16 Gb/s, 30 Gb/s, and 32 Gb/s PatternPro® Pattern Generator

PPG1600, PPG3000, and PPG3200 Series Datasheet

Notice to EU customers

This product is not updated to comply with the RoHS 2 Directive 2011/65/EU and will not be shipped to the EU. Customers may be able to purchase products from inventory that were placed on the EU market prior to July 22, 2017 until supplies are depleted. Tektronix is committed to helping you with your solution needs. Please contact your local sales representative for further assistance or to determine if alternative product(s) are available. Tektronix will continue service to the end of worldwide support life.

Key performance specifications

- Low inherent jitter (typical RJ <250 fs)
- 11 ps typical 20% to 80% rise/fall times
- Variable output amplitude:
 - 300 mV to 1.0 V for PPG3200
 - 250 mV to 2.0 V for PPG1600 and PPG3000 series
- Low frequency, high amplitude jitter insertion range of 10 Hz to 10 MHz at up to 5000 UI (PPG3200 series with Option LFJIT)
- BUJ amplitudes up to 50 ps_p-p with modulation rates up to 2.5 Gb/s (with Option HFJIT)
- 35% to 65% programmable crossing point (PPG1600 & PPG3000 series)

Key features

- Available with 1, 2, or 4 output channels of 16, 30, or 32 Gb/s (independent data on all channels)
- Provides full end-to-end multi-channel BER test solution when paired with the PED series error detector
- Jitter insertion options include BUJ, SJ, RJ, and PJ
- Aligned data on multi-channel units
- Full rate built-in adjustable clock source
- DC coupled differential data outputs
- Programmable output amplitude, offset, and crossing point
- PRBS and user defined patterns
- Adjustable channel phase delay
- Front panel touch screen GUI or USB computer control

The Tektronix PatternPro® series programmable pattern generators provide up to four channels of stressed pattern generation for high-speed Datacom testing.
Applications
- Multi-channel 25 Gb/s testing for 100 G Ethernet
- DQPSK and DP-QPSK testing
- CFP2 and CFP4 testing
- Multi-level signal testing
- Semiconductor and component testing

Product description

The Tektronix PatternPro® line of high-performance pattern generators offer single and multi-channel configurations capable of data rates up to 32 Gb/s. With optional jitter insertion, the PPG line offers a flexible, cost effective and easy to use test solution supporting high speed applications such as 100 Gigabit Ethernet, 32G Fibre channel, PAM4, DP-QPSK testing, and a broad range of receiver test applications. The single unit multi-channel configurations provide aligned, pattern-independent data outputs that support testing of crosstalk immunity and multi-channel functionality. The PPG line can be paired with the Tektronix PED line of Error Detector products to provide a complete BER test capability.

Data rate may be programmed over a broad range of values. (32 Gb/s version shown) Output may be either built-in PRBS patterns or programmed user data patterns.
Four channel independent output data at 32 Gb/s

Independently programmable output channels allow comprehensive multi-lane testing. (32 Gb/s version shown.)

PAM4 eye diagram at 28 Gbaud

32 Gb/s custom user data demonstrating programmed data skew values
Specifications

All specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.

PPG3200 data outputs

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>Each positive and negative differential output is independently programmable.</td>
</tr>
<tr>
<td>Single-ended</td>
<td>300 mV to 1.0 V</td>
</tr>
<tr>
<td>Differential</td>
<td>600 mV to 2.0 V</td>
</tr>
<tr>
<td>Offset window</td>
<td>-2 V to +3 V, programmable/adjustable</td>
</tr>
<tr>
<td>Rise/fall time</td>
<td>Scope bandwidth can impact the measured signal rise time.</td>
</tr>
<tr>
<td>20 to 80%</td>
<td>11 ps, typical</td>
</tr>
<tr>
<td>10 to 90%</td>
<td>16 ps, typical</td>
</tr>
<tr>
<td>Termination voltage range</td>
<td>-2.0 V to +3.3 V window. Programmable/adjustable. Applied by user via 50 Ω.</td>
</tr>
<tr>
<td>Data output jitter</td>
<td>250 fs<sub>RMS</sub> RMS RJ typical at 32 Gb/s using PRBS 2<sup>31</sup>-1 pattern</td>
</tr>
<tr>
<td>Connector type</td>
<td>2.4 mm</td>
</tr>
<tr>
<td>Output impedance</td>
<td>50 Ω Single-ended</td>
</tr>
<tr>
<td></td>
<td>100 Ω Differential</td>
</tr>
</tbody>
</table>
PPG3000 & PPG1600 data outputs

Amplitude range
- **250 mV to 2.0 V**: Single-ended
- **500 mV to 4.0 V**: Differential. Each positive and negative differential output is independently programmable.

Offset range
- -2 V to +3.0 V window. Programmable/adjustable.

Termination voltage range
- -2.0 V to +3.3 V window. Programmable/adjustable. Applied by user via 50 Ω.

This setting is used in cases where the load being driven is terminated at a level other than zero volts. The effect of the termination voltage on the output voltage is shown in the following figure. To ensure proper operation, never load the output with a termination voltage less than Voh minus 3 V.

![Data Driver Output Window vs. Termination Voltage](image)

Crossing point
- **Programmable/adjustable**
- **Range**: 35% to 65%, typical. Tested using 50% mark density pattern.
- **Resolution**: 1%

Rise/fall time
- **Scope bandwidth can impact the measured signal rise time.**
- **20% - 80%**: 17 ps, typical
- **10% - 90%**: 25 ps, typical

Data output jitter
- **PPG3000**: 350 fs\text{RMS}, RJ typical at 28 Gb/s using PRBS $2^{11}-1$ pattern
- **PPG1600**: 350 fs\text{RMS}, RJ typical at 14 Gb/s using PRBS $2^{11}-1$ pattern

Connector type
- **2.92 mm**

Output impedance
- **50 Ω**: Single-ended
- **100 Ω**: Differential
Data patterns

<table>
<thead>
<tr>
<th>Pattern type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate</td>
<td>Programmable/adjustable</td>
</tr>
<tr>
<td>Range</td>
<td>1.5 Gb/s to 16 Gb/s, (PPG1600 series)</td>
</tr>
<tr>
<td></td>
<td>1.5 Gb/s to 30 Gb/s, (PPG3000 series)</td>
</tr>
<tr>
<td></td>
<td>1.5 Gb/s to 32 Gb/s (PPG3200 series)</td>
</tr>
<tr>
<td>Resolution</td>
<td>10 kb/s</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±5 ppm</td>
</tr>
</tbody>
</table>

PRBS pattern lengths
- $2^7 - 1$ bits
 - Polynomial = $X^7 + X^6 + 1$
- $2^9 - 1$ bits
 - Polynomial = $X^9 + X^5 + 1$
- $2^{11} - 1$ bits
 - Polynomial = $X^{11} + X^9 + 1$
- $2^{15} - 1$ bits
 - Polynomial = $X^{15} + X^{14} + 1$
- $2^{23} - 1$ bits
 - Polynomial = $X^{23} + X^{18} + 1$
- $2^{31} - 1$ bits
 - Polynomial = $X^{31} + X^{28} + 1$

Data pattern depth
- Range
 - 2 to 4,194,304 bits. For 1 channel generator (4 Mbits).
 - 2 to 2,097,152 bits. For 2 or 4 channel generators (2 Mbits/channel).
- Resolution
 - 1 bit

Clock outputs

Frequency
- The clock outputs are single-ended, applicable for internal clock. The internal clock rate ranges from 15 GHz to 30 GHz (PPG3000 series) and 16 GHz to 32 GHz (PPG1600 and PPG3200 series).

PPG1600 Clock output frequency
- (Internal clock)/(n), n = 2, 4, 8, or 16 user programmable

PPG3000 Clock output frequency
- (Internal clock)/(n), n = 1, 2, 4, 8, or 16 user programmable

PPG3200 Divided Clock output frequency
- (Internal clock)/(n), n = 2, 4, 8, or 16 user programmable

PPG3200 Full Rate Clock output frequency (single output for PPG3201/2, quad output for PPG3204)
- Internal clock

Amplitude
- Amplitude varies with frequency
 - 600 mV_{p-p} typical; 200 mV_{p-p} minimum; 1.0 V_{p-p} maximum

Output impedance
- 50 Ω, AC-coupled

Maximum external DC voltage
- ±5 V

Jitter
- < 200 fs_{RMS} typical, measured by spectrum analyzer on 1010 pattern, phase noise integrated from 1 kHz to 1 GHz.

Connector type
- 2.92 mm (PPG3000 & PPG1600)
- 2.4 mm (PPG3200)
Jitter insertion

The pattern generator can be ordered with built-in jitter options. The PPG3200 series are available with Option LFJIT and Option HFJIT; the PPG1600 and PPG3000 series are available with Option HFJIT only. The jitter insertion is the delay modulation of the data channels. Option HFJIT applies to each channel individually; Option LFJIT applies equally to clock and data.

![Jitter insertion block diagram](image)

<table>
<thead>
<tr>
<th>Jitter insertion option (Option HFJIT)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High frequency jitter insertion</td>
<td>Add-on option for the instrument. Independent jitter sources on each channel. Sum of external, internal sine, and internal noise. Total range depends on modulation frequencies. Exceeding the range can generate errors.</td>
</tr>
<tr>
<td>Total modulation range</td>
<td>50 ps<sub>p-p</sub></td>
</tr>
</tbody>
</table>

Built-in sine source	Programmable from either the front panel touch screen or remote control.
Frequency range	5 kHz to 100 MHz
Amplitude range	0 to 50 ps_{p-p}
Accuracy	±10%, typical

Built-in random noise source	Programmable from either the front panel touch screen or remote control.
Amplitude range	0 to 5 p_{RMS}
Accuracy	±10% typical

Built-in BUJ source	Programmable from either the front panel touch screen or remote control.
Amplitude range	0 to 50 ps_{p-p}
Modulation data rates	100 Mb/s to 2.5 Gb/s
PRBS sequences	7,9,11,15,23,31
Filter values	25/50/100 MHz filters

External modulation input	DC coupled, 3 dB bandwidths
Frequency range	DC to 100 MHz
Amplitude range	0 to 50 ps_{p-p}
Maximum input	5 V_{p-p}
Jitter insertion

Low frequency jitter insertion (Option LFJIT)

Add-on option.

The specifications below apply when the data rate equals the internal clock rate frequency of 20 to 40 GHz. For each frequency octave below, the internal clock rate, the specifications below will be reduced by half. For example, when the data rate is 8 to 15.99999 Gb/s, the values below will be divided by 2. When the data rate is 4 to 7.99999 Gb/s, the values will be divided by 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz (f_{\text{mod}})</td>
<td>5000 UI (\text{p-p})</td>
</tr>
<tr>
<td>100 Hz (f_{\text{mod}})</td>
<td>2000 UI (\text{p-p})</td>
</tr>
<tr>
<td>1 kHz (f_{\text{mod}})</td>
<td>2000 UI (\text{p-p})</td>
</tr>
<tr>
<td>10 kHz (f_{\text{mod}})</td>
<td>2000 UI (\text{p-p})</td>
</tr>
<tr>
<td>100 kHz (f_{\text{mod}})</td>
<td>100 UI (\text{p-p})</td>
</tr>
<tr>
<td>1 MHz (f_{\text{mod}})</td>
<td>10 UI (\text{p-p})</td>
</tr>
<tr>
<td>2 MHz (f_{\text{mod}})</td>
<td>1 UI (\text{p-p})</td>
</tr>
<tr>
<td>10 MHz (f_{\text{mod}})</td>
<td>0.5 UI (\text{p-p})</td>
</tr>
</tbody>
</table>

Trigger system

Trigger waveform

Pattern mode trigger is synced to channel 1 pattern.

Pattern mode

1 pattern per trigger for pattern length = multiple of 64
64 patterns per trigger for other pattern lengths

Clock/n mode

64 through \(2^{32} - 64\), \(n = \) any multiple of 64 in that range
50%, for either Pattern or Clock/n

High level

0 V, typical

Low level

-500 mV, typical

Output impedance

50 \(\Omega\), DC-coupled

Connector type

SMA
Clock inputs

| Frequency range | 15 GHz to 30 GHz, (PPG3000 series)
| | 16 GHz to 32 GHz, (PPG3200 series)
| | Not applicable for the PPG1600 series.
| Input signal | 400 mVp-p typical, AC coupled
| Maximum input signal | 1 Vp-p
| Input impedance | 50 Ω, AC-coupled

Reference clock

| Input frequency range | 10 MHz ±10 ppm
| Input signal | 1 Vp-p typical, 50% duty square wave
| Maximum input signal | 6 Vp-p ±10 V DC, Damage threshold
| Input impedance | 50 Ω, AC-coupled
| Output signal | 1.2 Vp-p typical, Square wave
| 10 MHz reference input/output | Yes, BNC connector

Channel skew

| Skew adjust | Relative to nominal position
| PPG1600 and PPG3000 | Range = ±50 ps
| | Resolution = 100 fs
| PPG3200 | Range = ±25 ps
| | Resolution = 100 fs
| Pattern shift | Advance or delay. This is equivalent to unlimited shifting since this range allows shifting the longest pattern to any position.
| Range | ± (2^{30}-1)
| Resolution | 1 bit
| Nominal channel to channel pattern skew | < ±2 UI. Time difference between patterns on a 2 channel PPG3000 series, skew adjust and bit shift at 0.

Data error insertion

<table>
<thead>
<tr>
<th>Error insertion types</th>
<th>Single or rate-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error insertion rate</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>1×10^{-3} to 1×10^{-15} BER</td>
</tr>
<tr>
<td>Resolution</td>
<td>3 digits</td>
</tr>
</tbody>
</table>

Control interfaces

| Front panel touchscreen GUI | Yes, edit all instrument settings. |
| Computer programmable interface | USB TMC, program all instrument settings. |

Physical characteristics

<table>
<thead>
<tr>
<th>Front panel width (with mounting tabs)</th>
<th>48.3 cm (19.0 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td></td>
</tr>
<tr>
<td>1 & 2 channel</td>
<td>13.3 cm (5.25 in)</td>
</tr>
<tr>
<td>4 channel</td>
<td>27.9 cm (11.0 in)</td>
</tr>
<tr>
<td>Width</td>
<td>45.1 cm (17.75 in)</td>
</tr>
<tr>
<td>Depth (rack mount)</td>
<td>35.1 cm (13.8 in)</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>1 & 2 channel</td>
<td>11.1 kg (24.5 lbs)</td>
</tr>
<tr>
<td>4 channel</td>
<td>20.4 kg (45 lbs)</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>0 °C to 40 °C (32 °F to 104 °F)</td>
</tr>
</tbody>
</table>
Ordering information

Models

PPG1601 16 Gb/s programmable pattern generator, 1 channel
PPG1602 16 Gb/s programmable pattern generator, 2 channels
PPG1604 16 Gb/s programmable pattern generator, 4 channels
PPG3001 30 Gb/s programmable pattern generator, 1 channel
PPG3002 30 Gb/s programmable pattern generator, 2 channels
PPG3004 30 Gb/s programmable pattern generator, 4 channels
PPG3201 32 Gb/s programmable pattern generator, 1 channel
PPG3202 32 Gb/s programmable pattern generator, 2 channels
PPG3204 32 Gb/s programmable pattern generator, 4 channels

Options

Instrument options

PPG1601 HFJIT High frequency jitter option for PPG1601
PPG1602 HFJIT High frequency jitter option for PPG1602
PPG1604 HFJIT High frequency jitter option for PPG1604
PPG3001 HFJIT High frequency jitter option for PPG3001
PPG3002 HFJIT High frequency jitter option for PPG3002
PPG3004 HFJIT High frequency jitter option for PPG3004
PPG3201 HFJIT High frequency jitter option for PPG3201
PPG3202 HFJIT High frequency jitter option for PPG3202
PPG3204 HFJIT High frequency jitter option for PPG3204
PPG3201 LFJIT Low frequency jitter option for PPG3201
PPG3202 LFJIT Low frequency jitter option for PPG3202
PPG3204 LFJIT Low frequency jitter option for PPG3204

Power plug options

Opt. A0 North America power plug (115 V, 60 Hz)
Opt. A1 Universal Euro power plug (220 V, 50 Hz)
Opt. A2 United Kingdom power plug (240 V, 50 Hz)
Opt. A6 Japan power plug (100 V, 50/60 Hz)
Opt. A10 China power plug (50 Hz)
Opt. A11 India power plug (50 Hz)
Opt. A99 No power cord
Datasheet

Manuals

071-3413-xx Printed PPG/PED Installation & Safety instructions
077-1090-xx Tektronix PPG1600, PPG3000, & PPG3200 PatternPro® Series Pattern Generator User manual, PDF-only, downloadable from Tektronix.com

Tektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.