Tektronix[®]

DDR3 and LPDDR3 Measurement and Analysis 6 Series MSO Opt. 6-CMDDR3 and Opt. 6-DBDDR3 Application Datasheet

DDR3/LPDDR3 Measurement and Analysis for memory designs

Get more visibility into your memory designs with the Tektronix DDR3/ LPDDR3 Automated Conformance package (Opt. 6-CMDDR3) and DDR3/ LPDDR3 Measurement and Analysis function (Opt. 6-DBDDR3) on the 6 Series MSO. The integration of the DDR software, oscilloscope, highperformance analog and digital probes lets you perform detailed, accurate amplitude, timing, and eye diagram measurements on your DDR designs to verify compliance with the Joint Electronic Device Engineering Council (JEDEC) electrical and timing specifications. The digital probes help get insight on the control signals of the DDR bus. The 12-bit analog-to-digital converters in the 6 Series MSO deliver high-precision measurement data with the lowest noise in the industry to let you achieve new levels of debugging efficiency and measurement reliability.

Key features

- Complete test coverage and fully automated conformance testing of DDR3 and LPDDR3 measurements as per the specification, including Eye diagram test on data and clock.
- Ability to simultaneously define Read and Write searches and perform specific DDR measurements on the qualified bursts over long record lengths.
- Ability to set voltage threshold levels per measurement as per the specification.
- Intuitive user interface and workflow to configure and perform DDR electrical validation.
- Easily switch from Conformance test environment to Debug environment on the scope to get deeper insights into test failures.
- Optionally save setup files in Conformance test suite, to be able to recall the scope state post execution.
- Automated report generation saves measurements, test results, and waveform images in .MHT, .CSV or .PDF file format. CSV format helps to parse and customize the test reports as per users' needs

Supports a wide range of interposers for different memory standards, along with best-in-class probes, to meet signal integrity requirements.

DDR3/LPDDR3 automated testing with Opt 6-CMDDR3

Opt. 6-CMDDR3 solution lets you perform automated DDR3 and LPDDR3 conformance testing. This solution works in conjunction with Opt. 6-DBDDR3 to add specific measurements, configure these measurements and fetch the results post analysis. This helps the user to avoid manually save and recall scope setup files. The python sequencer enables fast execution of 100+ measurements, ensures test validation in completed quickly.

The DUT panel lets you choose the device type and device profile which includes the speed grade supported by the DDR device and configure the Vdd and Vref settings.

Kerness DDR - (Untitle	d)	Options	
Setup Status Results Reports S Preferences	DUT ID DUT001 Acquire live waveforms Use pre-recorded waveform files Device DDR3 V Device Profile Data Rate 800 V MT/s Vdd 1.5 V	Signal Debug Mode (Enables Ref, Math)	Pause
	Vref 0.75 v Alternate Thresholds AC 175 v Signal Type DQ DQS Clock v Burst Detection Method DQ/DQS Phase Alignment Trimode Probe Setup Setup	De-Embed Filter Files Disable V Setup	
Ready.			

6-CMDDR3 DUT panel

The user can choose to optionally provide the filter files (.flt) relative to the hardware components used in the signal path, which will be de-embedded from the captured signal prior to analysis using the scope MATH subsystem.

DDR signal is bursty in nature and one of the first steps when it comes to DDR testing is to separate and qualify valid Read and Write bursts. The measurements are then performed on these qualified bursts.

The DUT panel provides user with a choice of several burst detection methods:

Depending on the probing mechanism, user can choose the signal type settings which helps configure the signal sources accordingly during execution.

By using probe mode, user can change the probe configurations.

Opt. 6-CMDDR3 supports the 'Signal Debug' mode in the DUT panel. This mode helps the user to configure the scope settings manually without the settings being overridden by the automation software. In this mode, user can provide Channels, References or MATHs as inputs to the software.

The test selection panel lists the DDR measurements as logical groups depending on the signal type selection in the DUT panel. This helps user to complete the automated measurements with no manual intervention. Eye diagram tests on Data and Clock signals are enabled beyond the conformance requirement, so user gets deeper insight into the memory designs.

6-CMDDR3 running a DDR3 Clock Eye diagram

Once the execution is completed, the software generates a detailed test report with setup information, test summary and detailed results with pass fail status, limits and test specific images.

Te k	tron	ix∘		Tekl Repor	Expre	ESS DDR DDR3 Measi	Report urements			
Setup Informatio	n									
DUTID		DUT001			TekExp	ress DDR		1.0.0.61		
Date/Time		2019-04-02	2 00:59:15		TekExp	ress FrameWork \	Version	4.9.999.28_1	NTERNAL	
Acquisition Mod	la .	Transmitter			TekSco	pe Model		M3U04		
Vdd	ie .	15.V			Pmbel	CH1 Model		TDP7708		
Vref		0.75 V	0.75 V			CH1 Serial number	r	Q100025		
Alternate Thresh	old	AC 175	AC 175			CH2 Model		TDP7708		
Data Rate		800 MT/s			Probe 0	Probe CH2 Serial number				
Over All Test Re	sult	Pass			Probe 0	CH3 Model		TDP7708		
Total Execution	Time	58 Seconds			Probe	CH3 Serial number	r	P1 00003		
					Probe (H4 Model		TLP058		
DUT COMMENT:	General Co	omment - DDR3			Probe	.119 Serial number	r	RELIGIOUTI		
por connert.	deneral er	Junio Deno								
Data Eye Height					Pass					
Data Eye Width					Pass					
Data Eye Height										
Measurement	Measurement	Measu red Value	Units	Test Re	sult	Margin	Low Limit	High Lin	nit Additional	
Group	Details					-		-	Min = 812 509	
Read Burst	Data Eye Height	918.447	mV	Inform	ative	NA	N.A	NA	mV, Max = 1.328 V, Searc Eventr = 150	
COMMENTS	N	A					1		perens = 150.	
									Back to Summary Tab	
Data Eye Width										
Measurement	Measurement	Measured Value	Units	Test Re	scult	Marnin	Low Limit	High Lin	nit Additional	
Group	Details	incasured value	Units	Test in		margin	cow chine	righten	Information	
									Min = 1.128 n May = 1.298	
Read Burst	Data Eye Width	1.175	ns	Inform	ative	N.A.	N.A	N.A	ns, Search	
COMPACT	L								Events = 150.	
Data Eye Height DR3_800 Rea No. 844 de No. 844 de N	d. Burst, Eye Diag								Eack to Summary Tab	
enal La composition da		, WALTER LA DESERVATION DE LA DESERVAT		jann Tanna	n hPápara		K <u>orran</u> - Andreson			
Net Brown	NUTRI AND AND AND A CALLER Market Market And	noonaa ay ahaan			-		1000 10.00.00 1000 - 200	And And Andrews		

6-CMDDR3 Report file with DDR3 Eye diagram test result

To debug test failures, Tektronix offers 6-DBDDR3 measurement package integrated into the scope measurement subsystem, which helps the user to easily configure and test their memory designs.

DDR3 debug with Opt 6-DBDDR3

Opt.6-DBDDR3 lets you capture long records, automatically separate Read and Write bursts based on selected measurements, and perform measurements over multiple Read or Write bursts. You can define multiple Read and Write searches and continuously run the DDR3/LPDDR3 measurements on the qualified searches and perform statistical analysis on the results.

DDR3 electrical testing and timing analysis requires a 6 Series MSO oscilloscope with a recommended bandwidth of 8 GHz to cover entire range of DDR3 speed grades. However, for signal integrity testing and debug, a minimum bandwidth of 4 GHz would suffice most of the user's needs.

Just two screen taps are needed to open the DDR measurement menu.

Automated read and write burst detection

Some JEDEC conformance measurements require isolating the events of interest such as read or write bursts on the memory bus, which is automatically handed by the Conformance solution.

For debug, it may be necessary to further isolate certain events by a particular rank or bank, or to isolate certain data patterns for analysis of signal-integrity issues such as data-dependent jitter, timing, or noise problems. The simplest way to achieve this is to use the DQS (Data Strobe signal) to identify the start of a read or write burst. For example, DDR3 always asserts DQS high at the start of a write, or low at the start of a read.

The Visual Trigger feature on the 6 Series MSO oscilloscope lets you further condition traditional triggers for more versatile DQS burst capture capability. Visual Trigger lets you create mask-like areas directly on the waveform display, where the boundaries of the areas help define trigger events for a DQS or Data Strobe signal.

Visual Trigger lets you add standard or user-specified areas to trigger the DDR3 waveform on specific trigger conditions.

An Eye diagram of a DDR3 signal using Opt. 6-DJA measurement and Visual Trigger conditioning on the source waveform.

Making the complex easier

The JEDEC specifications for each memory technology specifies an array of conformance measurements. These measurements include clock jitter, setup and hold timing, transition voltages, signal overshoot and undershoot, slew rate and other electrical-quality tests. These tests are complex to measure using general-purpose tools.

Because the JEDEC-specified measurement methods require reference levels, pass/fail limits, and more, it is extremely valuable to have an application-specific measurement utility for DDR testing. Opt. 6-CMDDR3 is designed to correctly set up DDR measurements for specified devices. The broad set of measurements available in 6-CMDDR3 conforms to the JEDEC specifications. You can also leverage Opt. 6-DBDDR3 to customize settings to measure non-standard devices or system implementations.

Option 6-CMDDR3 works with option 6-DJA (Advanced Jitter Analysis) to provide Jitter and Eye Diagram Analysis Tools. These two utilities work together to create a powerful, flexible, and easy-to-use test suite for DDR testing and debug.

DDR search feature

The DDR search feature lets you search an entire waveform acquisition for specific signal conditions, such as DDR Read/Write, and mark the waveform where the conditions are met. In addition to using these marks for visual analysis, the oscilloscope can apply the marks as qualifiers for DDR-specific measurements, so that the measurements occur only on the appropriate portion of the data stream. The search algorithms in DDR search make use of the fact that DDR phase relationships are different for read and write bursts; DQ and DQS are in-phase for reads, and 90 degrees out-of-phase for writes. It also supports burst identification based on Chip Select (CS) signal and digital signals (Chip Select-CS, Row Access Strobe-RAS, Column Access Strobe-CAS, and Write Enable source-WE).

Steps to debug failures

The first step in memory debugging is to define a search. This can be done by clicking on the Search button on the scope and defining a DDR search on Read or Write bursts. The next step is to add the measurement from DDR tab and configure these measurements. The configuration involves providing search as an input to the measurement and defining signal sources. Since there are multitude of measurements to be configured, it is recommended to configure the measurements manually one time and save the scope setup file. When you want to debug next time, it is easy to recall the scope setup file, which brings back all the configured measurements on the scope and make edits as necessary.

Once the setup is complete and you select <Run> (or <Single>), the oscilloscope acquires the signals of interest, identifies and marks qualified data bursts, and updates the results for the selected measurements.

The factory setup files supplied with 6-DBDDR3 package are built with industry-standard measurement settings, you may need to modify the settings one time and save them if your test setup is different than the default setup files.

You can view results in table format by clicking on Results Table button on the scope screen. The results table displays all measurement results with their statistical population, sources and other relevant data. You can generate a report, with an option to save the waveform data that is used to make these measurements.

Detailed results showing qualified bursts of a DDR3 signal.

Biose Advis Biose Status Marcine Biose Collection B	Booge Strift Number Productoge Version Rouge Calibration Bittain QL100005 1.11.30 Fail Image: Stript Number of Stript Nu		Configura	ation												
UBC04 DU/10005 11130 Pail Acasurement Result Details Maxel Duils for Head Number of the state of t	Dutocos 1 </th <th>Scope Det</th> <th>alla del Norther</th> <th></th> <th></th> <th>nne Sarial</th> <th>Nerther</th> <th></th> <th>Teas</th> <th>www.Var</th> <th>sion.</th> <th></th> <th>Brone (</th> <th>alberton</th> <th>latus</th> <th></th>	Scope Det	alla del Norther			nne Sarial	Nerther		Teas	www.Var	sion.		Brone (alberton	latus	
Assument Rosul Dutali The first fir	Image: state stat	VB064			6	J100005			1.11/	30			Fal		na tua	
Name Source Mart Mart Mark <	Mart Mart <th< th=""><th>Measur</th><th>rement R</th><th>esult De</th><th>tails</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Measur	rement R	esult De	tails											
Name 1 Dirac Epie (Marco 1) Part Fact Str 2.0 mV 460.1 mV 460.1 mV 460.1 mV 460.1 mV 460.1 mV 460.1 mV 40.2 mV 42.0 mV 42.0 mV 42.0 mV 460.1 mV 460.1 mV 40.0 mV 40.2 mV 40.0 mV 40.2 mV 40.0 mV 40.2 mV 40.0 mV 40.2 mV 40.0 mV <t< th=""><th>22 0 mV 480 mV 690 mV 690 mV 600 mV 24 000 mV 24 072 0 mV 601 mV 600 mV 420 mV 60 3 mV 420 mV</th><th>Neme</th><th>Meas</th><th>Sources</th><th>Mean</th><th>Mir</th><th>Max'</th><th>PK-PK</th><th>Std Dev'</th><th>Pop</th><th>Accum</th><th>Accum Min</th><th>Accum Max</th><th>Accum Pk- Pk</th><th>Accum Std Dev</th><th>Accum P</th></t<>	22 0 mV 480 mV 690 mV 690 mV 600 mV 24 000 mV 24 072 0 mV 601 mV 600 mV 420 mV 60 3 mV 420 mV	Neme	Meas	Sources	Mean	Mir	Max'	PK-PK	Std Dev'	Pop	Accum	Accum Min	Accum Max	Accum Pk- Pk	Accum Std Dev	Accum P
Name Number Part Part Bits Part State Part	13 pp 102 px 1000 m 200 4 pp 15 4 pp 24 98 9 pp 180 2 pp 1000 m 200 4 pp 51 6 4 pp 24 18 1V 1.052 V 1.220 V 980 mV 82.27 mV 65 1.181 V 1.052 V 1.220 V 980 mV 22.27 mV 65 18 1V 1.052 V 1.220 V 480 mV 22.27 mV 65 1.181 V 1.052 V 1.220 V 480 mV 22.27 mV 65 31 mV 400 mV 42.2 mV 480 mV 22.27 mV 65 1.581 mV 400 mV 42.0 mV 480 mV 22.27 mV 65 32 mV 450 mV 42.0 mV 42.0 mV 42.0 mV 42.0 mV 480 mV 22.27 mV 65 51 m 24.5 pp 0.300 m 665 m 1.726 m 65 2.388 m 65.75 ps 1.514 m 2.651 m 1.726 m 68 52 mV 3.000 mV 69.00 mV 69.00 mV 69.00 mV 69.00 mV 69.00 mV 20 1.612 mV 20.00 mV 20.0 mV	Meas 1	Data Eye Height	Ref1 Ref2	572.0 mV	459.1 mV	649.4 mV	190.3 mV	40.29 mV	24	572.0 mV	459.1 mV	649.4 mV	190.3 mV	40.29 mV	24
Namada QU ^(NC) Ruch 1,181 V 1,052 V 220 V 98.0 mV 2427 mV 65 1,181 V 1,022 V 1,220 V 98.0 mV 2427 m Namada QU ^(NC) Ruch 1,181 V 1,052 V 1,220 V 98.0 mV 2427 mV 65 1,181 V 1,052 V 1,220 V 98.0 mV 2527 m Namada QU ^(NC) Ruch 1,181 V 1,052 V 1,220 V 98.0 mV 2427 mV 65 1,181 V 1,052 V 1,220 V 98.0 mV 2527 m Namada QU ^(NC) Ruch 1,031 mV 4,000 mV 42.0 mV 448.0 mV 132.3 mV 65 193.1 mV 4,000 mV 452.0 mV 448.0 mV 232.7 m Namada QU ^(NC) Ruch 1,231 mV 4,000 mV 42.0 mV 448.0 mV 132.3 mV 65 193.1 mV 4,000 mV 452.0 mV 448.0 mV 123.2 m Namada QU ^(NC) Ruch 1,231 mV 4,000 mV 42.0 mV 448.0 mV 132.3 mV 65 193.1 mV 4,000 mV 452.0 mV 448.0 mV 123.2 m Namada QU ^(NC) Ruch 1,231 mV 4,000 mV 452.0 mV 448.0 mV 132.3 mV 65 193.1 mV 4,000 mV 452.0 mV 448.0 mV 123.2 m Namada QU ^(NC) Ruch 1,231 mV 40.0 mV 40.0 mV 142.0 mV 127.0 mV 160.0 mV 120.0 mV 148.0 mV 123.2 m Namada QU ^(NC) Ruch 1,231 mV 44.5 m 82.0 m 8.065 m 1,726 m 108 2,236 m 44.5 mV 132.0 mV 448.0 mV 123.2 m Namada QU ^(NC) Ruch 1,201 m 2,44.5 m 10.0 mV 502.0 mV 100.0 mV 120.0 mV 160.0 mV 502.0 mV 480.0 mV 240.0 mV 140.0 mV 120.0 mV 140.0 mV 140.	184 V 1.052 V 1.232 V 488.0 mV 82.27 mV 65 1.88 V 1.052 V 1.220 V 480.0 mV 82.27 mV 65 81 M 1.052 V 1.220 V 480.0 mV 62.27 mV 65 1.81 V 1.052 V 1.220 V 480.0 mV 62.27 mV 65 81 mV 4.000 mV 42.20 mV 480.0 mV 62.22 mV 65 108.1 mV 4.000 mV 42.0 mV 480.0 mV 123.2 mV 65 100 mV 42.0 mV 48.0 mV 123.2 mV 65 108.1 mV 40.00 mV 42.0 mV 48.0 mV 123.2 mV 65 98 m 42.5 pa 63.0 mV 63.0 mV 108.2 mV 109.2 mV 109	Meas2	Data Eye Width	Ref1 Ref2	981.9 ps	819.2 ps	1.060 ns	240.4 ps	51.84 ps	24	981.9 ps	819.2 ps	1.060 na	240.4 ps	51.64 ps	24
Assade Open (PC) (PA(PC)) Part (1.18) 1.05 (V 1.220 V 48.0 mV 28.27 mV 66 1.81 V 1.020 V 42.0 mV 42.0 mV 123.2 mV 66 1.81 V 1.020 V 42.0 mV 42.0 mV 123.2 mV 66 1.81 V 1.000 mV 42.0 mV 42.0 mV 123.2 mV 66 1.81 V 1.000 mV 42.0 mV 42.0 mV 123.2 mV 66 1.81 V 1.000 mV 42.0 mV 123.2 mV 66 1.83 V 1.000 mV 42.0 mV 123.2 mV 66 1.83 V 1.000 mV 42.0 mV 123.2 mV 66 1.83 V 1.000 mV 42.0 mV 123.2 mV 66 1.83 V 1.000 mV 42.0 mV 123.2 mV 66 1.83 V 1.000 mV 42.0 mV 123.2 mV 66 1.83 V 1.000 mV 42.0	184 V 1952 V 1220 V 488.0 mV 96.27 mV 95 1.181 V 1.052 V 1.220 V 488.0 mV 95.27 mV 95 3.1 mV 4.000 mV 452.0 mV 448.0 mV 123.2 mV 96 193.1 mV 4000 mV 452.0 mV 55 55 193.1 mV 4000 mV 452.0 mV 452.0 mV 132.2 mV 56 193.1 mV 4000 mV 452.0 mV 452.0 mV 132.7 mV 56 53.1 mV 4000 mV 452.0 mV 132.0 mV 50 567.5 mV 132.0 mV 50.0 mV <td>Meas 3</td> <td>VOH(AC)</td> <td>Reft</td> <td>1.181 V</td> <td>1.052 V</td> <td>1.220 V</td> <td>168.0 mV</td> <td>26.27 mV</td> <td>96</td> <td>1.181 V</td> <td>1.052 V</td> <td>1.220 V</td> <td>168.0 mV</td> <td>28.27 mV</td> <td>95</td>	Meas 3	VOH(AC)	Reft	1.181 V	1.052 V	1.220 V	168.0 mV	26.27 mV	96	1.181 V	1.052 V	1.220 V	168.0 mV	28.27 mV	95
Assasts OV/LAPD/D Ref. 1 103.1 m/V 4.00 m/V 452.0 m/V 448.0 m/V 123.2 m/V 65 193.1 m/V 4000 m/V 452.0 m/V 448.0 m/V 123.2 m/V 65 193.1 m/V 4000 m/V 452.0 m/V 448.0 m/V 123.2 m/V 66 193.1 m/V 4000 m/V 452.0 m/V 442.0 m/V 123.2 m/V 66 193.1 m/V 4000 m/V 452.0 m/V	8.1 mV 4.00 mV 48.0 mV 48.0 mV 42.2 mV 85 18.1 mV 4.00 mV 48.0 mV 12.2 mV 85 8.1 mV 4.00 mV 42.0 mV 48.0 mV 12.2 mV 85 18.1 mV 4.00 mV 48.0 mV 12.2 mV 85 86 m 52.2 mV 46.0 mV 12.2 mV 85 18.1 mV 4.00 mV 48.0 mV 12.2 mV 85 87 m 24.5 pV 0.14 mL 6.551 mL 1.785 mL 85 2.328 mL 87.5 pL 0.14 mL 6.551 mL 1.726 mL 85 87 mV 96 5.07 mV 1.00 mV 1.726 mL 86 6.674 47.07 87.60 0.04 VLL 1.726 VLL 86 88 VLL 1.050 VLL 1.000 VLL <	Meas4	VOH(DC)	Ref1	1.181 V	1.052 V	1.220 V	168.0 mV	26.27 mV	96	1.181 V	1.052 V	1.220 V	168.0 mV	28.27 mV	95
Name OC Part 100.1 mV 420.0 mV<	8.1 mV 4.00 mV 48.0 mV 48.0 mV 42.2 mV 46 mV 48.0 mV 48.0 mV 42.2 mV 46 0.8 ms 687.5 ps 10.4 ms 0.65 ms 1.75 ms 65 2.28 ms 657.5 ps 10.4 ms 0.65 ms 1.72 ms 65 0.9 ms 24.5 ps 0.00 ms 0.65 ms 1.72 ms 100 2.20 ms 44.8 ps 0.00 ms 0.65 ms 1.72 ms 100 8.4 mV 0.00 mV 0.00 mV 0.00 mV 1.70 ms 0.66 ms 1.72 ms 100 8.4 mV 1.00 mV 0.00 mV 1.00 mV 0.00 mV 100 ms 4.00 mV 0.00 mV 100 mV 2.00 mV 0.00 mV 2.00 mV 2.0	Meas5	VOL(AC)D	Ref1	193.1 mV	4.000 mV	452.0 mV	448.0 mV	123.2 mV	96	193.1 mV	4.000 mV	452.0 mV	448.0 mV	123.2 mV	95
Alter 1 Open Part 1 2.328 m 827.5 ps 0.14 ms 0.651 ms 1.785 m 66 2.388 ms 427.5 ps 0.14 ms 0.665 ms 1.785 m 66 2.388 ms 44.5 ps 0.03 ms 0.665 ms 1.785 ms 66 2.388 ms 44.5 ps 0.03 ms 0.665 ms 1.726 ms 66 2.308 ms 44.5 ps 0.03 ms 0.665 ms 1.726 ms 66 2.308 ms 44.5 ps 0.03 ms 0.665 ms 1.726 ms 66 2.308 ms 44.5 ps 0.03 ms 0.665 ms 1.726 ms 66 2.308 ms 44.5 ps 0.00 ms 0.665 ms 0.00 ms 0.665 ms 0.00 ms 0.665 ms 0.00 ms 0.664 ms 0.00 ms 0.664 ms 0.00 ms 0.664 ms 0.00 ms 0.661 ms 0.00 ms 0.60 ms 0.00 ms 0	888 687.5 ps 0.14 ns 0.55 ns 1.75 ns 05 2.30 ms 587.5 ps 0.54 ns 0.25 ns 1.75 ns 05 91 ns 24.5 ps 0.30 ns 0.85 ns 1.75 ns 105 2.21 ns 24.5 ps 0.30 ns 0.85 ns 1.72 ns 08 91 ns 24.5 ps 0.30 ns 0.85 ns 1.72 ns 08 65 0.22 ns 0.85 ns 1.72 ns 08 91 ns 24.5 ps 0.30 ns 0.65 ns 1.73 ns 08 65 0.02 ns 0.02 ns 1.73 ns 08 91 ns 100 ns 0.01 ns 0.01 ns 0.01 ns 0.01 ns 0.00 ns 1.22 ns 1.00 ns <t< td=""><td>Anas 6</td><td>VOL(DC)</td><td>Reft</td><td>193.1 mV</td><td>4.000 mV</td><td>452.0 mV</td><td>448.0 mV</td><td>123.2 mV</td><td>96</td><td>193.1 mV</td><td>4.000 mV</td><td>452.0 mV</td><td>448.0 mV</td><td>123.2 mV</td><td>95</td></t<>	Anas 6	VOL(DC)	Reft	193.1 mV	4.000 mV	452.0 mV	448.0 mV	123.2 mV	96	193.1 mV	4.000 mV	452.0 mV	448.0 mV	123.2 mV	95
Name Open Open <th< td=""><td>291 m 244.5 ps 820 m 865 m 1726 m 199 2.291 m 244.5 ps 820 m 8.285 m 1726 m 198 472 4 0 m 2 m 278 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m</td><td>Meas7</td><td>IDPW-</td><td>Ref1</td><td>2.308 ns</td><td>587.5 ps</td><td>10.14 ns</td><td>9.551 na</td><td>1.785 ns</td><td>96</td><td>2.308 m</td><td>587.5 pa</td><td>10.14 ns</td><td>9.561 na</td><td>1.785 ns</td><td>95</td></th<>	291 m 244.5 ps 820 m 865 m 1726 m 199 2.291 m 244.5 ps 820 m 8.285 m 1726 m 198 472 4 0 m 2 m 278 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m	Meas7	IDPW-	Ref1	2.308 ns	587.5 ps	10.14 ns	9.551 na	1.785 ns	96	2.308 m	587.5 pa	10.14 ns	9.561 na	1.785 ns	95
Alter Constraint Constraint </td <td>87.4 97.0 0.004 Vim 17.80 Vim 6.57.2 97.0 0.004 Vim 17.30 Vim 98 843 Vim 1.650 Vim 5.050 Vim 5.050 Vim 5.050 Vim 5.050 Vim 92.04 Vim 17.30 Vim 98 843 Vim 1.050 Vim 5.050 Vim 5.050 Vim 5.050 Vim 5.050 Vim 5.050 Vim 60.0 mi 2.20 Vim 80.0 mi 20.0 Vim 80.0 mi 20.0 vim 80.0 mi 20.0 mi 80.0 mi 20.0 mi</td> <td>Anas 8</td> <td>tDPW-</td> <td>Ref1</td> <td>2.291 ns</td> <td>244.5 ps</td> <td>9.929 na</td> <td>9.685 m</td> <td>1.726 ns</td> <td>108</td> <td>2.291 m</td> <td>244.5 ps</td> <td>9.929 re</td> <td>9.685 na</td> <td>1.728 m</td> <td>108</td>	87.4 97.0 0.004 Vim 17.80 Vim 6.57.2 97.0 0.004 Vim 17.30 Vim 98 843 Vim 1.650 Vim 5.050 Vim 5.050 Vim 5.050 Vim 5.050 Vim 92.04 Vim 17.30 Vim 98 843 Vim 1.050 Vim 5.050 Vim 5.050 Vim 5.050 Vim 5.050 Vim 5.050 Vim 60.0 mi 2.20 Vim 80.0 mi 20.0 Vim 80.0 mi 20.0 vim 80.0 mi 20.0 mi	Anas 8	tDPW-	Ref1	2.291 ns	244.5 ps	9.929 na	9.685 m	1.726 ns	108	2.291 m	244.5 ps	9.929 re	9.685 na	1.728 m	108
Base 10 Constraint Part 10 Part 100 Part 1 Part 100 Part 100	Image Units Units <th< td=""><td>Abas Q</td><td>SRQse-</td><td>Reft</td><td>-5.674</td><td>-9.972</td><td>-878.0</td><td>9.094 Vite</td><td>1.736 V/he</td><td>98</td><td>-5.674</td><td>-9.972</td><td>-878.0</td><td>9.094 Vite</td><td>1.738 Whe</td><td>98</td></th<>	Abas Q	SRQse-	Reft	-5.674	-9.972	-878.0	9.094 Vite	1.736 V/he	98	-5.674	-9.972	-878.0	9.094 Vite	1.738 Whe	98
Alter 1 Open Transmission Ope	D2 mV P26.0 mV D00.0 mV D44 mV Ma PVMm P10.0 mV D40.0 mV <thd40.0 mv<="" th=""> <thd40.0 mv<="" th=""> <thd40.< td=""><td>Views 10</td><td>Fal(DQ) SRQse-</td><td>Reft</td><td>Vitis 3.483 Vitis</td><td>Whs 1.059 Whs</td><td>mVhs 5.052 Vhs</td><td>3.993 Vha</td><td>661.1</td><td>106</td><td>Vite 3.483 Vite</td><td>Vins 1.059 Whs</td><td>mWns 5.052 Vins</td><td>3.993 Vhe</td><td>661.1</td><td>106</td></thd40.<></thd40.0></thd40.0>	Views 10	Fal(DQ) SRQse-	Reft	Vitis 3.483 Vitis	Whs 1.059 Whs	mVhs 5.052 Vhs	3.993 Vha	661.1	106	Vite 3.483 Vite	Vins 1.059 Whs	mWns 5.052 Vins	3.993 Vhe	661.1	106
Alexal 2 Outset (b) Alexal 2 Outset (b) Alexal 2 Outset (b) Alexal 2 Outset (b) Alexal 2	642.0 m/ 742.0 m/ 550.0 m/ 96.8 m/ 20 445.9 m/ 642.0 m/ 760.0 m/ 560.0 m/ 96.8 m/ 20 48.3 pa 1.237 m 2.207 m 2.463 m 712.1 pa 210 108.3 pa 1.237 m 2.463 m 712.1 pa 210 10 pa 462.2 pa 182.2 pa 642.0 pa 110.7 pa 216 33.10 pa 402.8 pa 180.2 pa 142.7 pa 2.463 m 712.1 pa 210 100 ma 0.000 b 1.287 m 1.287 m 2.423 pa 140.2 pa	Apas 11	Rise(DQ) VOH:Iff(A	Ref2	910.7 mV	726.0 mV	990.0 mV	264.0 mV	mVins 60.66 mV	220	910.7 mV	726.0 mV	990.0 mV	264.0 mV	mWhs R0 R6 mV	220
American O American Am	Norm Norm <th< td=""><td>Mage 12</td><td>C) VOLdiff(A</td><td>But?</td><td>845.0 mV</td><td>.042.0 mil</td><td>762.0 mil</td><td>180.0 mV</td><td>36.86 mM</td><td>220</td><td>845.9 mil</td><td>.942.0</td><td>782.0 m</td><td>180.0 mW</td><td>30.80 mW</td><td>220</td></th<>	Mage 12	C) VOLdiff(A	But?	845.0 mV	.042.0 mil	762.0 mil	180.0 mV	36.86 mM	220	845.9 mil	.942.0	782.0 m	180.0 mW	30.80 mW	220
Mail 10 Opt Field Red 2.001 at 1.207 m 2.481 m 702.1 p 210 m 1.207 m 2.227 m 72.1 p 210 1.227 m 1.227 m <t< td=""><td>B3 pa 4.120 ra 1227 na 2487 na 7127 pa 712 pa 710 003 pa 4.1207 na 1227 na 2487 na 712 pa 710 pa 712 pa 710 003 pa 4.1207 na 1227 na 2487 na 712 pa 710 pa 7</td><td>VIENES 12</td><td>C) IDQSCK-</td><td>runz.</td><td>-040.0 1117</td><td>-042.0 mv</td><td>-762.0 mv</td><td>100.0 1114</td><td>30.80 111</td><td>220</td><td>-040.0 mv</td><td>-042.0 mV</td><td>-102.0111</td><td>100.0 mv</td><td>30.00 mv</td><td></td></t<>	B3 pa 4.120 ra 1227 na 2487 na 7127 pa 712 pa 710 003 pa 4.1207 na 1227 na 2487 na 712 pa 710 pa 712 pa 710 003 pa 4.1207 na 1227 na 2487 na 712 pa 710 pa 7	VIENES 12	C) IDQSCK-	runz.	-040.0 1117	-042.0 mv	-762.0 mv	100.0 1114	30.80 111	220	-040.0 mv	-042.0 mV	-102.0111	100.0 mv	30.00 mv	
Amaria Opr Full Red 33.0 pa -402.8 pa 840.2 pa 1100 pa 218 213.0 pa -402.8 pa 642.0 pa 1100 pa 442.2 pa 642.0 pa 1100 pa 1100 pa 1100 pa 1100 pa	10 pp 422 pp 182 pp 822 pp 110 2 pp 218 10 pp 422 pp 110 2 pp 218 10 pp 12 pp 1	Aleas 13	00000	Ref3 Ref2	106.3 ps	-1.237 ns	1.227 ns	2.463 ns	712.1 ps	219	106.3 ps	-1.237 ns	1.227 ns	2.463 ns	712.1 ps	219
Mass10 COL RAC 1.100 ms 0.000 ms 1.287 m	00 ma 00.000 s 1.287 m 1287 m 282.3 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.3 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.3 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.3 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1287 m 282.5 μ 444 1.000 m 0.000 s 1.287 m 1280 m 282.5 μ 444 1.000 m 0.000 m 0.000 μ 404 m 201 m 0.000 μ 104 m 0.000 m 0.000 m 0.000 m 0.000 μ 444 1.000 m 0.000 m 0.0000 m 0.000 m 0.0000 m 0.00	Vieas 14	DIT	Ref1 Ref2	33.10 ps	-452.8 ps	189.2 ps	642.0 ps	119.7 ps	218	33.10 ps	-452.8 ps	189.2 ps	642.0 ps	119.7 ps	218
Mainting Color	Open Open <th< td=""><td>Meas 15</td><td>QS)</td><td>Ref2</td><td>1.100 ns</td><td>e 000.0</td><td>1.287 ns</td><td>1.287 ns</td><td>262.3 ps</td><td>464</td><td>1.100 ns</td><td>0.000 s</td><td>1.287 ns</td><td>1.287 ns</td><td>262.3 ps</td><td>464</td></th<>	Meas 15	QS)	Ref2	1.100 ns	e 000.0	1.287 ns	1.287 ns	262.3 ps	464	1.100 ns	0.000 s	1.287 ns	1.287 ns	262.3 ps	464
March 1 Dort Mice 135 m 215 m 216 m	90 m 243 p 124 m 244 m 245 m 2	Meas 16	TQH ICON I	Ref2 Ref1	1.303 ns	629.5 ps	1.478 ns	848.9 ps	108.0 ps	205	1.303 ns	629.5 ps	1.478 ns	848.9 ps	108.0 ps	205
Name 10 OPPRE Factor 1.645 1.647 91.32 11.34 1.648 1.047 91.32 11.34 1.648 1.047 91.32 11.34 1.048 1.047 91.32 11.34 1.048 1.047 91.32 11.34 1.048 1.047 91.32 11.34 1.048 1.047 91.32 11.34 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048 1.047 1.048	968 1.046 1.047 1	Weigs 1/	LOOK .	PORT2	1.107 ms	301.8 ps	1.301 ms	1.040 ms	266.5 ps	299	1.167 ms	JUL8 ps	1.301 m	1.049 ms	208.0 ps	200
Max10 PPRPR Rud CKCurcy DKCurcy DKCurc	Kinegi Indikuegi Indiku	VIEND 10	IQOL.	PUILZ	1.085	1.045	1.007	61.92	20.00 ps	220	1.085	1.045	1.007	51.92	20.08 ps	220
Maxa20 IPPST Ruf2 206.0 151.8 442.0 206.0 151.8 442.0 206.0 151.8 442.0 206.0 151.8 442.0 206.0 151.8 442.0 206.0 151.8 442.0 206.0 151.8 150.7 151.8 150.7 151.8 150.7 151.8 150.7 151.8 150.7 151.8 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 <th< td=""><td>69 1012 -</td><td>Meas 19</td><td>IRPRE</td><td>Ref2</td><td>CK(avr)</td><td>tCK(evn)</td><td>(CK(ever)</td><td>mICKIew</td><td>mtCK(eve)</td><td>24</td><td>(CK(aw))</td><td>(CK(avr))</td><td>tCK(avr)</td><td>mtCK(evel</td><td>mICK(awd)</td><td>24</td></th<>	69 1012 -	Meas 19	IRPRE	Ref2	CK(avr)	tCK(evn)	(CK(ever)	mICKIew	mtCK(eve)	24	(CK(aw))	(CK(avr))	tCK(avr)	mtCK(evel	mICK(awd)	24
Assa22 PERCORF. PERCORF. PERCORF. PERCORF. 2470 111.01 0000/mml 10.14 Vite 251.01 111.01 101.01 <t< td=""><td>370 1110 1000 July 1014 Vilis 1000 July 1014 Vilis 1000 July 1014 Vilis 221 160 Vilis 2.028 Vilis 8784 Vilis 1.008 Vilis 1.008 Vilis 2.114 Vilis 2.028 Vilis 8784 Vilis 2.21 160 Vilis 0.282 Vilis 8784 Vilis 1.008 Vilis 2.11 7.746 Vilis 2.028 Vilis 8.784 Vilis 1.308 Vilis 2.21</td><td></td><td>IRPST</td><td>Ret2</td><td>288.9</td><td>151.3</td><td>447.0</td><td>295.7</td><td>131.6</td><td>24</td><td>286.9</td><td>151.3</td><td>447.0</td><td>295.7</td><td>131.8</td><td>24</td></t<>	370 1110 1000 July 1014 Vilis 1000 July 1014 Vilis 1000 July 1014 Vilis 221 160 Vilis 2.028 Vilis 8784 Vilis 1.008 Vilis 1.008 Vilis 2.114 Vilis 2.028 Vilis 8784 Vilis 2.21 160 Vilis 0.282 Vilis 8784 Vilis 1.008 Vilis 2.11 7.746 Vilis 2.028 Vilis 8.784 Vilis 1.308 Vilis 2.21		IRPST	Ret2	288.9	151.3	447.0	295.7	131.6	24	286.9	151.3	447.0	295.7	131.8	24
News22 Price 200 Price 2 7.748 Vms 2.434 Vms 2.228 Vms 7.748 Vms 2.434 Vms 0.208 Vms 1.388 Vms 2.21 7.748 Vms 2.434 Vms 0.208 Vms 0.784 Vms 1.388 Vms 1.388 Vms 2.414 Vms 0.208 Vms 0.784 Vms 1.388 Vm	44 Vina 2.242 Vina 8.208 Vina 6.764 Vina 1.309 Vina 221 7.748 Vina 2.434 Vina 8.208 Vina 6.764 Vina 1.398 Vina 221	Meas 20			-9.570	-11.10	-960.0	10.14 Vits	750.4	221	-9.570	-11.10	-960.0	10.14 Vins	750.4	221
		Weas20 Weas21	SRQdff-	Ref2			mwma		mvma		VIIIa	VITE	mwna		mwma	
Steves Time Domain View Waveform View		Weas20 Weas21	SRQdiff- Fail(DQS) SRQdiff-	Ref2	Vins											lane a
	also zis os zis also ejs tra	Mnas20 Mnas21 Mnas22	SRQdff- Fal(DQS) SRQdff- Rise(DQS)	Ruf2 Ruf2	7.748 Vins	2.424 Vins	9.208 Viha	6.784 Vins	1.398 Viha	221	7.748 Vins	2.424 Whs	9.208 Vins	6.784 Vihs	1.398 Wha	221
		Anas 20 Anas 21 Anas 22 Iews me Dom Wavefo R Dom	SROdif- FailDQS) SROdif- RiterDQS) ah View m3/kes	Ruf2	Viris 7.746 Viris	2.424 Vins	9.208 Whs	6.784 Whs	1.398 Vins		7.746 Vins		9.208 Vins	6.784 Wha	1.398 Vins 1.398 Vins 1.2 V 1.39 mV 1.2 V 1.2 V 1.2 V 1.2 V 1.0 V 1.2 V	221
50 m/	0.7 0.7	Aeas 20 Aeas 21 Aeas 22 Iews R I) R 2	SROdiff- Fail(DQS) SROdiff- Rise(DQS)	Ruf2			9.208 Whs	6.784 Whs	1.398 Viha		7.746 Vina		9.208 Vins	6.784 Wha	1.398 Vins 1.398 Vins 1.398 Wins 1.298 Wins 1.2 V 1.2	221

Page 1 of 5

A detailed test report with setup details, measurement results and waveform image.

DDR3 main memory interposers

Gaining access to signal test points on a memory chip is a significant challenge in DDR testing. The JEDEC standards requires that measurements should be taken at the Ball Grid Array (BGA) ballouts of the memory component, connections that are very difficult to access.

Tektronix, in partnership with Nexus Technology ¹, offers probing options such as BGA interposers that supports different memory devices in a variety of form factors. The interposer includes an embedded tip resistor placed close to the BGA pad. The DDR3 main memory is available in standard BGA component packages as well as dual-inline-memory-modules of DIMM and SODIMM.

Standard BGA packages are soldered directly to the printed circuit board (PCB) while modules comprise a series of packages in a standard PCB format with standard connections between the DIMM and the main board. Interposers are available for both component packages and DIMM and SODIMM modules.

Introduction of an interposer and an oscilloscope probe may change the characteristics of the signal. Apply de-embedding filters to remove the effect of the interposer and a probe in the signal path to get an accurate representation of the signal at the probe point.

EdgeProbe Interposer

The Nexus Technology's patented EdgeProbe[™] interposer is available for DDR3, LPDDR3, and other new memory products. It has a small mechanical footprint as the probe points are on the edge of the interposer. The probes can attach directly to the target device to provide access to the clock, command bus, data, strobe, and address signals.

The EdgeProbe design removes mechanical clearance issues as the interposers are the size of the memory components. Embedded resistors within the interposers place the oscilloscope probe tip resistor extremely close to the BGA pad, by providing an integrated oscilloscope probe on all the signals.

EdgeProbe interposer

Socketed Interposer

A socketed interposer typically provides access to all component signals and elevates the interposer above adjacent components for mechanical clearance. This solution offers a custom socket that is installed on the target and has an interposer that is installed by pressing it into the socket. Retention is designed into the solution since the interposer can be removed by pulling an unsecured interposer from the target socket.

The interposer can have the memory component soldered directly to it or optionally have a socket on the interposer. The socket on the interposer allows for memory components to be manually inserted and removed to easily evaluate different vendor memory components. When testing is completed, the interposer can be removed and the memory device inserted directly into the custom socket on the target, removing the effect of the interposer.

For a detailed list of interposers, visit http://www.nexustechnology.com

Direct Attach Interposer

The direct attach interposer enables probing of all signals and is installed directly onto the target. The target must have mechanical clearance for the interposer. The use of the direct attach interposers is common for Package on Package (PoP) components.

Direct Attach interposer.

Technology	Package / Form factor
DDR3	Socketed – 78 Ball / 96 Ball Edge Probe – 78 Ball / 96 Ball Solder-down – 78 Ball / 96 Ball DIMM and SODIMM Interposer for MSO
LPDDR3	Socketed – 216 Ball / 211 Ball Solder-down – 178 Ball / 211 Ball

TDP7700 series TriMode probes for DDR3 measurements

The Tektronix TDP7700 Series TriMode probes are designed to meet DDR3 measurement challenges. The TDP7700 works with the 6 Series MSO, with full AC calibration of the probe and tip's signal path, to provide the highest probe fidelity available for real-time oscilloscopes. The innovative new probe design uses SiGe technology to provide the bandwidth and fidelity needed today and in the future.

TriMode probing lets one probe setup take differential, single ended, and common mode measurements accurately, increasing your efficiency. This unique capability lets you switch between differential, single ended and common mode measurements on the oscilloscope, without moving the probe's connection point.

A key TDP7700 connectivity innovation is using solder-down probe tips with the probe's input buffer mounted only a few millimeters from the tip. This approach provides unmatched usability for connecting to DDR3 circuits.

The TDP7708 probe with high impedance inputs and TriMode capability reduces the number of probes needed to take DDR3 measurements.

Other TDP7700 Series probe characteristics include:

- Excellent step response and low insertion loss up to 20 GHz
- Low-DUT loading with 100 k Ω (DC) and 0.4 pF (AC) performance
- High Common-Mode Rejection Ratio (CMRR)
- Low noise

TLP058 FlexChannel[®] logic probe for digital measurements

The 6 Series MSO provides digital channel capabilities to perform full protocol analysis of the entire memory bus. The TLP058 FlexChannel[®] logic probe connects the Tektronix 6 Series MSO to digital buses and signals on the device under test (DUT). The probe contains 8 data channels and connects the TLP058 logic probe to any FlexChannel oscilloscope input channel.

Datasheet

The TLP058 provides high performance digital inputs.

Configuring DDR3 digital measurements using TLP058 probes.

Specifications

• Timing measurements

- tRPRE measures the width of the Read burst preamble. This is measured from the exit of tristate to the first driving edge of the differential strobe.
- tWPRE measures the width of the Write burst preamble. It is measured from the exit of tristate to the first driving edge of the differential strobe.
- tPST measures the width of Read or Write burst postamble. It is measured from the last falling edge crossing the mid reference level to the start of an undriven state (as measured by a rising trend per JEDEC specification).
- Hold Diff measures the elapsed time between the designated edge of the single-ended waveform and the designated edge of a differential waveform. The
 measurement uses the closest single-ended waveform edge to the differential waveform edge that falls within the range limits.
- Setup Diff measures the elapsed time between the designated edge of a single-ended waveform and when the differential waveform crosses its own voltage
 reference level. The measurement uses the closest single-ended waveform edge to the differential waveform edge that falls within the range limits.
- tCH(avg) measures the average high pulse width calculated across a sliding 200 cycle window of consecutive high pulses.
- tCK(avg) measures the average clock period across a sliding 200-cycle window.
- tCL(avg) measures the average low pulse width calculated across a sliding 200 cycle window of consecutive low pulses.
- tCH(abs) measures the high pulse width of the differential clock signal. It is the amount of time the waveform remains above the mid reference voltage level.
- tCL(abs) measures the low pulse width of the differential clock signal. It is the amount of time the waveform remains below the mid reference voltage level.
- tJIT(duty) measures the largest elapsed time between tCH and tCH(avg) or tCL and tCL(avg) for a 200-cycle window.
- o tJIT(per) measures the largest elapsed time between tCK and tCK(avg) for a 200-cycle sliding window.
- tJIT(cc) measures the absolute difference in clock period between two consecutive clock cycles.
- tERR(n) measures the cumulative error across multiple consecutive cycles from tCK(avg). It measures the time difference between the sum of clock period for a 200cycle window to n times tCK(avg).
- tERR(m-n) measures the cumulative error across multiple consecutive cycles from tCK(avg). It measures the time difference between the sum of clock periods for a 200-cycle window to n times tCK(avg).
- tDQSCK measures the strobe output access time from differential clock. It is measured between the rising edge of clock before or after the differential strobe Read
 preamble time. The edge locations are determined by the mid-reference voltage levels.
- tCMD-CMD measures the elapsed time between two logic states.
- tCKSRE measures the valid clock cycles required after Self Refresh Entry (SRE) command. Changing the input clock frequency or the supply voltage is permissible only after tCKSRE time when the SRE command is registered.
- tCKSRX measures the valid clock cycles required before the Self Refresh Exit (SRX) command. Changing the input clock frequency or the supply voltage is
 permissible provided the new clock frequency or supply voltage is stable for the tCKSRX time prior to SRX command.

• Amplitude measurements

- AOS measures the total area of the signal above the specified reference level.
- AUS measures the total area of the signal below the specified reference level.
- Vix(ac) measures the differential input cross-point voltage measured from the actual crossover voltage and its complement signal to a designated reference voltage. This is measured on a single-ended signal.
- AOS Per tCK measures the total area of the signal that crosses the specified reference level calculated over consecutive periods. It is applicable to clock and address/command waveforms only.
- AUS Per tCK measures the total area of the signal that crosses the specified reference level calculated over consecutive periods. It is applicable to clock and address/command waveforms only.
- AOS Per UI measures the total area of the signal that crosses the specified reference level calculated over consecutive unit intervals. It is applicable to data and data strobe waveforms only.
- AUS Per UI measures the total area of the signal that crosses the specified reference level calculated over consecutive unit intervals. It is applicable to data and data strobe waveforms only.

Additional details

Details	DDR3	LPDDR3			
Speed (MT/s)	800, 1066, 1333, 1600, 1866, and 2133	333, 800, 1066, 1200, 1333, 1466, 1600, 1866 and 2133			
Max slew rate	10 V/ns	8 V/ns			
Typical V swing	1 V	0.6 V			
20-80 risetime	60 ps	45 ps			
Report	HTML and PDF format				
Source support	Live analog signals, reference waveforms, and math waveforms				
De-embedding support	Filter file using math subsystem				

Ordering information

Required hardware

Oscilloscope	6 Series MSO oscilloscope with minimum bandwidth of 4 GHz (6-BW-4000) for debug and a recommended bandwidth of 8 GHz (6-BW-8000) for DDR3/LPDDR3 automated conformance testing.
Operating system	6-WIN (removable SSD with Microsoft Windows 10 operating system). Optional - Required only for DDR3/LPDDR3 automated conformance testing

Required software

Application	Options	License type
DDR3 and LPDDR3 Automated Compliance Solution	6-CMDDR3	New instrument license
for 6 Series MSO 2	SUP6-CMDDR3	Upgrade license
	SUP6-CMDDR3-FL	Floating license ³
DDR3 and LPDDR3 Analysis and Debug Solution for	6-DBDDR3	New instrument license
6 Series MSO ⁴	SUP6-DBDDR3	Upgrade license
	SUP6-DBDDR3-FL	Floating license ³

Recommended probes and accessories

Recommended probes

Accessory type	Quantity
TDP7708 Tri-mode probe with	Two probes are required for testing a DUT with DQ and DQS.
	One probe is required for probing CS_PAS_CAS_and WE lines
10P3500	Une probe is required for US as Analog signal.

Recommended test fixtures

Accessory type	Vendor
DDR3: x4, x8, 16 socketed, solder-down and direct attach interposers	Sold through Tektronix and Nexus Technologies ⁵
LPDDR3: BGA and PoP interposers	

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.

Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.

Product Area Assessed: The planning, design/development and manufacture of electronic Test and Measurement instruments.

- 2 DDR3 and LPDDR3 Automated Compliance Solution for 6 Series MSO requires 6-DBDDR3 and 6-DJA as a pre-requisite for running DDR and Eye diagram measurements.
- ³ Floating licenses are transferrable from any 6 Series MSO to any other 6 Series MSO, for use of one instrument at a time.
- 4 Additional information about DDR analysis is available at https://www.tek.com/ddr-test-validation-and-debug.
- ⁵ Contact your local Tektronix representative for details.

Datasheet

ASEAN / Australasia (65) 6356 3900 Belgium 00800 2255 4835* Central East Europe and the Baltics +41 52 675 3777 Finland +41 52 675 3777 Hong Kong 400 820 5835 Japan 81 (3) 6714 3086 Middle East, Asia, and North Africa +41 52 675 3777 People's Republic of China 400 820 5835 Republic of Korea +822 6917 5084, 822 6917 5080 Spain 00800 2255 4835* Taiwan 886 (2) 2656 6688 Austria 00800 2255 4835* Brazii +55 (11) 3759 7627 Central Europe & Greece +41 52 675 3777 France 00800 2255 4835* India 000 800 650 1835 Luxembourg +41 52 675 3777 The Netherlands 00800 2255 4835* Poland +41 52 675 3777 Russia & CIS +7 (495) 6647564 Sweden 00800 2255 4835* United Kingdom & Ireland 00800 2255 4835* Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Canada 1 800 833 9200 Denmark +45 80 88 1401 Germany 00800 2255 4835* Italy 00800 2255 4835* Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90 Norway 800 16098 Portugal 80 08 12370 South Africa +41 52 675 3777 Switzerland 00800 2255 4835* USA 1 800 833 9200

* European toll-free number. If not accessible, call: +41 52 675 3777

For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tek.com.

Copyright [©] Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.

20 May 2019 55W-61470-2

ES)

www.tek.com

Tektronix[®]