

DATENBLATT

EA-PSI 10000 3U

Programmierbare DC-Stromversorgungen

EA-PSI 10000 3U 5 KW - 10 KW - 15 KW

Programmierbare DC-Stromversorgungen

Eigenschaften

- Weiteingangsbereich: 208 V 480 V, +10%, 3ph AC
- Aktive Power-Faktor-Korrektur, typisch 0,99
- Sehr hoher Wirkungsgrad von bis zu 96%
- Hohe Performance mit bis zu 15 kW pro Einheit
- Spannungen von 0 60 V bis 0 2000 V
- Ströme von 0 20 A bis 0 510 A
- Flexible leistungsgeregelte DC-Ausgangsstufe (Autoranging)
- Regelmodi CV, CC, CP, CR mit schnellem Übergang
- Digitale Regelung, hohe Auflösung mit 16bit ADCs und DACs, Auswahl der Spannungsreglergeschwindigkeit

- Farbiges 5" TFT Display, Touchfunktion und intuitive Bedienung
- Galvanisch isolierter Share-Bus für Parallelbetrieb aller Leistungsklassen in der 10000 Serie
- Master-Slave-Bus für Parallelbetrieb, bis zu 64 Geräte aller Leistungsklassen der 10000 Serie
- Integrierter Funktionsgenerator mit vordefinierten Kurven
- Automotive-Testabläufe für LV123, LV124 und LV148
- Photovoltaik-Testmodus (DIN EN 50530)
- Befehlssprachen und Treiber: SCPI und ModBus, LabVIEW, IVI

Eingebaute Schnittstellen

- USB
- Ethernet
- Analog
- USB Host
- Master-Slave-Bus
- Share-Bus

Optionale Schnittstellen

- CAN
- CANopen
- RS232
- Profibus
- EtherCAT
- Profinet, mit einem oder zwei Ports
- Modbus, mit einem oder zwei Ports
- Ethernet, mit einem oder zwei Ports

Software

■ EA Power Control

Optionen

■ Modelle für 208 V_{AC}

Technische Daten

Allgemeine Spezifikationen AC-Eingang	
Linguing	Standardmodell: Bereich 1: 208 V, ±10%, 3ph AC
Spannung, Phasen	Bereich 2: 380 - 480 V, ±10%, 3ph AC US208V-Modell: 208 V, ±10%, 3ph AC
Frequenz	45 - 65 Hz
Leistungsfaktor	ca. 0,99
Ableitstrom	<5 mA
Einschaltstrom *1	Standardmodell mit 15 kW @400 V: ca. 54 A pro Phase US208V-Modell mit 15 kW @208 V: ca. 28 A pro Phase
Überspannungskategorie	
DC-Eingang/Ausgang statisch	
Lastausregelung CV	\leq 0,05% FS (0 - 100% Last, bei konstanter AC-Eingangsspannung und Temperatur)
Netzausregelung CV	\leq 0,01% FS (208 V - 480 V AC \pm 10%, bei konstanter Last und Temperatur)
Stabilität CV	≤0,02% FS (Über 8 Stunden, nach 30 Minuten Aufwärmphase, bei konstanter AC-Eingangsspannung und Temperatur)
Temperaturkoeffizient CV	≤30ppm/°C (Nach 30 Minuten Aufwärmphase)
Fernfühlung (Remote Sense)	≤5% U _{Nenn}
Lastausregelung CC	\leq 0,1% FS (0 - 100% Last, bei konstanter AC-Eingangsspannung und Temperatur)
Netzausregelung CC	\leq 0,01% FS (208 V - 480 V AC \pm 10%, bei konstanter Last und Temperatur)
Stabilität CC	≤0,02% FS (Über 8 Stunden, nach 30 Minuten Aufwärmphase, bei konstanter AC-Eingangsspannung und Temperatur)
Temperaturkoeffizient CC	≤50ppm/°C (Nach 30 Minuten Aufwärmphase)
Lastausregelung CP	\leq 0,3% FS (0 - 100% Last, bei konstanter AC-Eingangsspannung und Temperatur)
Lastausregelung CR	≤0,3% FS + 0,1% FS vom Strom (0 - 100% Last, bei konstanter AC-Eingangsspannung und Temperatur)
Schutzfunktionen	
OVP	Überspannungschutz, einstellbar 0 - 110% U _{Nenn}
OCP	Überstromschutz, einstellbar 0 - 110% I _{Nenn}
OPP	Überleistungsschutz, einstellbar 0 - 110% P _{Nenn}
OT	Übertemperaturschutz (DC-Anschluß schaltet ab bei unzureichender Kühlung)
DC-Eingang/Ausgang dynamisch	
	CV *2∶≤10 ms
Anstiegs-/Abfallzeit 10 <-> 90%	CC *3 : ≤2 ms
Anzeige- & Meßgenauigkeit	
Spannung	≤0,05% FS
Strom	≤0,1% FS
Isolation	
AC-Eingang zum DC-Anschluß	3750 Vrms (1 Minute, Kriechstrecke >8 mm) *4
AC-Eingang zum Gehäuse (PE)	2500 Vrms
DC-Anschluß zum Gehäuse (PE)	Abhängig vom Modell, siehe Modelltabellen
DC-Anschluß zu den Schnittstellen	1000 V DC (Modelle bis 360 V Nennspannung), 1500 V DC (Modelle ab 500 V Nennspannung)
Digitale Schnittstellen	
Eingebaut, galvanisch getrennt	USB, Ethernet (100 MBit) für Kommunikation, 1x USB Host zur Datenerfassung
Optional, galvanisch getrennt	CAN, CANopen, RS232, ModBus TCP, Profinet, Profibus, EtherCAT, Ethernet
Analoge Schnittstelle	
Eingebaut, galvanisch getrennt	15-polige D-Sub
Signalbereich	0 - 10 V oder 0 - 5 V (umschaltbar)
Eingänge	U, I, P, R, Fernsteuerung ein/aus, DC-Eingang/Ausgang ein/aus, Widerstandsmodus ein/aus
Ausgänge	Monitor U und I, Alarme, Referenzspannung, Status DC-Eingang/Ausgang, CV/CC Regelungsart
Genauigkeit U / I / P / R	0 - 10 V: ≤0,2%, 0 - 5 V: ≤0,4%
-	onen Snannung inklusive 10 % Toleranz, hei 23°C Ilmgehung und Kaltetart (erstmaliges Finschalten)

^{*1} Berechnet für den Spitzenwert der angegebenen Spannung inklusive 10 % Toleranz, bei 23°C Umgebung und Kaltstart (erstmaliges Einschalten)
*2 Gültig für Netzgeräte, unidirektional oder bidirektional, im Quelle-Betrieb
*3 Gültig für Elektronische Lasten oder bidirektionale Netzgeräte im Senke-Betrieb

^{*4} Modelle mit 80 V DC Nennspannung haben eine verstärkte Isolierung und alle Modlellle ab 200 V DC Nennspannung eine Basisisolierung

Allgemeine Spezifikationen			
Gerätekonfiguration			
Parallelbetrieb	Bis zu 64 Geräte aller Leistungsklass	en der 10000 Serien, mit Master-Slave	e-Bus und Share-Bus
Sicherheit und EMV			
Sicherheit	EN 61010-1 IEC 61010-1 UL 61010-1 CSA C22.2 No 61010-1 BS EN 61010-1		
EMV	EN 55011, class B CISPR 11, class B FCC 47 CFR Part 15B, unintentional r EN 61326-1 inklusive Tests nach: - EN 61000-4-2 - EN 61000-4-3 - EN 61000-4-5 - EN 61000-4-5	adiator, class B	
Schutzklasse	1		
Schutzart	IP20		
Umweltbedingungen			
Betriebstemperatur *5	0 - 50 °C		
Lagertemperatur	-20 - 70 °C		
Feuchtigkeit	≤80% relativ, nicht kondensierend		
Höhe	≤2000 m		
Verschmutzungsgrad	2		
Mechanische Konstruktion			
Kühlung	Forcierte Luftkühlung von vorn nach	hinten (temperaturgesteuerte Lüfter)	
Abmessungen (B x H x T)	Gehäuse: 483 mm (19") x 132 mm (3 Tiefe über alles: mind. 785 mm	HE) x 668 mm	
Gewicht	5 kW Gerät: 18 kg	10 kW Gerät: 25,4 kg	15 kW Gerät: 32,8 kg

^{*5} Die Nennleistung des Gerätes ist nur bis ca. +40°C verfügbar

Technische Spezifikationen	PSI 10060-170	PSI 10080-170	PSI 10200-70	PSI 10360-40	PSI 10500-30
DC-Ausgang					
Nennspannungsbereich	0 - 60 V	0 - 80 V	0 -200 V	0 - 360 V	0 - 500 V
Restwelligkeit in CV (rms)	≤10 mV (BW 300 kHz)	$\leq 10~mV~(BW~300~kHz)$	≤40 mV (BW 300 kHz)	\leq 55 mV (BW 300 kHz)	≤70 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤100 mV (BW 20 MHz)	≤100 mV (BW 20 MHz)	≤300 mV (BW 20 MHz)	≤320 mV (BW 20 MHz)	≤350 mV (BW 20 MHz)
Nennstrombereich	0 - 170 A	0 - 170 A	0 - 70 A	0 - 40 A	0 - 30 A
Nennleistungsbereich	0 - 5000 W (0 - 3000 W) *2	0 - 5000 W (0 - 3000 W) *2	0 - 5000 W (0 - 3000 W) *2	0 - 5000 W (0 - 3000 W) *2	0 - 5000 W (0 - 3000 W) *2
Nennwiderstandsbereich	0,016 Ω - 26 Ω	0,016 Ω - 26 Ω	0,1 Ω - 160 Ω	0,3 Ω - 520 Ω	0,6 Ω - 1000 Ω
Ausgangskapazität	7790 μF	7790 μF	2520 μF	393 μF	180 μF
Wirkungsgrad (bis zu)	94,5% *1	94,5% *1	94,5% *1	95,5% *1	95,5% *1
Isolation					
Negativer DC-Pol <-> PE	±600 V DC	±600 V DC	±1000 V DC	±1000 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+600 V DC	+600 V DC	+1000 V DC	+1000 V DC	+2000 V DC
Artikelnummer	06230829	06230830	06230831	06230832	06230833

Technische Spezifikationen	BSI 10750-20
	PSI 10/50-20
DC-Ausgang	
Nennspannungsbereich	0 - 750 V
Restwelligkeit in CV (rms)	\leq 200 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤800 mV (BW 20 MHz)
Nennstrombereich	0 - 20 A
Nennleistungsbereich	0 - 5000 W (0 - 3000 W) *2
Nennwiderstandsbereich	1,2 Ω - 2200 Ω
Ausgangskapazität	180 μF
Wirkungsgrad (bis zu)	95,5% *1
Isolation	
Negativer DC-Pol <-> PE	±1500 V DC
Positiver DC-Pol <-> PE	+2000 V DC
Artikelnummer	06230834

^{*1} Bei 100% Leistung und 100% Ausgangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

^{*1} Bei 100% Leistung und 100% Ausgangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

Technische Spezifikationen	PSI 10060-340	PSI 10080-340	PSI 10200-140	PSI 10360-80	PSI 10500-60
DC-Ausgang	•				
Nennspannungsbereich	0 - 60 V	0 - 80 V	0 -200 V	0 - 360 V	0 - 500 V
Restwelligkeit in CV (rms)	≤10 mV (BW 300 kHz)	≤10 mV (BW 300 kHz)	≤40 mV (BW 300 kHz)	≤55 mV (BW 300 kHz)	≤70 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤100 mV (BW 20 MHz)	≤100 mV (BW 20 MHz)	≤300 mV (BW 20 MHz)	≤320 mV (BW 20 MHz)	≤350 mV (BW 20 MHz)
Nennstrombereich	0 - 340 A	0 - 340 A	0 - 140 A	0 - 80 A	0 - 60 A
Nennleistungsbereich	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2
Nennwiderstandsbereich	0,008 Ω - 13 Ω	0,008 Ω - 13 Ω	0,05 Ω - 80 Ω	0,15 Ω - 260 Ω	0,3 Ω - 500 Ω
Ausgangskapazität	15980 μF	15980 μF	5040 μF	786 μF	360 µF
Wirkungsgrad (bis zu)	94,5% *1	94,5% *1	94,5% *1	95,5% *1	95,5% *1
Isolation					
Negativer DC-Pol <-> PE	±600 V DC	±600 V DC	±1000 V DC	±1000 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+600 V DC	+600 V DC	+1000 V DC	+1000 V DC	+2000 V DC
Artikelnummer	06230835	06230836	06230837	06230838	06230839

Technische Spezifikationen	PSI 10750-40	PSI 11000-30	PSI 11500-20
DC-Ausgang			
Nennspannungsbereich	0 - 750 V	0 - 1000 V	0 - 1500 V
Restwelligkeit in CV (rms)	≤200 mV (BW 300 kHz)	≤200 mV (BW 300 kHz)	≤400 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤800 mV (BW 20 MHz)	≤1000 mV (BW 20 MHz)	≤2000 mV (BW 20 MHz)
Nennstrombereich	0 - 40 A	0 - 30 A	0 - 20 A
Nennleistungsbereich	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2	0 - 10000 W (0 - 6000 W) *2
Nennwiderstandsbereich	0,6 Ω - 1100 Ω	1,2 Ω - 2000 Ω	2,6 Ω - 4500 Ω
Ausgangskapazität	360 μF	90 μF	90 μF
Wirkungsgrad (bis zu)	95,5% *1	95,5% *1	95,5% *1
Isolation			
Negativer DC-Pol <-> PE	±1500 V DC	±1500 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+2000 V DC	+2000 V DC	+2000 V DC
Artikelnummer	06230854	06230855	06230856

^{*1} Bei 100% Leistung und 100% Ausgangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

^{*1} Bei 100% Leistung und 100% Ausgangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

Technische Spezifikationen	PSI 10060-510	PSI 10080-510	PSI 10200-210	PSI 10360-120	PSI 10500-90
DC-Ausgang					
Nennspannungsbereich	0 - 60 V	0 - 80 V	0 -200 V	0 - 360 V	0 - 500 V
Restwelligkeit in CV (rms)	≤10 mV (BW 300 kHz)	$\leq 10~mV~(BW~300~kHz)$	≤40 mV (BW 300 kHz)	≤55 mV (BW 300 kHz)	≤70 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤100 mV (BW 20 MHz)	≤100 mV (BW 20 MHz)	≤300 mV (BW 20 MHz)	≤320 mV (BW 20 MHz)	≤350 mV (BW 20 MHz)
Nennstrombereich	0 - 510 A	0 - 510 A	0 - 210 A	0 - 120 A	0 - 90 A
Nennleistungsbereich	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2
Nennwiderstandsbereich	0,006 Ω - 9 Ω	0,006 Ω - 9 Ω	0,03 Ω - 50 Ω	0,1 Ω - 180 Ω	0,2 Ω - 330 Ω
Ausgangskapazität	23970 μF	23970 μF	7560 μF	1179 μF	540 μF
Wirkungsgrad (bis zu)	94,5% *1	94,5% *1	94,5% *1	95,5% *1	95,5% *1
Isolation					
Negativer DC-Pol <-> PE	±600 V DC	±600 V DC	±1000 V DC	±1000 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+600 V DC	+600 V DC	+1000 V DC	+1000 V DC	+2000 V DC
Artikelnummer	06230820	06230821	06230822	06230823	06230824

Technische Spezifikationen	PSI 10750-60	PSI 11000-40	PSI 11500-30	PSI 12000-20
DC-Ausgang				
Nennspannungsbereich	0 - 750 V	0 - 1000 V	0 - 1500 V	0 - 2000 V
Restwelligkeit in CV (rms)	≤200 mV (BW 300 kHz)	≤300 mV (BW 300 kHz)	≤400 mV (BW 300 kHz)	≤400 mV (BW 300 kHz)
Restwelligkeit in CV (pp)	≤800 mV (BW 20 MHz)	≤1600 mV (BW 20 MHz)	≤2400 mV (BW 20 MHz)	≤2400 mV (BW 20 MHz)
Nennstrombereich	0 - 60 A	0 - 40 A	0 - 30 A	0 - 20 A
Nennleistungsbereich	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2	0 - 15000 W (0 - 9000 W) *2
Nennwiderstandsbereich	0,4 Ω - 750 Ω	0,8 Ω - 1300 Ω	1,7 Ω - 3000 Ω	3,5 Ω - 5300 Ω
Ausgangskapazität	540 μF	131 μF	60 μF	60 μF
Wirkungsgrad (bis zu)	95,5% *1	95,5% *1	95,5% *1	95,5% *1
solation				
Negativer DC-Pol <-> PE	±1500 V DC	±1500 V DC	±1500 V DC	±1500 V DC
Positiver DC-Pol <-> PE	+2000 V DC	+2000 V DC	+2000 V DC	+2000 V DC
Artikelnummer	06230825	06230826	06230827	06230828

^{*1} Bei 100% Leistung und 100% Ausgangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

^{*1} Bei 100% Leistung und 100% Ausgangsspannung *2 In der von der AC-Spannung abhängigen Leistungsreduktion (Derating)

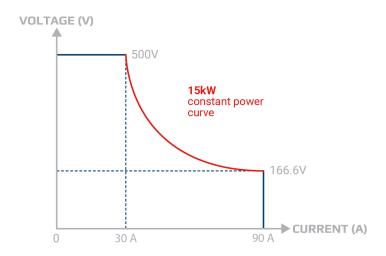
Allgemein

Die DC-Laborstromversorgungen der Serie PSI 10000 von EA Elektro-Automatik wandeln die Energie aus dem Netz mit einem Wirkungsgrad von bis zu 96% in eine geregelte DC-Spannung um. Zur Serie PSI 10000 gehören einphasige und dreiphasige Geräte, die mit ihrem weiten Eingangsbereich nahezu alle Netzspannungen weltweit bedienen können. Die DC-Spannungen und Ströme sind an typischen Applikationen orientiert, das Spektrum reicht von 0 - 60 V bis 0 - 2000 V sowie von 0 - 6 A bis 0 - 1000 A in einem Gerät. Die DC-Stromversorgungen fungieren als flexible Ausgangsstufe mit einer konstanten Leistungscharakteristik, dem sogenanntem Autoranging, sowie einem großen Spannungs-, Strom- und Leistungsbereich.

Um höhere Leistungen und Ströme zu realisieren, haben alle Geräte einen Master-Slave-Bus. Dieser ermöglicht mit 64 parallel geschalteten Geräten den Aufbau eines Systems, das bis zu 1920 kW und 64000 A zur Verfügung stellt. Dieses System arbeitet wie ein einzelnes Gerät und kann aus unterschiedlichen Leistungsklassen bestehen, lediglich die Spannungsklasse muss übereinstimmen. So können Anwender ein 75 kW-System aus zwei 30 kW 4U und einem 15 kW 3U-Gerät der Serie PSI 10000 aufbauen.

Zudem stehen typische Funktionalitäten aus dem Laborbereich zur Verfügung. Dazu zählen ein umfangreich ausgestatteter Funktionsgenerator, ein Alarm- und Warnmanagement, verschiedene optionale digitale Industrieschnittstellen, Softwarelösungen und viele weitere Funktionen.

AC-Anschluss


Die DC-Stromversorgungen der Serie PSI 10000 verfügen über eine aktive PFC, die für einen geringen Energieverbrauch bei hohem Wirkungsgrad sorgt. Darüber hinaus stellen die Geräte dieser Serie einen sehr großen Eingangsspannungsbereich bereit. Dieser reicht bei einphasigen Modellen von 110 V bis zu 240 V und bei dreiphasigen Modellen von 208 V bis zu 380 V, 400 V und 480 V. Somit können die Geräte weltweit an den meisten Netzen betrieben werden. Sie passen sich, ohne weiteren Konfigurationsaufwand, dem jeweils vorhandenen Netz an. Beim einphasigen 110/120 V oder dreiphasigen 208 V AC-Netz wird automatisch eine Reduzierung (Derating) der DC-Ausgangsleistung eingestellt.

DC-Ausgang

Der Ausgang der programmierbaren Stromversorgungen PSI 10000 3U mit DC-Spannungen von 0 - 60 V bis 0 - 2000 V lässt Ströme von 0 - 20 A bis 0 - 510 A zu. Durch die flexible Ausgangsstufe, das sogenannte Autoranging, können Anwendern einen großen Spannungs-, Strom- und Leistungsbereich und damit einen breiteren Arbeitsbereich als bei herkömmlichen Stromversorgungen nutzen.

DC-Anschluss

Der Anschluss des DC-Ausgangs ist in Form von Kupferschwertern auf der Rückseite des Geräts angebracht. Wird ein System mit hoher Leistung benötigt, werden die Geräte einfach parallelgeschaltet. Mit nur geringem Aufwand verbinden vertikal verlegte Kupferschienen die Geräte miteinander. Eine Abdeckung zum Berührungsschutz liegt bei.

Prinzipdarstellung Autoranging

"Autoranging" ist ein Begriff der beschreibt wenn ein programmierbares DC-Netzteil automatisch einen großen Ausgangsbereich sowohl für Spannung als auch Strom bietet, um die volle Leistung über einen großen Betriebsbereich aufrechtzuerhalten. Diese Lösung ermöglicht die Verwendung einer einzigen Stromversorgung, um mehrere Spannungs- und Stromkombinationen zu realisieren.

Funktionsgenerator

In sämtlichen Modellen der Serie PSI 10000 ist ein Funktionsgenerator integriert. Mit diesem lassen sich auf einfachste Weise Kurvenverläufe wie Sinus, Dreieck, Rechteck und Trapez aufrufen. Über eine Rampenfunktion sowie einen Arbiträrgenerator sind Spannungs- und Stromverläufe frei programmierbar. Für wiederkehrende Prüfungen können Testsequenzen gespeichert und bei Bedarf erneut geladen werden, das spart wertvolle Zeit. Mittels LUT lassen sich IU- und auch UI-Kennlinien hinterlegen. Für die Simulation einer Photovoltaikanlage oder Brennstoffzelle liegen leicht anpassbare Tabellen bereit. Mit der fest hinterlegten PV-Kennlinie nach DIN EN 50530 können unterschiedliche Solarzellen und zahlreiche weitere Technologieparameter ausgewählt und eingestellt werden. Fazit: Bei ihren Anwendungen profitieren Anwender von einer Vielzahl nützlicher Funktionen.

Schnittstellen

Standardmäßig sind Geräte von EA mit den wichtigsten digitalen und analogen Schnittstellen ausgestattet, die zudem galvanisch isoliert sind. Dazu gehören eine analoge Schnittstelle, die parametrierbare Ein- und Ausgänge mit 0-5 V oder 0-10 V für Spannung, Strom, Leistung und Widerstand besitzt, diverse funktionale Ein- und Ausgänge sowie jeweils eine USB- und Ethernet-Schnittstelle.

Folgende Optionen, die in einem Plug & Play-Slot ihren Platz finden, ergänzen das Portfolio:

- CAN
- CANopen
- RS232
- Profibus
- EtherCAT
- Profinet, mit einem oder zwei Ports
- Modbus, mit einem oder zwei Ports
- Ethernet, mit einem oder zwei Ports

Hochleistungssystem

Leistungsstarke Applikationen lassen sich mit Hochleistungssystemen bis zu 960 kW realisieren. Um sie aufzubauen, werden die Ausgänge an den PSI 10000 3U-Geräten durch vertikal verlegte Kupferschienen verbunden und parallelgeschaltet. So entsteht in einem 19"-Schrank mit 42 HE auf einer Fläche von 0,6 m² ein System mit 180 kW Leistung. Bei bis zu 6 Schränken mit insgesamt maximal 64 Einheiten je 15 kW sorgt der Master-Slave-Bus dafür, dass das System wie ein einzelnes Gerät funktioniert.

Master-Slave-Bus und Share-Bus

Verwendet man den integrierten Master-Slave-Bus und den Share-Bus, funktioniert ein Mehr-Geräte-System wie ein Gerät. Dafür sind Master-Slave- sowie Share-Bus auf einfache Weise von Gerät zu Gerät verbunden. Mit dem Master-Slave-Bus werden die Systemdaten, beispielsweise Gesamtleistung und Gesamtstrom, im Mastergerät zusammengeführt. Warnmeldungen und Alarme der Slave-Einheiten zeigt das Display übersichtlich an. Der Share-Bus sorgt für eine gleichmäßige Lastaufteilung der Ströme in den einzelnen Geräten.

Beispieldarstellung

In dieser Darstellung sehen sie ein komplett aufgebautes und verdrahtetes 240 kW System mit 30 kW 4U-Einheiten.

Anwendungen

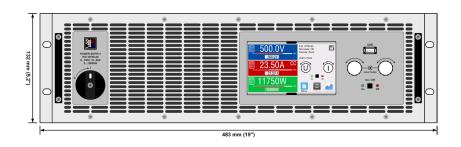
Testen von Relais in der Produktion

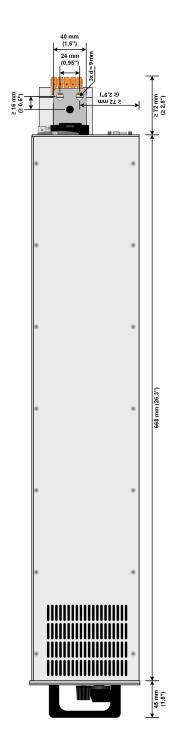
Relais-Hersteller müssen ihre Produkte unterschiedlichen Tests unterziehen. Dabei werden die Spulen bei DC-Relais und auch die Kontakte mit genau definierten Spannungen und Strömen versorgt. Beim Test der Spulen sind wichtige Parameter wie Ansprech-, Betrieb-, Halte- und Abfallstrom wie auch die dazugehörigen Spannungen zu überprüfen und dokumentieren. Bei den Kontakten sind nicht nur die Stromtragfähigkeit und der Kontaktwiderstand wichtige Parameter, sondern auch Spannungsfestigkeit und Abschaltvermögen sagen viel über die Qualität der Produkte aus. Um dies alles zu testen kommt ein automatisches Testsystem zum Einsatz. Ein Teil dieses Systems sind Geräte der Serie PSI 10000 die mit ihren genauen und dynamischen Regelgrößen wie Spannung, Strom und Leistung die richtigen Werte für das beste Testergebnis liefern. Mit ihren vielen Schnittstellen lassen sie sich leicht in jedes Testsystem integrieren und liefern die benötigten Daten meist ohne zusätzliches Messequipment.

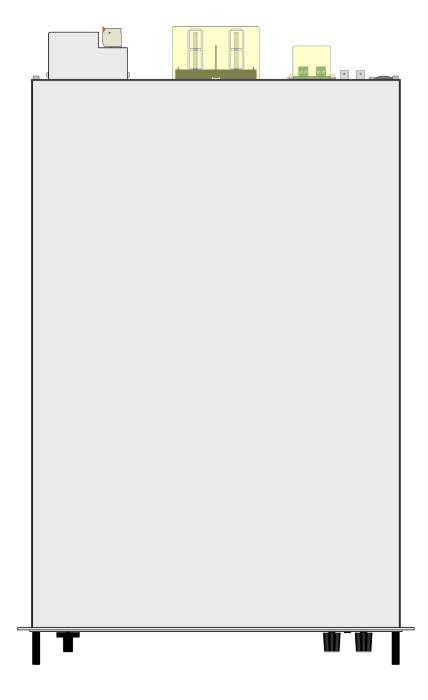
Brennstoffzellensimulation

Zu den weiteren Anwendungen der programmierbaren Stromversorgungen PSI 10000 zählt die Simulation von Brennstoffzellen. Mithilfe dieser Simulationen lassen sich sowohl der Energiespeicher als auch die Komponenten, die von diesem versorgt werden, optimal auslegen. Überall dort, wo reproduzierbare Daten notwendig sind, gilt das Arbeiten mit einem Simulator als erste Wahl. Zudem wirken bei der Nutzung des Simulators als Versorgungsquelle diverse Schutzmechanismen, die den angeschlossenen Verbraucher schützen. Über den Überstromschutz (OCP) kann, wie bei einer Sicherung, der Ausgang abgeschaltet und ein Alarm generiert werden. Die Spannung lässt sich überwachen und kann beim Über- oder Unterschreiten einer Schwelle verschiedene Funktionen ausführen. Ebenso ist es möglich, Warnungen oder Alarme zu generieren. So sorgt eine Vielzahl an integrierten Funktionen für ein sicheres Arbeiten.

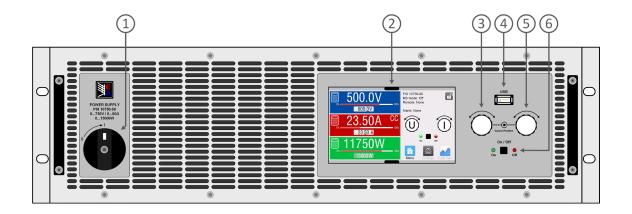
On-board-Charger-Test

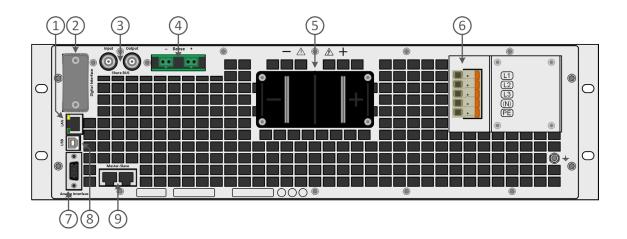

Bei einem On-Board-Charger-Test (OBC) muß der Prüfling auf seine elektrischen Eigenschaften unter verschiedenen Bedingungen geprüft werden. Hierzu wird ein flexibles Testsystem benötigt, das auch Messdaten bereitstellt. Mit der Sequencing- & Logging-Funktion der Software EA-Power Control können Testabläufe geladen, sowie Daten vom Gerät ausgelesen und gespeichert werden. So generieren Anwender in kürzester Zeit reproduzierbare Testergebnisse auf Basis dynamischer und hochgenauer Stell- und Messdaten. Um zu verhindern, daß sich beim Testen die zwei getrennten Regelkreise des "device under test" (DUT) und des Prüfgeräts gegeneinander aufschwingen, ist die Spannungsreglerdynamik der Stromversorgungen anpassbar. Über die drei Modi Normal, Schnell und Langsam lassen sich die PSI 10000-Geräte auf die Regeleigenschaften des On-board-Chargers abstimmen. Da ein Netzgerät nur die Funktionalität einer Quelle bietet, wäre für solche Tests die Kombination mit einer elektronischen DC-Last aus z. B. Serie ELR 10000 nötig.


Solar-Array-Simulation

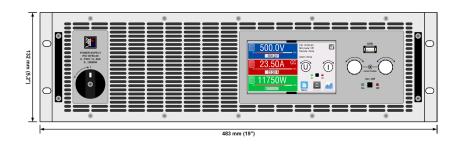

Die programmierbaren Stromversorgungen der Serie PSI 10000 eignen sich hervorragend als Prüfsysteme für PV-Wechselrichter, da sie über die notwendige Simulationsmöglichkeit für Solarmodule verfügen. Anwender können ihre Simulationsmodelle nach EN 50530 oder Sandia schnell und einfach programmieren und die Eigenschaften unterschiedlichster Solarzellenmaterialien verwenden. Parameter wie Einstrahlung (wechselnde Beschattung durch Wolken), Paneltechnologie und Temperatur werden berücksichtigt. So lassen sich alle relevanten elektrischen Eigenschaften eines PV-Wechselrichters, inklusive des besonders wichtigen Wirkungsgrads ermitteln.

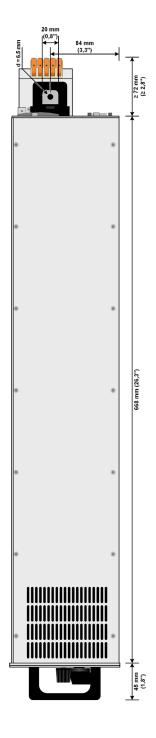
Dank der hochauflösenden 16-bit-Technologie und einer hohen Abtastrate liefern die programmierbaren Stromversorgungen exakte Ergebnisse, die dokumentiert und in einer Excel-Datei gespeichert werden können.

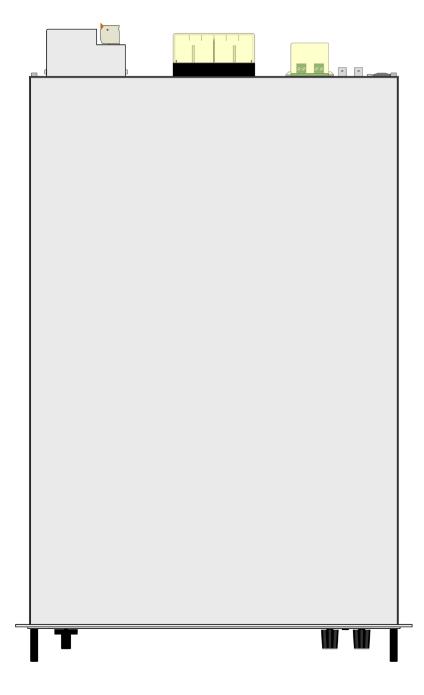

Technische Zeichnungen PSI 10000 3U ≤200 V



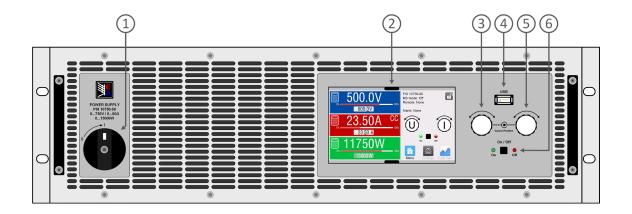
Beschreibung Frontplatte PSI 10000 3U

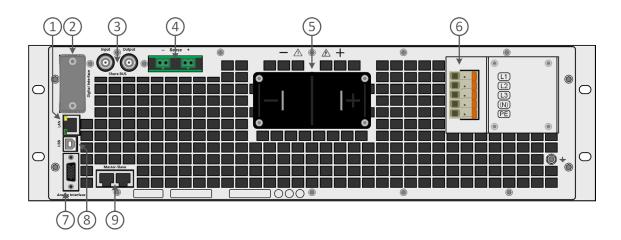

- 1. Netzschalter
- 2. TFT-Display, mit berührungsempfindlicher Oberfläche (Touchscreen)
- 3. Drehknopf mit Tastfunktion für Einstellungen
- 4. USB-Host, für USB-Sticks zum Daten mitschreiben und einlesen
- 5. Drehknopf mit Tastfunktion für Einstellungen
- 6. Ein/Aus-Taster mit LED Statusanzeige


Beschreibung Rückplatte PSI 10000 3U ≤200 V



- 1. Ethernet-Schnittstelle
- 2. Steckplatz für optionale Schnittstellen
- 3. Share-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 4. Anschlüsse für Fernfühlung der Ausgangsspannung (remote sense)
- 5. DC-Ausgangsklemme mit Kupfer-Anschlussschwertern
- 6. AC-Anschlussbuchse
- 7. Anschlussstecker (DB15 weiblich) für isolierte Analogschnittstelle mit Programmierung, Auslesen und anderen Funktionen
- 8. USB-Schnittstelle
- 9. Master-Slave-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung


Technische Zeichnungen PSI 10000 3U ≥360 V



Beschreibung Frontplatte PSI 10000 3U

- 1. Netzschalter
- 2. TFT-Display, mit berührungsempfindlicher Oberfläche (Touchscreen)
- 3. Drehknopf mit Tastfunktion für Einstellungen
- 4. USB-Host, für USB-Sticks zum Daten mitschreiben und einlesen
- 5. Drehknopf mit Tastfunktion für Einstellungen
- 6. Ein/Aus-Taster mit LED Statusanzeige

Beschreibung Rückplatte PSI 10000 3U ≥360 V

- 1. Ethernet-Schnittstelle
- 2. Steckplatz für optionale Schnittstellen
- 3. Share-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung
- 4. Anschlüsse für Fernfühlung der Ausgangsspannung (remote sense)
- 5. DC-Ausgangsklemme mit Kupfer-Anschlussschwertern
- 6. AC-Anschlussbuchse
- 7. Anschlussstecker (DB15 weiblich) für isolierte Analogschnittstelle mit Programmierung, Auslesen und anderen Funktionen
- 8. USB-Schnittstelle
- 9. Master-Slave-Bus-Anschlüsse zum Einrichten eines Systems für Parallelschaltung

EA Elektro-Automatik GmbH

Helmholtzstr. 31-37 41747 Viersen

Telefon: +49 (0) 2162 3785-0 Fax: +49 (0) 2162 16230 ea1974@elektroautomatik.com

www.elektroautomatik.com www.tek.com

