
# **Tektronix**®

# デジタル電源管理/解析ソフトウェア - パワーレー ル測定対応

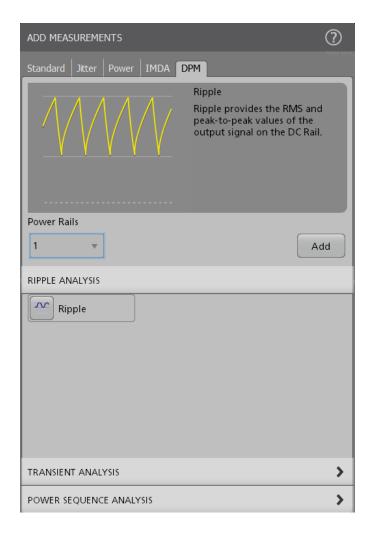
5/6 シリーズ MSO Opt. 5-DPM/6-DPM アプリケーション・データ・ シート

# 複数パワーレール測定の自動化



デジタル電源管理/解析 (DPM) ソフトウェア・オプショ ンは、5/6 シリーズ MSO オシロスコープにパワーレールの 自動測定機能を提供します。複数の FlexChannel®入力と 次世代のユーザ・インタフェースを備えた 5/6 シリーズ MSO でリップル、オーバシュート/アンダシュート、電源 シーケンシング、振幅、タイミングなどの測定および解析が 行えます。パワーレール・プローブまたは受動プローブを使 用して、複数のパワーレールを同時に解析できます。

DPM ソフトウェアによって、測定項目、テスト結果、プ ロットなどが記載されたレポートが自動的に生成されます。 このソリューションを活用すれば、商品化までの時間を大幅 に短縮できます。

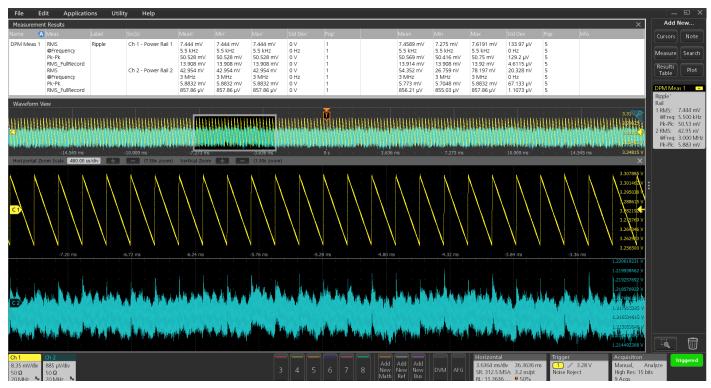

#### 主な特長

- パワーレール上のリップルを計算するリップル解析機能 により、確実に要件を満たした設計を実現
- トランジェント解析によりオーバシュート/アンダ シュートを測定することで、パワーレールの公称値から の変動幅の評価が可能
- 電源シーケンス解析によりパワーレールが要求時間内に オンまたはオフの状態に達しているかどうかの検証が可 能
- マルチレールに対応したテストにより設計、検証、テス トの時間が短縮
- 最適なオシロスコープ設定を可能にするパワーレール・ オートセット/プリセット機能
- TPR1000/TPR4000 型パワーレール・プローブを使 用することで、最大 60VDC のオフセット、1GHz また は 4GHz の周波数帯域による低ノイズ、低負荷の測定が 可能
- すべての測定、コンフィグレーション、測定結果の画面 でプログラミング・インタフェース・コマンドを使用可 能
- アクティブなパワー測定、プロット、およびテーブルを MHT、PDF、または CSV フォーマットのレポートに保 存可能

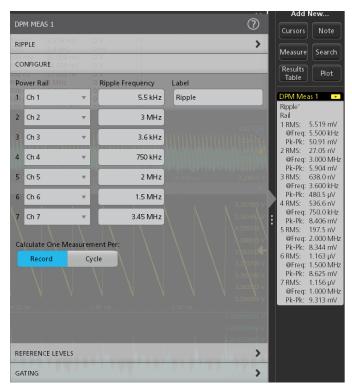
#### アプリケーション

デジタル電源管理/解析ソフトウェアがあれば、5/6 シリー ズ MSO オシロスコープを強力なデバッグ/解析ツールと して使用できるため、パワーレールをすばやく測定し、解析 できます。パワーレール測定は、設計要件を満たすためだけ でなく、高出力デバイスの高度な統合にも役立ちます。 DPM ソフトウェアを使用すれば、リップル解析、オーバ シュート/アンダシュート、電源シーケンシングといった測 定が自動化されるため、パワーレールを正確かつ効率的に特 性評価できます。

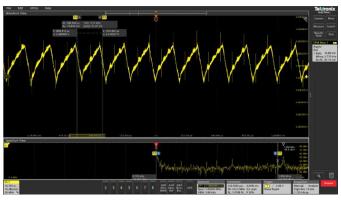
DPM ソフトウェアを装備した 5/6 シリーズ MSO オシロ スコープとパワーレール・プローブを組み合わせることで、 パワーレールのテストに最適な高度な測定システムを構築 できます。

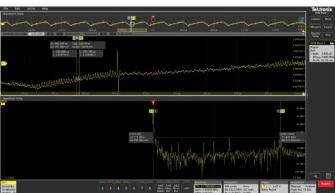



### リップル解析


今日の複雑な IC のパワーレールでは特に顕著ですが、リッ プルには厳格な制限値が規定されています。自動リップル 解析機能を活用することで、そうした重要な測定を効率的に 実施できます。まず、それぞれのパワーレールのリップル周 波数の期待値を入力します。パワーレール・プリセット・ボ タンを押すと、ソフトウェアによってその情報が使用され、 最良の測定結果が得られるようにオシロスコープ設定が最 適化されます。

複数のパワーレールを同時に解析できるため、設計や検証に 必要なテスト時間を短縮できます。たとえば、8 チャンネル の 5 シリーズ MSO を使用すれば、最大 7 つのパワーレー ルを動じに測定できます。 5/6 シリーズ MSO の Spectrum View 機能を活用すれば、リップルのスペクトラ ム解析も実行できます。

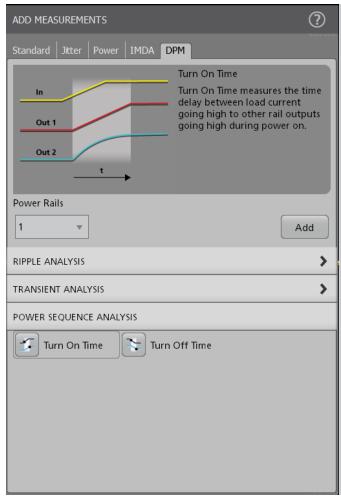

(利用可能な場合には) PWM クロックを選択することで、 サイクル単位で解析を実施し、それぞれのリップル・サイク ルの p-p 値や RMS 値を測定できます。この場合、取込んだ 波形のすべてのサイクルについての統計値が得られます。 帯域制限機能を使用することで、異なる周波数帯域における リップルの数を解析できます。



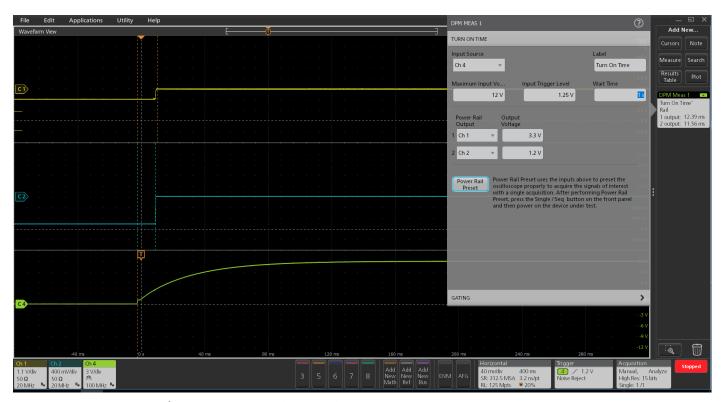

5/6-DPM では複数のパワーレールで同時にリップルを測定できる。結果バッジ、結果表、および波形表示を活用することで、詳細な解析が可能



5/6-DPM ではマルチレールの同時テストが可能。そのため、設計、検 証、テストの時間を大幅に短縮



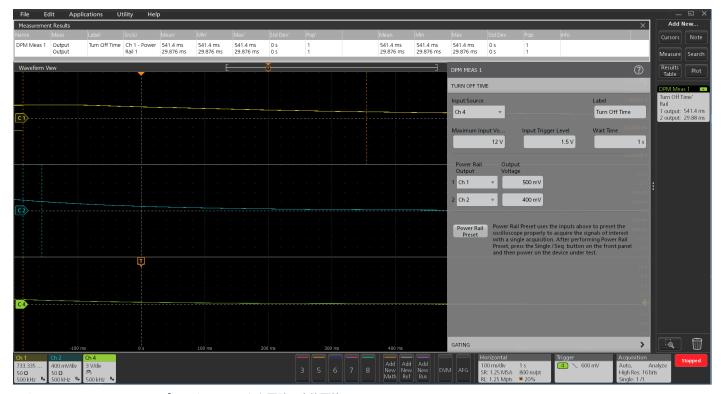




5/6-DPM ではリップルを測定するだけでなく、リップルの詳細な解析 も可能。Spectrum View 機能を使用することで、リップルの発生源を 特定できるなど、パワーレールの設計者に強力な機能を提供

### 電源シーケンス解析

7 つのパワーレールで電源シーケンス解析を同時に実行し、 ターンオン/ターンオフ時間を自動的に測定できます。パ ワーレールの電源シーケンスを測定することで、要求時間内 に確実にターンオン/ターンオフの状態に達する適切な設 計が可能になります。テストを自動化することで、異なる負 荷条件の下でも、一貫性のある正確なテスト結果が得られ ます。




電源シーケンス解析を使用することで、複数のパワーレールでターン オン/ターンオフ・テストを同時に実施可能



5/6-DPM ではマルチレールのパワーオン・テストを同時に実施可能

テストをセットアップするには、公称入力/出力電圧、トリ ガ・レベル、待機時間(期間)を指定します。パワーレー ル・プリセット・ボタンを押すだけで、最適化プロセスが起 動され、最適な結果が得られるようにソフトウェアによって スケール設定、レコード長、サンプル・レートが最適化され ます。オシロスコープを動作可能な状態にして、DUT の電 源をオンにするだけで、測定が開始されます。

ターンオン/ターンオフ時間が結果バッジに表示され、色分 けされたインジケータを使用して波形上に示されます。結 果は表形式でも表示されます。結果表を調べ、異常な値がな いか確認し、設計の待機時間を比較し、検証します。



5/6-DPM ではマルチレールのパワーオフ・テストを同時に実施可能

## トランジェント解析

トランジェント解析は、オーバシュートとアンダシュートの 測定で構成されます。複数のパワーレールに対しても、簡単 なステップに従うだけで、同時かつ自動的に測定を実施でき ます。



5/6 DPM のコンフィグレーション画面を使用することで、設計エンジ ニアは解析に必要なソース、基準電圧、周波数帯域を選択できる

テストを開始する前にそれぞれのパワーレールの基準電圧 が設定されます。オーバシュート測定では、最大電圧と基準 電圧の差が示されます。アンダシュート測定では、最小電圧 と基準電圧の差が示されます。

この測定は、取り込んだ波形の 1 つのサイクルに対して実 行することも、あるいはすべてのサイクルに対して実行する こともできます (サイクル・モード)。パワーレール信号に 基づいて、またはシステムの別の信号に基づいて、サイクル を同期させることができます。サイクル単位での測定では、 統計、ヒストグラム、プロットを解析に使用できます。帯域 制限機能を使用することで、異なる周波数帯域におけるリッ プルの数を解析できます。



5/6-DPM を使用すれば、複数のパワーレールで同時に包括的なオーバシュート/アンダシュート測定が可能

## レポート生成

DPM ソフトウェアを使用すれば、設計/開発プロセスに不 可欠なデータ収集、保存、文書化といった作業が大幅に簡素 化されます。MHT、PDF、CSV フォーマットのレポートを 生成できるため、測定結果を簡単に文書化できます。

DPM ソフトウェアは、テストの全実行結果を合否判定結果 と共に各種レポート形式にまとめる機能を備えており、効率 的な解析が可能です。

|                              | Scope Details<br>Scope Model Number<br>MSOS8 |                           |                       | Scope Serial Number<br>C010228 |                       |             |             | TekScope Version<br>1.16.2 |                       |                       | Scope Calibration Status<br>Pass |             |             |        |
|------------------------------|----------------------------------------------|---------------------------|-----------------------|--------------------------------|-----------------------|-------------|-------------|----------------------------|-----------------------|-----------------------|----------------------------------|-------------|-------------|--------|
|                              | Heasure                                      |                           | Mean'                 | tails<br>Min'                  | Max'                  | Pk-Pk'      | Std Dev     | Populati<br>on'            | Mean                  | Min                   | Max                              | Pk-Pk       | Std Dev     | Popula |
| OPM<br>deas 1 -              | ment<br>RMS                                  | Ch 1 -<br>Power           | 16.49<br>mV           | 16.49<br>mV                    | 16.49                 |             | 0.000 V     |                            | 16.49<br>mV           | 16.49<br>mV           | 16.49<br>mV                      |             | 0.000 V     | on     |
|                              | @Frequ<br>ency                               | Rail I                    | 3.660<br>kHz          | 3.660<br>kHz                   | 3.660<br>kHz          | 0.000<br>Hz | 0.000<br>Hz | 1                          | 3.660<br>kHz          | 3.660<br>kHz          | 3.660<br>kHz                     | 0.000<br>SH | 0.000<br>Hz | 1      |
|                              | Pk-Pk                                        |                           | 53.04<br>mV           | 53.04<br>mV                    | 53.04<br>mV           | 0.000 V     | 0.000 V     | 1                          | 53.04<br>mV           | 53.04<br>mV           | 53.04<br>mV                      | 0.000 V     | 0.000 V     | 1      |
|                              | RMS_Ful<br>Record                            | Ch 2 -                    | 13.28<br>mV           | 13.28<br>mV                    | 13.28<br>mV           | V 000.0     | 0.000 V     | 1                          | 13.28<br>mV           | 13.28<br>mV           | 13.28<br>mV                      | V 000.0     | 0.000 V     | 1      |
|                              | RMS                                          | Power<br>Rail 2           | 8.388<br>mV           | 8.388<br>mV                    | 8.388<br>Vm           |             | V 000.0     | 1                          | 8.388<br>mV           | 8.388<br>mV           | 8.388<br>mV                      |             | V 000.0     | 1      |
|                              | @Frequ<br>ency                               |                           | 5.610<br>kHz<br>47.88 | 5.610<br>kHz<br>47.88          | 5.610<br>kHz<br>47.88 | 0.000<br>Hz | 0.000<br>Hz | 1                          | 5.610<br>kHz<br>47.88 | 5.610<br>kHz<br>47.88 | 5.610<br>kHz<br>47.88            | 0.000<br>Hz | 0.000<br>Hz | 1      |
|                              | Pk-Pk<br>RMS_Ful                             |                           | mV<br>13.24           | mV<br>13.24                    | mV<br>13.24           |             | V 000.0     |                            | mV<br>13.24           | mV<br>13.24           | mV<br>13.24                      |             | V 000.0     | -      |
| OPM<br>deas 2 -<br>Oversho   |                                              | Ch 1 -<br>Power<br>Rail 1 | mV<br>26.99<br>mV     | 26.99<br>mV                    | 26.99<br>mV           |             | 0.000 V     |                            | mV<br>26.99<br>mV     | mV<br>26.99<br>mV     | mV<br>26.99<br>mV                |             | 0.000 V     |        |
|                              | Oversha<br>at                                | Ch 2 -<br>Power<br>Rail 2 | 23.25<br>mV           | 23.25<br>mV                    | 23.25<br>mV           | 0.000 V     | 0.000 V     | 1                          | 23.25<br>mV           | 23.25<br>mV           | 23.25<br>mV                      | 0.000 V     | 0.000 V     | 1      |
| OPM<br>deas 3 - I<br>Indersh |                                              | Ch 1 -<br>Power<br>Rail 1 | 26.06<br>mV           | 26.06<br>mV                    | 26.06<br>mV           | 0.000 V     | 0.000 V     | 1                          | 26.06<br>mV           | 26.06<br>mV           | 26.06<br>mV                      | 0.000 V     | 0.000 V     | 1      |
|                              | Undersh<br>oot                               | Ch 2 -<br>Power<br>Rail 2 | 25.33<br>mV           | 25.33<br>mV                    | 25.33<br>mV           | 0.000 V     | 0.000 V     | 1                          | 25.33<br>mV           | 25.33<br>mV           | 25.33<br>mV                      | 0.000 V     | 0.000 V     | 1      |

# 測定機能

| リップル解析                  | 複数のパワーレールで同時にリップルを測定。使用するオシロスコープおよびパワーレール・プローブによって異なるが、10mV 未満(MSO64型)または 10mV 以上(MSO5 シリーズ)のリップルの測定が可能。Spectrum View を使用することで、リップルの発生源も特定可能。リップル周波数はパワーレールごとに設定が可能。オシロスコープのチャンネルの垂直軸メニューを使用した帯域制限にも対応 |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| トランジェント解析               | オーバシュート/アンダシュート測定機能により、パワーレール固有のオーバシュートおよびアンダーシュートを測定。マルチ・レールに対応しており、テスト時間が大幅に短縮。オーバシュート/アンダシュートの計算で電圧レベルおよび基準電圧レベルの指定が可能。オシロスコープのチャンネルの垂直軸メニューを使用した帯域制限にも対応                                           |
| 電源シーケンス解析(受動プローブの使用を推奨) | ターンオン/ターンオフ時間測定機能を使用することで、すべてのレールのターンオン時間または<br>ターンオフ時間の同時測定が可能。取込み時間も指定可能                                                                                                                             |
| プロット                    | ヒストグラム                                                                                                                                                                                                 |
| レポート                    | MHT および PDF フォーマット、CSV フォーマットによるデータのエクスポートが可能                                                                                                                                                          |
| 消磁/デスキュー (静的)           | プローブの自動検出とオートゼロ機能。各チャンネルのメニューからプローブのデスキューが可能                                                                                                                                                           |
| 測定ソース                   | ライブ信号(アナログ)、リファレンス波形、演算波形                                                                                                                                                                              |

# ご発注の際は、以下の型名をご使用ください。

### 型名

| 新規に機器購入時のオプション型名 | 製品アップグレード時の型名 | 対応機種                                  |  |  |
|------------------|---------------|---------------------------------------|--|--|
| 5/6-DPM          | SUP5/6-DPM    | 5/6 シリーズ MSO オシロスコープ(MSO54 型、MSO56 型、 |  |  |
|                  | SUP5/6-DPM-FL | MSO58 型、MSP58LP 型、MSO64 型)            |  |  |

## 推奨プローブおよびアクセサリ

| アクセサリの種類    | 推奨機種                |
|-------------|---------------------|
| パワーレール・プローブ | TPR1000 型,TPR4000 型 |

## 豊富な電源用プローブ・ラインアップ

Opt. 5/6-DPM によるパワー測定では、以下のパワーレール・プローブを使用することで 5/6 シリーズ MSO オシロスコープのデジタル 電源測定機能を最大に生かせるソリューションを構築できます。

| パワーレール・プローブ              | 概要                                                                                                                                                                                                                       | イメージ |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| TPR1000 型,TPR4000 型      | DPM 測定には、TPR1000型/TPR4000型プローブの使用を推奨します。 TPR1000型/TPR4000型プローブは低ノイズの測定ソリューション(オシロスコープとプローブ)であり、オシロスコープとプローブに起因するノイズと、測定された DC 電源のノイズ/リップルを混同することなく測定できます。プローブの入力インピーダンスが高く、DC パワーレールに与えるオシロスコープの負荷効果を最小にできます(DC で 50kΩ)。 |      |
| パワーレールの測定では、P6150型および DC |                                                                                                                                                                                                                          |      |

パワーレール・プローブの詳細: https://www.tek.com/datasheet/active-power-rail-probes



当社は SRI Quality System Registrar により ISO 9001 および ISO 14001 に登録されています。



製品は、IEEE 規格 488.1-1987、RS-232-C および当社標準コード&フォーマットに適合しています。



評価対象の製品領域:電子テストおよび測定器の計画、設計/開発および製造。

# デジタル電源管理/解析

ASEAN/オーストラリア・ニュージーランドと付近の勧集 (65) 6356 3900 ペルギー 00800 2255 4835\* 中央・東ヨーロッパ、バルト 沖離国 +41 52 675 3777 フィンランド +41 52 675 3777 香港 400 820 5835 日本 81 (3) 6714 3086 中東、アジア、北アフリカ +41 52 675 3777 中国 400 820 5835 韓国 4822-6917-5084, 822-6917-5080 ズベイン 00800 2255 4835\* 台湾 886 (2) 2656 6688 オーストリア 00800 2255 4835\*
プラジル+55 (11) 3759 7627
中央ヨーロッパ・ギリシャ+41 52 675 3777
プランス 00800 2255 4835\*
インド 000 800 650 1835
ルクセンブルク+41 52 675 3777
オランダ 08000 2255 4835\*
ボーランド+41 52 675 3777
ロシア/CB・77 (495) 6647564
スウェーデン 00800 2255 4835\*
イギリス/アイルランド 00800 2255 4835\*

パルカン糖園、イスラエル、南アフリカ、その他 ISE 糖園 +41 52 675 3777 カナダ 1 800 833 9200 デンマーク +45 80 88 1401 ドイツ 00800 2255 4835\* イタリア 00800 2255 4835\* メキシコ、中央/南アメリカ、カリブ海糖園 52 (55) 56 04 50 90 ノルウエー800 16098 ポルトガル 80 08 12370 南アフリカ +41 52 675 3777 スイス 00800 2255 4835\* 米国 1 800 833 9200

\* ヨーロッパにおけるフリーダイヤルです。ご利用になれない場合はこちらにおかけください: +41 52 675 3777

**詳細については、**当社ウェブ・サイト(jp.tek.com または www.tek.com)をご参照ください。

FRMIC JOI Cid、コ社ソエノ・ソコド、Jp. Concorn a Relay WWW.Concorn a Relay

28 Aug 2019 61Z-61560-0

#### jp.tektronix.com



テクトロニクス/ケースレーインスツルメンツ

お客様コールセンター:技術的な質問、製品の購入、価格・納期、営業への連絡

TEL: 0120-441-046 営業時間 9:00~12:00・13:00~18:00 (土日祝日および当社休日を除く)

サービス・コールセンター:修理・校正の依頼

TEL: 0120-741-046 営業時間 /9:00~12:00・13:00~17:30 (土日祝日および当社休日を除く)

〒108-6106 東京都港区港南2-15-2 品川インターシティB棟6階