Precision DC power supply/current measure
- Discrete semiconductor devices
- Passive devices
- Laser diodes, laser diode modules, LEDs, photodetectors
- Connectors, switches, relays
- Low voltages/resistances
- LIV
- IDDQ
- I-V characterization
Advantages of a Tightly Integrated Instrument

By linking source and measurement circuitry in a single unit, the Model 2401 offers a variety of advantages over systems configured with separate source and measurement instruments. For example, it minimizes the time required for test station development, setup, and maintenance, while lowering the overall cost of system ownership. It simplifies the test process itself by eliminating many of the complex synchronization and connection issues associated with using multiple instruments. Its compact half-rack size conserves precious “real estate” in the test rack or bench.

Much More than a Power Supply

The tightly coupled nature of a SourceMeter instrument provides many advantages over solutions configured from separate instruments such as a precision power supply and a digital multimeter. For example, the Model 2401 provides faster test times by reducing GPIB traffic and simplifies the remote programming interface. It also protects the device under test from damage due to accidental overloads, thermal runaway, etc. Both the Model 2401’s current and voltage source are programmable with readback to help maximize device measurement integrity. If the readback reaches a programmed compliance limit, then the source is clamped at the limit, providing fault protection.

Source I, Measure V, I, or \(\Omega \) configuration

Source V, Measure I, V, or \(\Omega \) configuration
I-V Characteristics
Like all Series 2400 SourceMeter instruments, the Model 2401 provides four-quadrant operation. In the first and third quadrants, it operates as a source, delivering power to a load. In the second and fourth quadrants, it operates as a sink, dissipating power internally. Voltage, current, and resistance can be measured during source or sink operation.

Trigger Link Interface
All SourceMeter instruments include Keithley's unique Trigger Link interface, which provides high speed, seamless communications with many of Keithley's other instruments. For example, use the Trigger Link interface to connect a SourceMeter instrument with a Series 7000 Switching System for a complete multipoint test solution. With Trigger Link, Series 7000 Switching Systems can be controlled by a SourceMeter instrument during a high speed test sequence independent of a computer and GPIB.

Automation for Speed
A SourceMeter instrument streamlines production testing. It sources voltage or current while making measurements without needing to change connections. It is designed for reliable operation in non-stop production environments. To provide the throughput demanded by production applications, the SourceMeter instrument offers many built-in features that allow it to run complex test sequences without computer control or GPIB communications slowing things down.

Standard and Custom Sweeps
Sweep solutions greatly accelerate testing with automation hooks. Three basic sweep waveforms are provided that can be programmed for single-event or continuous operation. They are ideal for I/V, I/R, V/I, and V/R characterization.

- Linear Staircase Sweep: Moves from the start level to the stop level in equal linear steps
- Logarithmic Staircase Sweep: Done on a log scale with a specified number of steps per decade
- Custom Sweep: Allows construction of special sweeps by specifying the number of measurement points and the source level at each point

- Up to 1700 readings/second at 4½ digits to the GPIB bus
- 5000 readings can be stored in the non-volatile buffer memory

Example Test Sequence

<table>
<thead>
<tr>
<th>Test</th>
<th>Pass/Fail Test</th>
<th>If Passes Test</th>
<th>If Fails Test</th>
</tr>
</thead>
</table>
| Test 1 | Check V_F at 100mA against pass/fail limits | Go to Test 2 | 1. Bin part to bad bin
2. Transmit data to computer while handler is placing new part
3. Return to Test 1 |
| Test 2 | Check V_F at 1A against pass/fail limits | Go to Test 3 | |
| Test 3 | Check leakage current at –500V and test against pass/fail limits | 1. Bin part to good bin
2. Transmit readings to computer while handler is placing new part
3. Return to Test 1 |
Unique 6-Wire Ohms Technique

The Model 2401 can make standard 4-wire, split Kelvin, and 6-wire, guarded ohms measurements and can be configured for either the constant current or constant voltage method. The 6-wire ohms technique:

- Uses guard and guard sense leads in addition to the 4-wire sense and source leads
- Locks out parallel current paths when measuring resistor networks or hybrid circuits to isolate the component under test
- Allows users to configure and plot data easily from Series 2400 SourceMeter instruments, making characterization of 2-, 3-, and 4-terminal devices a snap

6-Wire Ohms Circuit. All test current flows through R1 because the high current guard drives the voltage across R2 to 0V.

Advantages of a Tightly Integrated Instrument

By linking source and measurement circuitry in a single unit, these instruments offer a variety of advantages over systems configured with separate source and measurement instruments. For example, they minimize the time required for test station development, setup, and maintenance, while lowering the overall cost of system ownership. They simplify the test process itself by eliminating many of the complex synchronization and connection issues associated with using multiple instruments. And, their compact half-rack size conserves precious “real estate” in the test rack or bench.

Power of Five Instruments in One
(IV Source, IVR Measure)

The tightly coupled nature of a SourceMeter instrument provides many advantages over separate instruments. For example, it provides faster test times by reducing GPIB traffic and simplifies the remote programming interface. It also protects the device under test from damage due to accidental overloads, thermal runaway, etc. Both the current and voltage source are programmable with readback to help maximize device measurement integrity. If the readback reaches a programmed compliance limit, then the source is clamped at the limit, providing fault protection.

Unlike narrow-performance SMU platforms, including board-level products, which often deliver sub-optimal analog measurements due to significant loss in signal integrity, accuracy, power, and/or speed due to interconnect, thermal management, and other issues, all Series 2400 SourceMeter instruments combine the industry’s widest dynamic range with uncompromising throughput and superior measurement integrity.

Other Series 2400 SourceMeter Instruments

If your application requires a wider sourcing or measurement range than the Model 2401 can provide, other Series 2400 instruments (page 33) likely offer the range you need. Consult the range graphs shown here or the instrument specifications for details. Series 2600A System SourceMeter instruments (page 10) are also available to address applications that require integrating multiple source and measure channels and/or pulsing capabilities.
Series 2400

Low Voltage SourceMeter® Line

Voltage Accuracy (Local or Remote Sense)

<table>
<thead>
<tr>
<th>Model</th>
<th>Range</th>
<th>Programming Resolution</th>
<th>Source(^1) Accuracy (1 Year)(^2)</th>
<th>Measurement(^3, 4) Accuracy (1 Year)(^2)</th>
<th>Output Slew Rate(^5)</th>
<th>Source/Sink Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>23°C ±5°C ±(% rdg. + volts)</td>
<td>23°C ±5°C ±(% rdg. + volts)</td>
<td>(±30%)</td>
<td></td>
</tr>
<tr>
<td>2400, 2400-C</td>
<td>200.000 mV</td>
<td>5 μV</td>
<td>0.02% + 600 μV</td>
<td>1 μV</td>
<td>0.012% + 500 μV</td>
<td>±21 V @ ±1.05 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.0000 V</td>
<td>50 μV</td>
<td>0.02% + 600 μV</td>
<td>10 μV</td>
<td>0.012% + 500 μV</td>
</tr>
<tr>
<td>2401</td>
<td>200.000 mV</td>
<td>5 μV</td>
<td>0.02% + 24 mV</td>
<td>1 μV</td>
<td>0.015% + 15 mV</td>
<td>±21 V @ ±1.05 A</td>
</tr>
<tr>
<td></td>
<td>20.0000 V</td>
<td>50 μV</td>
<td>0.02% + 600 μV</td>
<td>10 μV</td>
<td>0.012% + 500 μV</td>
<td>±210 V @ ±105 mA</td>
</tr>
</tbody>
</table>

NOTES
1. 2400, 2401, 2410 Only: Specifications valid for continuous output currents below 105mA. For operation above 105mA continuous for >1 minute, derate accuracy 10% (5mA above 105mA).
2. Full operation (1A) regardless of load to 30°C (50°C for Model 2420 and 2440). Above 30°C (50°C for Model 2420 and 2440) ambient, derate 35mA/°C and prorate 35mA/°C. For current sink operation on 1A, 3A, or 5A ranges, maximum continuous power is limited to approximately 1/2 rated power or less, depending on current, up to 90°C ambient. See power equations in the User’s Manual to calculate allowable duty cycle for specific conditions.
3. For sink mode, ±1.05A @ 10mA range.
4. Accuracy is Model 2400, 2401: ±0.1% + offset*5. Models 2420, 2425, 2430, 2440: ±0.5% + offset*5. For 1A range, accuracy is Model 2400, 2401: ±1.5% + offset*9. Models 2420, 2425, 2430, 2440: ±1.5% + offset*5.
5. Speed = Normal (1 PLC). For 0.1 PLC, add 0.005% of range to offset specifications, except 200mA, 1A, 10A ranges, add 0.05%.
6. Accuracies apply to 2- or 4-wire mode when properly zeroed.

CONTACT CHECK SPECIFICATIONS (requires -C version)
(Not available for Model 2401)

SPEED: 350μs for verification and notification.

CONTACT CHECK:
- 2 Ω: No contact check failure <1.00 Ω, <1.5 Ω, <4.75 Ω
- 15 Ω: No contact check failure <1.00 Ω, <1.5 Ω, <4.75 Ω
- 50 Ω: No contact check failure <1.00 Ω, <1.5 Ω, <4.75 Ω

REFERENCES
1. 23°C ±5°C, 0.0%–50% RH, 950 mV ±0.0% (±21VDC) (Model 2440 ±40VDC from chassis ground).
2. Bipolar voltage limit (compliance) set with single value. Min. 0.1% of range.
3. Bipolar current limit (compliance) set with single value. Min. 0.1% of range.
4. DC FLOATING VOLTAGE: Output can be floated up to ±250VDC (Model 2410 ±60VDC).
5. Accuracy is Model 2400, 2401: ±1.05A @ ±21 V.
Resistance Measurement Accuracy (Local or Remote Sense), 2, 5

<table>
<thead>
<tr>
<th>Range</th>
<th>Default Resolution</th>
<th>Default Test Current 2400, 2401, 2410</th>
<th>Normal Accuracy (23°C ±5°C) 1 Year, ±(% rdg. + ohms)</th>
<th>Enhanced Accuracy (23°C ±5°C)* 1 Year, ±(% rdg. + ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.20000 Ω</td>
<td>–</td>
<td>–</td>
<td>Source I_{ACC} + Meas V_{ACC}</td>
<td>Source I_{ACC} + Meas V_{ACC}</td>
</tr>
<tr>
<td>200.000 Ω</td>
<td>10 μΩ</td>
<td>–</td>
<td>Source I_{ACC} + Meas V_{ACC}</td>
<td>Source I_{ACC} + Meas V_{ACC}</td>
</tr>
<tr>
<td>200.000 Ω</td>
<td>1 mΩ</td>
<td>10 mA</td>
<td>0.08% + 0.05 Ω</td>
<td>0.05% + 0.01 Ω</td>
</tr>
<tr>
<td>200.000 Ω</td>
<td>1 kΩ</td>
<td>100 mA</td>
<td>0.07% + 0.3 Ω</td>
<td>0.05% + 0.1 Ω</td>
</tr>
<tr>
<td>200.000 Ω</td>
<td>10 μΩ</td>
<td>100 μA</td>
<td>0.06% + 3 Ω</td>
<td>0.04% + 1 Ω</td>
</tr>
<tr>
<td>200.000 Ω</td>
<td>10 kΩ</td>
<td>100 μA</td>
<td>0.11% + 50 Ω</td>
<td>0.05% + 10 Ω</td>
</tr>
<tr>
<td>200.000 MΩ</td>
<td>10 μΩ</td>
<td>1 μA</td>
<td>0.11% + 300 Ω</td>
<td>0.05% + 100 Ω</td>
</tr>
<tr>
<td>200.000 MΩ</td>
<td>100 μΩ</td>
<td>10 μA</td>
<td>0.11% + 1 Ω</td>
<td>0.05% + 500 Ω</td>
</tr>
<tr>
<td>>200.000 MΩ</td>
<td>–</td>
<td>–</td>
<td>Source I_{ACC} + Meas V_{ACC}</td>
<td>Source I_{ACC} + Meas V_{ACC}</td>
</tr>
</tbody>
</table>

System Speeds

MEASUREMENT

- **MAXIMUM RANGE CHANGE RATE:** 75 second.
- **MAXIMUM MEASURE AUTORANGE TIME:** 60ms (fixed source). 1

Sweep Operation Reading Rates (rdg./second) for 60Hz (50Hz):

<table>
<thead>
<tr>
<th>Speed</th>
<th>NPLC/Trigger Origin</th>
<th>Measure To Mem.</th>
<th>To GPIB</th>
<th>Source-Measure Pass/Fail Test</th>
<th>Source-Memory Pass/Fail Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>0.01 / internal</td>
<td>2081 (2050)</td>
<td>1734</td>
<td>1591 (1515)</td>
<td>1569</td>
</tr>
<tr>
<td>IEEE-488.1 Mode</td>
<td>0.01 / external</td>
<td>1239 (1200)</td>
<td>1254</td>
<td>1018 (990)</td>
<td>1018</td>
</tr>
<tr>
<td>Fast</td>
<td>0.01 / internal</td>
<td>2081 (2050)</td>
<td>1198 (1210)</td>
<td>1551 (1515)</td>
<td>1000 (900)</td>
</tr>
<tr>
<td>IEEE-488.2 Mode</td>
<td>0.01 / external</td>
<td>1239 (1200)</td>
<td>1079 (1050)</td>
<td>1018 (990)</td>
<td>916 (835)</td>
</tr>
<tr>
<td>Medium</td>
<td>0.10 / internal</td>
<td>510 (455)</td>
<td>509 (455)</td>
<td>470 (405)</td>
<td>470 (410)</td>
</tr>
<tr>
<td>IEEE-488.2 Mode</td>
<td>0.10 / external</td>
<td>438 (380)</td>
<td>438 (380)</td>
<td>409 (360)</td>
<td>409 (365)</td>
</tr>
<tr>
<td>Normal</td>
<td>0.01 / internal</td>
<td>99 (99)</td>
<td>99 (99)</td>
<td>58 (48)</td>
<td>58 (48)</td>
</tr>
<tr>
<td>IEEE-488.2 Mode</td>
<td>0.10 / internal</td>
<td>57 (48)</td>
<td>57 (48)</td>
<td>57 (48)</td>
<td>57 (48)</td>
</tr>
</tbody>
</table>

Single Reading Operation Reading Rates (rdg./second) for 60Hz (50Hz):

<table>
<thead>
<tr>
<th>Speed</th>
<th>NPLC/Trigger Origin</th>
<th>Measure To GPIB</th>
<th>Source-Measure Pass/Fail Test</th>
<th>Source-Measure Pass/Fail Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>0.01 / internal</td>
<td>2081 (2050)</td>
<td>140 (140)</td>
<td>15 (15)</td>
</tr>
<tr>
<td>Fast</td>
<td>0.01 / internal</td>
<td>256 (256)</td>
<td>79 (85)</td>
<td>79 (85)</td>
</tr>
<tr>
<td>Medium</td>
<td>0.10 / internal</td>
<td>167 (166)</td>
<td>72 (70)</td>
<td>69 (70)</td>
</tr>
<tr>
<td>Normal</td>
<td>0.10 / internal</td>
<td>49 (42)</td>
<td>34 (31)</td>
<td>35 (30)</td>
</tr>
</tbody>
</table>

Component for 60Hz (50Hz):

<table>
<thead>
<tr>
<th>Speed</th>
<th>NPLC/Trigger Origin</th>
<th>Measure To GPIB</th>
<th>Source Pass/Fail Test</th>
<th>Source-Measure Pass/Fail Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>0.01 / external</td>
<td>1.84 ms (1.08 ms)</td>
<td>0.5 ms (0.5 ms)</td>
<td>4.82 ms (5.3 ms)</td>
</tr>
<tr>
<td>Medium</td>
<td>0.10 / external</td>
<td>2.55 ms (2.9 ms)</td>
<td>0.5 ms (0.5 ms)</td>
<td>6.27 ms (7.1 ms)</td>
</tr>
<tr>
<td>Normal</td>
<td>1.00 / external</td>
<td>17.53 ms (20.9 ms)</td>
<td>0.5 ms (0.5 ms)</td>
<td>21.51 ms (25.0 ms)</td>
</tr>
</tbody>
</table>

NOTES

1. Reading rates applicable for voltage or current measurements. Auto zero off, autorange off, filter off, display off, trigger delay = 0, and binary reading format.
2. Purely resistive load 1μA and 10μA ranges ≤65ms.
3. 1000 point sweep was characterized with the source on a fixed range.
4. Pass/Fail test performed using one high limit and one low math limit.
5. Includes time to re-program source to a new level before making measurement.
6. Time from falling edge of START OF TEST signal to falling edge of END OF TEST signal.
7. Command processing time of SOURCE VOLTage|CURRent:TRIGgered <nrf> command not included.

TEMPERATURE COEFFICIENT (0°–18°C and 28°–50°C): ±(0.15 × accuracy specifications)/°C.

SOURCE I MODE, MANUAl OHiMS: Total uncertainty = 1 source accuracy + V measure accuracy (4-wire remote sense).

SOURCE V MODE, MANUAl OHiMS: Total uncertainty = V source accuracy + 1 measure accuracy (4-wire remote sense).

6-WiRE OHiMS MODE: Available using active ohms guard and guard sense. Max. Guard Output Current: 50mA (except 1A range). Accuracy is load dependent. Refer to White Paper no. 2053 for calculation formula.

GUARD OUTPUT IMPEDANCE: ≤0.1Ω in ohms mode.

KEITHLEY (U.S. only)

www.keithley.com

1.888.KEITHLEY
General

Noise Rejection:

<table>
<thead>
<tr>
<th>Mode</th>
<th>NPLC</th>
<th>NMRR</th>
<th>CMRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>0.01</td>
<td>—</td>
<td>60 dB</td>
</tr>
<tr>
<td>Medium</td>
<td>0.1</td>
<td>—</td>
<td>80 dB</td>
</tr>
<tr>
<td>Slow</td>
<td>1</td>
<td>60 dB</td>
<td>100 dB</td>
</tr>
</tbody>
</table>

Except lowest 2 current ranges = 90 dB.

Load Impedance:
Stable into 20,000pF typical.

Common Mode Voltage:
250V DC (40V DC for Model 2440).

Common Mode Isolation:
>10¹⁰Ω, <1000pF.

Overrange:
105% of range, source and measure.

MAX. Voltage Drop Between Input/Output and Sense Terminals:
5V.

MAX. Sense Lead Resistance:
1MΩ for rated accuracy.

Sense Input Impedance:
>10¹⁰Ω.

Guard Offset Voltage:
<150μV, typical (300μV for Models 2430, 2440).

Source Output Modes:
- Fixed DC level
- Memory List (mixed function)
- Stair (linear and log)

Memory Buffer:
5,000 readings @ 5 digits (two 2,500 point buffers). Includes selected measured value(s) and time stamp. Lithium battery backup (3 yr+ battery life).

Source Memory List:
100 points max.

Programmability:
IEEE-488 (SCPI-1995.0), RS-232. 5 user-definable power-up states plus factory default and *RST.

Digital Interface:
Interlock: Active low input. Note: DIO Post N/A.

Power Supply:
100V to 240V rms, 50–60Hz (automatically detected at power up).
Model 2400: 2401: 190VA.

Cooling:
Convection.

EMC:

Safety:

Vibration:
MIL-PRF-28800F Class 3 Random.

Warm-Up:
1 hour to rated accuracies.

Dimensions:
89mm high × 213mm wide × 370mm deep (3½ in × 8 3⁄8 in × 149⁄16 in).

Weight:
3.21kg (7.08 lbs) (Model 2425, 2430, 2440: 4.1kg, 9.0 lbs).

Environment:
Operating: 0°–50°C, 70% R.H. up to 35°C. Derate 3% R.H./°C, 35°–50°C.
Storage: -25°C to 65°C.