Physical Layer Validation of Storage Systems

- Advanced Tools for Validation, Debug and Characterization of SAS and SATA Designs


John Calvin Tektronix Storage Portfolio Product Manager Chairman of SATA-IO Logo and Interoperability Working group

Presenter Biography

John Calvin, Logo Work Group Chair

- John Calvin currently is the chairman of the Serial ATA International Organization's Interoperability working group. John is a Product Manager at Tektronix where he has worked for the last 15 years, with a focus on high speed serial measurements solutions for industry standards. He has worked as a contributor to SATA testing since 2000. John holds a Bachelors Degree in Electrical Engineering from Washington State University and has been awarded 6 patents in measurement-related technology.
- <u>http://www.serialata.org/about/work_group_chairs.asp</u>

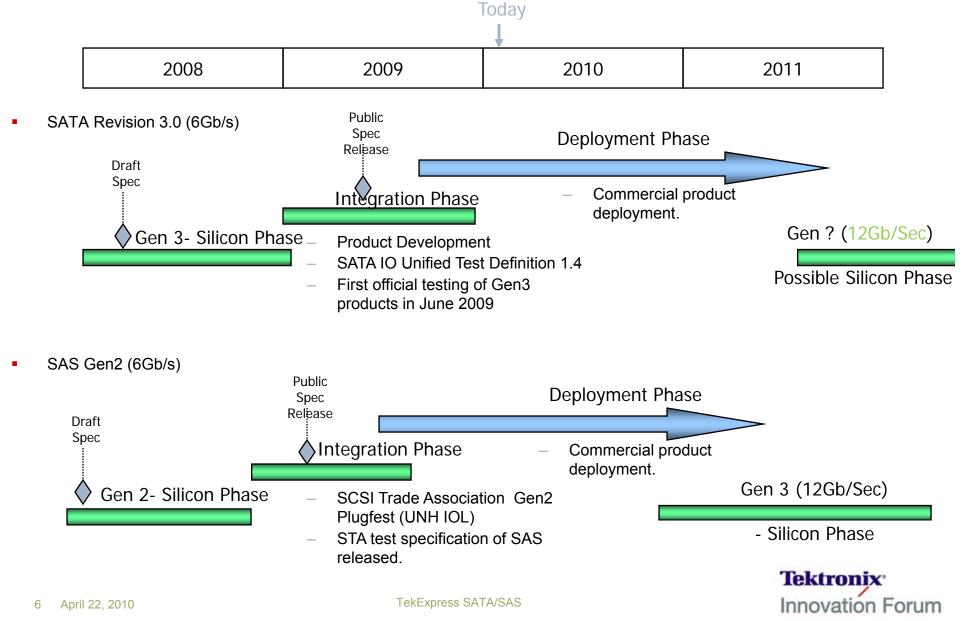
SATA Logo/Interoperability mission

- The Storage industry and SATA in particularly has shipped over One Billion disk drives. The cost sensitivity of the consumer market has made storage systems a commodity item. The lowest cost item usually emerges as the most attractive from a OEM/Supplier arrangment.
- The interchangeability of SATA storage demands a high degree of assured interoperability between devices at the principal electrical interfaces.
- The SATA Logo/Interoperability organization's charter is to develop test techniques and methods which ensure this industries interoperability objectives are being met, for all SATA Certified products.

Tektronix Innovation Forum 2010

Tektronix^{*}

Agenda


- Introduction
- SAS
 - Physical Layer Testing Overview
 - Measurements
 - Challenges in SSC
 - Test Reporting
- SATA
 - UTD 1.4 (6 Gb/s) Measurements
 - New Measurements
 - Receiver Testing
- Summary

- Serial Advanced Technology Attachment (SATA)
 - Tektronix has the only comprehensive and <u>fully automated SATA physical</u> layer test automation package in the industry today, enabling the broad community of expert users, industrial automation and technical users since the beginning of SATA over a decade ago.
 - Well established 20 Ghz scope performance has been utilized at industry interoperability events and test labs for 2 years and provides unparalleled trigger, capture and analysis capabilities.
 - In the field of Receiver testing, Tektronix has introduced the concept of full digital synthesis of waveform impairments as well as integrated methods of logical state control with high performance (24Gs/sec) Arbitrary Waveform Generators.
- Serial Attached SCSI (SAS)
 - Tektronix is currently recognized as one of the two valid tool providers for the UNH IOL <u>SAS Consortium's Physical Layer test suite</u>. These are the tests performed for SAS conformance at a recent Plugfest.
 - Best in class, proven real time instrumentation platform along with industry recognized 70GHz sampling scopes provides users flexibility and latitude with either advanced debug or higher bit rates.
 - The first and only tool provider to provide comprehensive Noise decomposition, as well as Jitter decomposition along BER contour calculations.

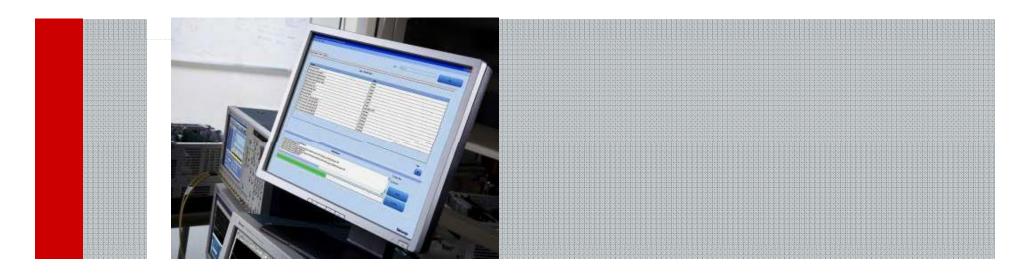
Storage Timelines and Solutions Development

Industry Productivity

Compliance Testing – An Industry Productivity Issue

Greater speed means greater design challenges, with implications...

- 1. Greater test complexity
 - More instruments, configurations, and setup time
- Breadth of tests demands highly experienced, senior equipment users to perform and interpret results.
- 3. Text complexity is high
 - Highly specialized e.g., SSC modulation analysis, advanced receiver testing, Frequency domain S-Parameter measurements.
- 4. Days to perform effective, repeatable and reliable product validation tests



"Banner specs are no longer the gating issue. The latest equipment provides ample raw performance. What's needed is greater ease of use, setup and automation."

- Customer feedback

SAS Physical Layer Testing

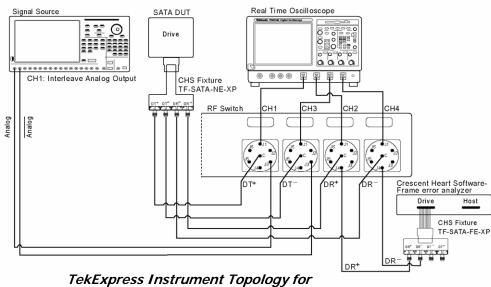
STA: PHY informative measurements

- SAS GROUP 1: COUPLING & OOB REQUIREMENTS
 - TEST 5.1.1 AC COUPLING REQUIREMENTS
 - TEST 5.1.2 TX MAXIMUM NOISE DURING OOB IDLE
 - TEST 5.1.3 TX OOB BURST AMPLITUDE
 - TEST 5.1.4 TX OOB OFFSET DELTA
 - TEST 5.1.5 TX OOB COMMON MODE DELTA
- SAS GROUP 2: TX SPREAD SPECTRUM CLOCKING (SSC) REQUIREMENTS
 - TEST 5.2.1 TX SSC MODULATION TYPE
 - TEST 5.2.2 TX SSC MODULATION FREQUENCY
 - TEST 5.2.3 TX SSC MODULATION DEVIATION AND BALANCE
 - TEST 5.2.4 TX SSC DFDT (INFORMATIVE)
- GROUP 3: TX NRZ DATA SIGNALING REQUIREMENTS
 - TEST 5.3.1 TX PHYSICAL LINK RATE LONG TERM STABILITY
 - TEST 5.3.2 TX COMMON MODE RMS VOLTAGE LIMIT
 - TEST 5.3.3 TX COMMON MODE SPECTRUM
 - TEST 5.3.4 TX PEAK-TO-PEAK VOLTAGE
 - TEST 5.3.5 TX VMA AND EQ (INFORMATIVE)
 - TEST 5.3.6 TX RISE AND FALL TIMES
 - TEST 5.3.7 TX RANDOM JITTER (RJ)
 - TEST 5.3.8 TX TOTAL JITTER (TJ)

9

The SAS consortium and the testing programs sponsored by the SCSI Trade Association (STA) perform these measurements on an <u>informative</u> basis.

There are no sanctioned SAS <u>compliance</u> measurements.


GROUP 4: S-PARAMETER REQUIREMENTS

- TEST 5.4.1 RX DIFFERENTIAL RETURN LOSS (SDD11)
- TEST 5.4.2 RX COMMON-MODE RETURN LOSS (SCC11)
- TEST 5.4.3 RX DIFFERENTIAL IMPEDANCE IMBALANCE (SCD11)
- TEST 5.4.4 TX DIFFERENTIAL RETURN LOSS (SDD22)
- TEST 5.4.5 TX COMMON-MODE RETURN LOSS (SCC22)
- TEST 5.4.6 TX DIFFERENTIAL IMPEDANCE IMBALANCE (SCD22)

Tektronix[•] Innovation Forum

TEST 5.3.9 - TX WAVEFORM DISTORTION PENALTY (WDP)

Integrated and Automated Test Control TekExpress[™] Test Automation Framework

TSG/PHY/OOB, RSG testing

- •Simplifies Complex Measurements
- Improves Engineering Productivity
- •Repeatable and Consistent results
- •Automatic with no user intervention

- Arbitrary Waveform Generator (AWG)
 - DUT state control
 - Digitally synthesizes test signal impairments (Direct Synthesis)
- Complete offering includes:
 - Leading portfolio of Tektronix test instruments
 - Oscilloscopes
 - Signal generators
 - 3rd party integration with RF switch (Keithley), fixtures, API (NI), cabling, deskew, etc.
- Auto discovery of instruments using GPIB, USB, and LAN
 - 1GbE networking is used for data/waveform transport.
 - GPIB/488.2 is used for RF Switch and Power supply communications
- Test sequence automation
- One button control
- Reporting

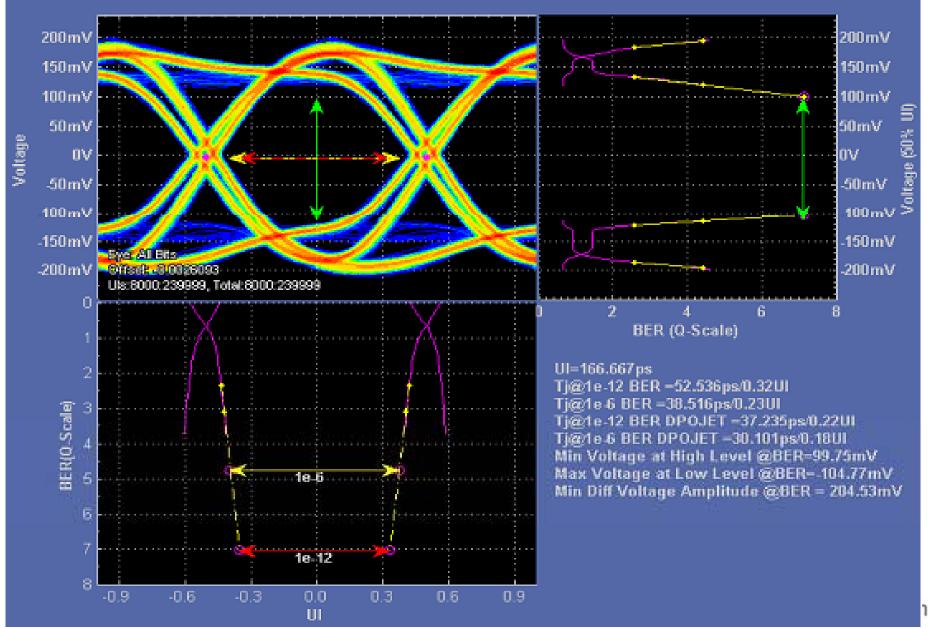
TekExpress: SAS TSB/PHY/OOB

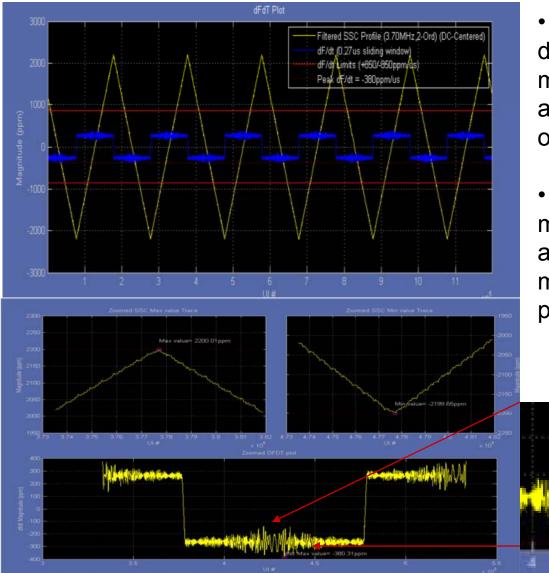
	Select Standard	Select Device	Select Test Suite		Version
○ Seria⊙ SAS	IATA	⊙ Drive	 ● PHY-TSG-00B ● Rx-Tx 	SAS 2.0	0
		Drive : PHY-TSG-OOB S	AS 2.0		Configure
Select	TestName			<u>^</u>	
	Test 5.2.4 - TX SSC DFDT (Test 5.3.1 - TX Physical Link	•		_	Show MOI
	Test 5.3.2 - TX Common Mo			_	
	Test 5.3.3 - TX Common Mo	-		_	Show Schematic
	Test 5.3.4 - TX Peak-to-Peak				
	Test 5.3.5 - TX VMA and EQ	-			Select All
	Test 5.3.6 - TX Rise and Fall			=	
	Test 5.3.7 - TX Random Jitte	r (RJ)			Select Required
	Test 5.3.8 - TX Total Jitter (T	J)			
	Test 5.3.9 - TX Waveform D	istortion Penalty (WDP)		~	Deselect All

• Example SAS Report:

<u>ftp://ftp.tektronix.com/outgoing/Sample_SAS_Report.mht</u>

Tektronix[•] Innovation Forum


TekExpress: SAS TSB/PHY/OOB


		Drive	: PHY-TSG-OOB SAS 2.0			Show Pass / Fail
TestName	Status	Low Limit	Measured Value	High Limit	Low limit margin, High limit margin	Pass/Fail Status ^
Test 5.1.2 - TX Maximum Noise Duri	Completed Test 5.1.2 - TX Maximum	120 mV	104	-NA-	16 - Passed	🗸 Pass
		2400 mV	Maximum peak-to-peak burst amplitu	-NA-	1796 - Passed	
Task E 1 0 TV OOD Durch Association	Completed Test 5.1.3 - TX OOB Burs	2400 mV	Minimum peak-to-peak burst amplitu	-NA-	2119.8 - Passed	✓ Pass
Test 5.1.3 - TX OOB Burst Amplitude	Completed Lest 2.1.3 • 1X OOB Burs	240 mV	Minimum peak-to-peak burst amplitu	-NA-	364 - Passed	
		240 mV	Minimum peak-to-peak burst amplitu	-NA-	40.2 - Passed	
Test 5.1.4 - TX OOB Offset Delta	Completed Test 5.1.4 - TX OOB Offs	25 mV	-3.09832	-NA-	28.0983 - Passed	✓ Pass
Test 5.1.5 - TX OOB Common Mode	Completed Test 5.1.5 - TX OOB Com	50 mV	-3.47364	-NA-	53.4736 - Passed	🗸 Pass
Test 5.2.1 - TX SSC Modulation Type	Completed Test 5.2.1 - TX SSC Mod	•	Down-spread SATA		•	🗸 Pass
			Modulation frequency: 30		0,3-Failed	
Test 5.2.2 - TX SSC Modulation Freq	Completed Test 5.2.2 - TX SSC Mod	30 KHz	Min Modulation frequency: 29.9976	33 KHz	Informative	🗙 Fail
			Max Modulation frequency: 30 0017	_	Informative	
Test 5.2.3 - TX SSC Modulation Devi	Completed Test 5.2.3 - TX SSC Mod	-5000 ppm	Max deviation: -2200.53	0 ppm	Informative	× Fail
TESCO.2.3 * TA SSC MODULATION DEVI		-5000 ppm	Min deviation: -0.4482	0 ppm	Informative	
Test 5.2.4 - TX SSC DFDT (Informati	Completed Test 5.2.4 - TX SSC DFD	-5350 ppm/us	-327.7502	350 ppm/us	5022.2498, 677.7502 - Passed	🗸 Pass 🛛 👻
<			Ш			>

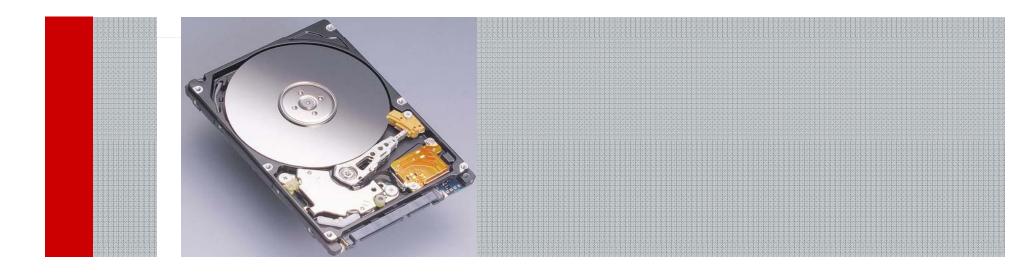
- Test Results are detailed in the analysis panel, showing measurement results, user or standard specified test limits and high and low margin values.
- The Pass/Fail criteria defaults to the SAS Standards limits, however users can relax or make them more stringent if needed.

Advanced Noise Decomposition and Jitter Analysis

SAS/SATA SSC Analysis

 Advanced tools required to provide detailed insights into SSC modulation problems and to automatically identify and zoom in on problem areas

 In this example, the regions of maximum and minimum modulation as well as the dF/dT absolute maximum are magnified and presented for scrutiny


Tektronix Innovation Forum 2010

SAS: Comprehensive Report: 29 fully automated tests

			Test Details		Measured			Units Test Re:	
Test Name	Pattern Name	Interface Speed	Measurement Details	Low Limit	Value	High Limit	Margin	Units	Test Resi
Test 5.2.1-TX SSC Modulation Type	HFTP	6.0Gb/s	Center-spread SAS	-NA-	SSC ON	-NA-	-NA-	-NA-	Pass
	HFTP	6.0Gb/s	SSC Modulation Frequency	>= 30	30.0000	<= 33	0,3		Pass
Test 5.2.2-TX SSC Modulation Frequency	HFTP	6.0Gb/s	Min SSC Modulation Frequency	>= 30	29.9992	<= 33	Informative		
	HFTP	6.0Gb/s	Max SSC Modulation Frequency	>= 30	30.0011	<= 33	Informative		Informati Informati
								I	
	HFTP	6.0Gb/s	Max Deviation	-NA-	-2199.6500	-NA-	-NA-	-	Informat
est 5.2.3-TX SSC Modulation Deviation and Balance	HFTP	6.0Gb/s	Min Deviation	-NA-	2200.0074	-NA-	-NA-	ppm	Informati
Corolizio IX Coo Modulaton Donaton and Dalance	HFTP	6.0Gb/s	Avg Deviation	>= -350	0.1787	<= 350	350.1787, 349.8213	ppin	Pass
	HFTP	6.0Gb/s	Deviation asymmetry	-	- 0.3574 <= 288 287.6426			Pass	
Test 5 2 4-TX SSC DEDT (Informative)	HFTP	6 0Gb/s	df/dt	>= -850	-380 3082	<= 850	Informative	ppm/us	Informat
	HFTP	6.0Gb/s	Mean Period	> -100	-2.1050	< 100	Informative		Informat
Test 5.2.1 TV Dhusiaal Link Data Lang Term Stability	HFTP	6.0Gb/s	Min Period	> -100		< 100			
Test 5.3.1-TX Physical Link Rate Long Term Stability				> -100	2200.0074		Informative	ppm	Informat
	HFTP	6.0Gb/s	0Gb/s Max Period		-2199.6501	< 100	Informative		Informat
Test 5.3.2-TX Common Mode RMS Voltage Limit	CJTPat-Gen 2	6.0Gb/s	Common-mode RMS voltage at IT (mV)- SAS 2.0	-	42.9927	< 30	12.9927	mV	Fail
		1					1		
	CJTPat-Gen 2	6.0Gb/s	Common-mode spectrum (dBmV) at 100MHz-SAS 2.0	-	-33.5589	< 12.7	46.2589		Pass
Test 5.3.3-TX Common Mode Spectrum	CJTPat-Gen 2	6.0Gb/s	Common-mode spectrum (dBmV) at first harmonic-SAS 2.0	-	16.7701	< 26	9.2299	mV	Pass
	CJTPat-Gen 2	6.0Gb/s	Common-mode spectrum (dBmV) at second harmonic-SAS 2.0	-	-9.8586	< 30	39.8586		Pass
Test 5.3.4-TX Peak-to-Peak Voltage	D30.3-Gen 2	6.0Gb/s	Peak to Peak voltage (mVppd)-SAS 2.0	> 850	1240.0000	< 1200	390 , 40	mV	Fail
	I							I	
Test 5.3.5-TX VMA and EQ	D30.3-Gen 2	6.0Gb/s	Transmitter equalization (dB)-SAS 2.0	> 2	2.0684	< 4	Informative	dB	Pass
	D10.2	6.0 Gb/s	Rise time in ps	>= 41.6	55.7616	-	14.1616		Pass
Test 5.3.6-TX Rise and Fall Times	D10.2	6.0 Gb/s	Fall time in ps	>= 41.6	55.3999	-	13.7999	ps	Pass
	I		1	 			1	I	
Test 5.3.7-TX Random Jitter (RJ)	D24.3-Gen 2	6.0Gb/s	Rj before CIC	-	0.7069	<= 25	24.2931	ps	Pass
	D24.3-Gen 2	6.0Gb/s	Rj after CIC	-	0.5321	<= 25	24.4679		Pass
	•		Tektronix Innov	ation Form	m 2010	-			

Tektronix Innovation Forum 2010

SATA Physical Layer Testing

It's the measurements ...

SATA UTD 1.4 Test Requirements

Phy Transmit Signal Requirements	SI General Requirements
TSG-01 : Differential Output Voltage TSG-02 : Rise/Fall Time	SI-1:8 : Cable Characterization SI-09 : Inter-Symbol Interference
TSG-03 : Differential Skew	Phy General Requirements
TSG-04 : AC Common Mode Voltage	PHY-01 : Unit Interval
TSG-05 : Rise/Fall Imbalance	PHY-02 : Frequency Long Term Stability
TSG-06 : Amplitude Imbalance	PHY-03 : Spread-Spectrum Modulation Frequency
TSG-07 : Gen1 (1.5Gb/s) TJ at Connector, Clock to Data, fBAUD/10	PHY-04 : Spread-Spectrum Modulation Deviation
TSG-08: Gen1 (1.5Gb/s) DJ at Connector, Clock to Data, fBAUD/10	Phy OOB Requirements
TSG-09 : Gen1 (1.5Gb/s) TJ at Connector, Clock to Data, fBAUD/500	OOB-01 : OOB Signal Detection Threshold
TSG-10 : Gen1 (1.5Gb/s) DJ at Connector, Clock to Data, fBAUD/500	OOB-02 : UI During OOB Signaling
TSG-11 : Gen2 (3Gb/s) TJ at Connector, Clock to Data, fBAUD/500	OOB-03 : COMINIT/RESET and COMWAKE Transmit Burst Length
TSG-12 : Gen2 (3Gb/s) DJ at Connector, Clock to Data, fBAUD/500	OOB-04 : COMINIT/RESET Transmit Gap Length
TSG-13: Gen3 (6Gb/s) Transmit Jitter w/wo CIC	OOB-05 : COMWAKE Transmit Gap Length
TSG-14 : Gen3 (6Gb/s)TX Maximum Differential Voltage Amplitude	Phy Receiver/Transmitter Channel Reqs
TSG-15 : Gen3 (6Gb/s) TX Minimum Differential Voltage Amplitude	RX/TX-01 : Pair Differential Impedance
TSG-16 : Gen3 (6Gb/s) Tx AC Common Mode Voltage	RX/TX-02 : Single-Ended Impedance (Obsolete)
Phy Receive Signal Requirement	RX/TX-03 : Gen2 (3Gb/s) Differential Mode Return Loss
RSG-01 : Gen1 (1.5Gb/s) Receiver Jitter Tolerance Test (Normative)	RX/TX-04 : Gen2 (3Gb/s) Common Mode Return Loss
RSG-02 : Gen2 (3Gb/s) Receiver Jitter Tolerance Test (Normative)	RX/TX-05 : Gen2 (3Gb/s) Impedance Balance
RSG-03 : Gen3 (6Gb/s) Receiver Jitter Tolerance Test	RX/TX-06 : Gen1 (1.5Gb/s) Differential Mode Return Loss
RSG-05 : Gen1 Asynchronous Receiver Stress Test at +350ppm	RX/TX-07 : Gen3 (6Gb/s) Differential Mode Return Loss
RSG-06 : Gen1 Asynchronous Receiver Stress Test With SSC	RX/TX-08 : Gen3 (6Gb/s) Impedance Balance

SATA Measurement Legends:

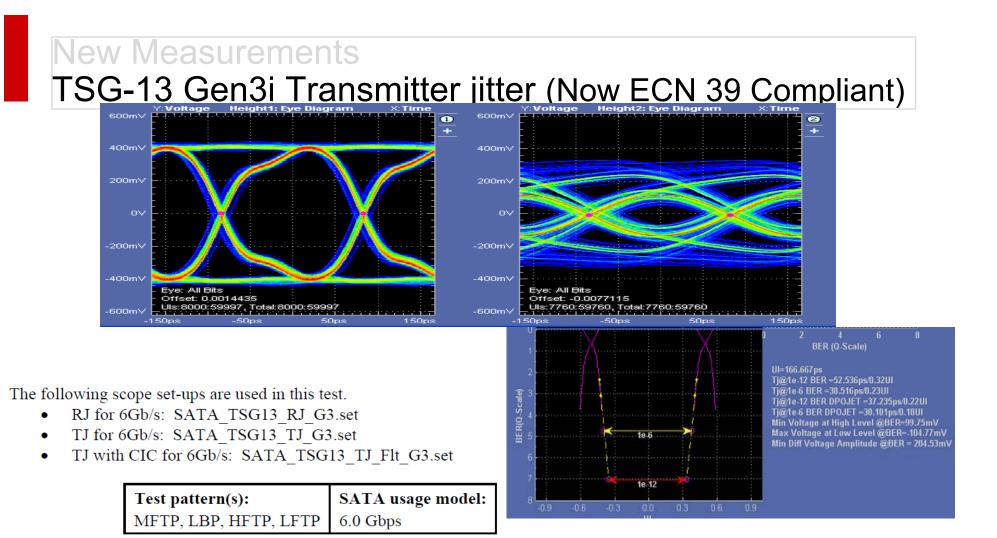
No change from previous UTD 1.3 spec version Revised methodology from UTD1.3 to UTD 1.4 New test definitions in UTD 1.4 Obsolete

Full SATA Logo Test Specification available at.. http://www.serialata.org/documents/Interop_UnifiedTe st_Rev1_4_v1_00_083109.pdf Tektronix[•]

Tektronix Innovation Forum 2010

SATA UTD 1.4 TSG/PHY/OOB Measurements

Drive : PHY-TSG-00B SATA Gen 3-UTD 1.4-All


Select	TestName
	Informative-df/dt Measurement
	Informative-Eye diagrams
	00B01-00B Signal Detection Threshold
	00B02-UI During 00B Signaling
	OOB03-COMINIT_RESET and COMWAKE Transmit Burst Langth
	OOB04-COMINIT_RESET Transmit Gap Length
	00B05-COMWAKE Transmit Gap Length
	00B06-COMWAKE Gap Detection Windows
	00B07-COMINIT Gap Detection Windows
	PHY01-Unit Interval
	PHY02-Frequency Long Term Stability
	PHY03-Spread-Spectrum Modulation Frequency
	PHY04-Spread-Spectrum Modulation Deviation
	TSG01-Differential Output Voltage-Option 1
	TSG01-Differential Output Voltage-Option 2
	TSG02-Rise-Fall Time
	TSG03-Differential Skew
	TSG04-AC Common Mode Voltage
	TSG05-Rise-Fall Imbalance
	TSG06-Amplitude Imbalance
	TSG09-TJ at Connector, Clock to Data, fBAUD-500
	TSG10-DJ at Connector, Clock to Data, fBAUD-500
	TSG11-TJ at Connector, Clock to Data, fBAUD-500
	TSG12-DJ at Connector, Clock to Data, fBAUD-500
	TSG13-Transmit Jitter
	TSG14-TX Maximum Differential Voltage Amplitude
	TSG15-TX Minimum Differential Voltage Amplitude
8 🔽	TSG16-Tx AC Common Mode Voltage
<i>r</i>	

SATA Gen 3-UTD 1.4-All	~
SATA Gen 2-UTD 1.2	^
SATA Gen 2-UTD 1.2-All SATA Gen 2-UTD 1.3	
SATA Gen 2-UTD 1.3-All	
SATA Gen 2-UTD 1.4	
SATA Gen 2-UTD 1.4-All SATA Gen 3-UTD 1.4	
SATA Gen 3-UTD 1.4-All	~

Different Test program and degrees of regression testing now user selectable. UTD 1.2 and 1.3 tests use JIT3 and run on TDS and DPO class instruments. UTD 1.4 tests (Gen3) only operate on DPOJET.

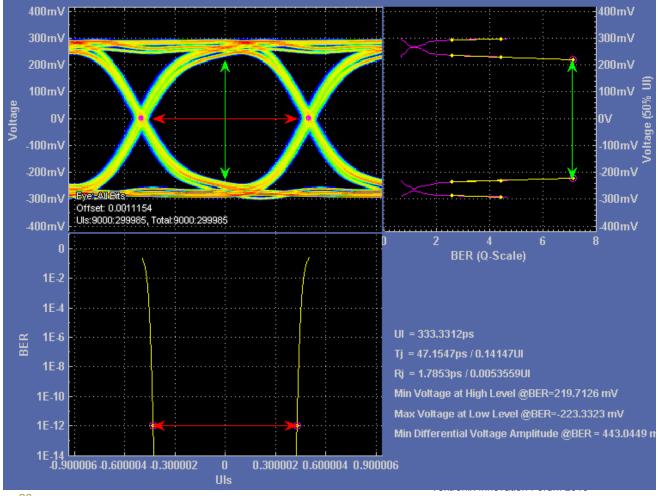
Debug and Diagnostic tools (Informative measurements)

New SATA Gen3 measurements **Tektronix** Innovation Forum

SATA 6Gbps: 10 us/div, 20 ps/pt (>100,000 UI).

Horizontal resolution will vary depending on the data rate and oscilloscope model

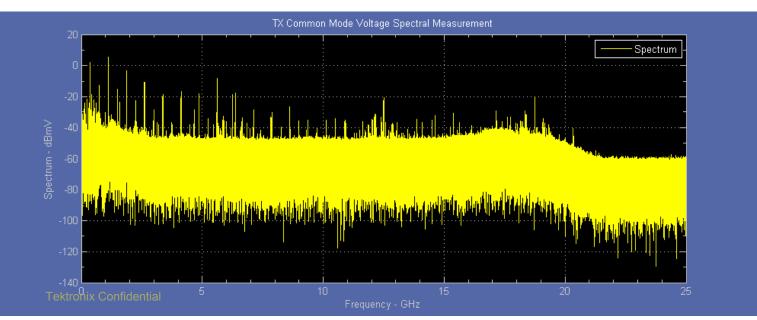
Observable Results:


• RJ measured (RJmeas) at a maximum of 0.18 UI into a Laboratory Load before the Compliance Interconnect Channel (CIC) when measured using the specified JTF for products running at 6.0 Gb/s

• TJ measured at a maximum of (RJmeas) + 0.34 UI into a Laboratory Load before the CIC when measured using the specified JTF (for products running at 6.0 Gb/s)

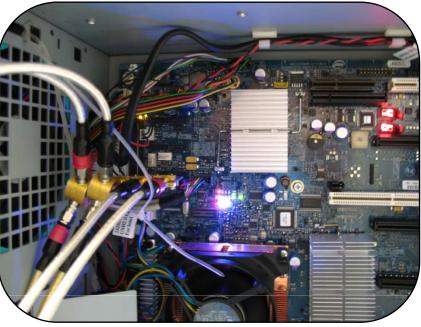
New Measurements TSG-15 Tx Minimum Differential Amplitude @ BER.

- One of the most significant advancements in SATA PHY testing for Gen3 is the new minimum amplitude technique
- Analyzes signal noise content and projects eye closure down to 10E-12 BER.



Goal of this measurement is the horizontal bathtub curve . This is similar to the WDP measurement in SAS

New Measurements TSG-16 Tx AC Common Mode Signal Analysis

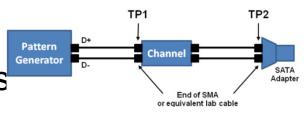

- 1st/2nd harmonics provide insight into common mode and time domain waveform asymmetry problems which results in EMI problems.
- Real-time waveform capture is absolutely vital if SSC is present. The constant movement of the spectral peaks and the determination of a nominal period cannot be performed on any other system.
- Spectral peaks are constantly moving
- Continuous multi-cycle analysis

Tektronix

SATA: Receiver Signaling Tests

- The jitter composition for receiver testing is a precise mix of Random, Sinusoidal and Pattern Jitter.
- Additionally, the signal amplitude is lowered to the spec limit, and under these conditions a receiver is required to operate for 10, 5, and 2.5 minutes error free (for Gen1, 2, and 3 resp.)
- Sinusoidal (Sj) jitter frequencies
 - 5, 10, 33, 62 and recently piloted125MHz
- Why these frequencies?
 - High 62 and 33 MHz noise levels inside PC's known to create PLL peaking phenomenon at 5 and 10MHz, 125MHz is a high noise spectral location in PC architectures.
- SATA specifications require the error detection be made at a frame level

RSG/RMT testing with TekExpress


7.4.1.2 Frame Error Rate Measurements

The Frame Error Rate (FER) shall be measured and computed to be no greater than 8.200*10⁻⁸ at a 95% confidence level when tested with any given 8b/10b pattern, including the Frame Error Rate reference patterns cited in section 7.4.1.1. The Serial ATA CRC error detection mechanism is used to measure FER.

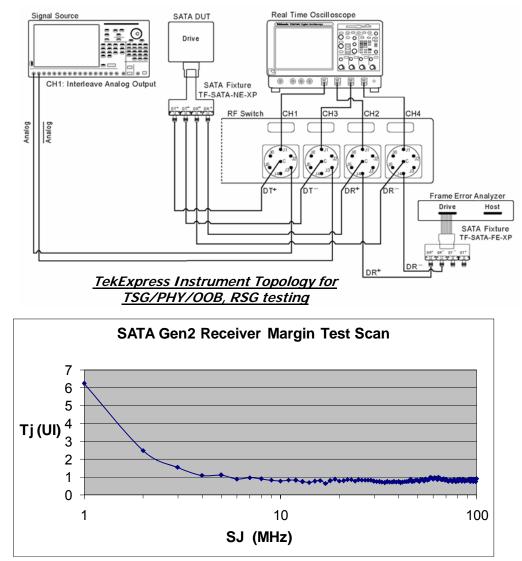
The Frame Error Rate is calculated based on the maximum size of a Data FIS, plus overhead for the FIS header and CRC Dwords. The Frame Error Rate assumes a target bit error rate of 10⁻¹².

$$FER = (8192 + 8) \times 10 \times 10^{-12} = 8.200 \times 10^{-8}$$

4/22/2010

Innovation Forum

SATA Receiver Test Jitter Specifications

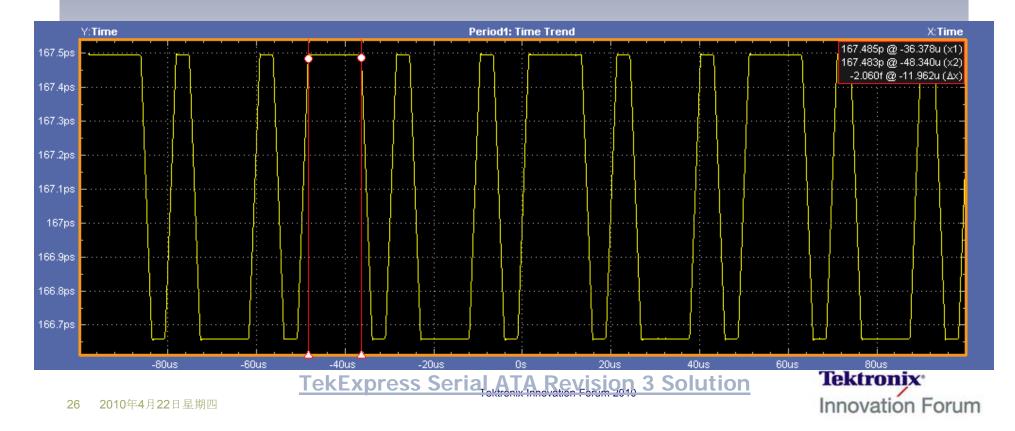

Step	Test Point	Calibration Pattern	Method	Gen1i	Gen1m	Gen2i	Gen2m	Gen3
Rise/ Fall Time	TP1	LFTP	Section 7.4.4 in SATA 3.0 Specification	100 ps (20/	80%)	100 ps (20	/80%)	62 ps to 75 ps (20/80%)
Rj	TP1	MFTP	Section 7.4.12 of SATA 3.0 Specification, Rj method also applied to Gen1i/m and Gen2i/m	8.57 ps RM for a 7 sign projection)		4.285 ps R sigma for a 0.18 UI pro	a 7 sigma	2.14 ps RMS (1 sigma for a 7 sigma 0.18 UI projection)
Sj	TP1	MFTP	Using Rj method defined in section 7.4.12 of SATA 3.0 Specification for all data rates	Sj=270mUI		Sj=270mU	I	Sj=192mUI
Tj	TP2	Framed COMP with 2 Aligns and new LBP section	See UTD section 2.17.1.1	Tj(min)=50 Tj(max)=51 Using a cha introduces 6ps (i.e. mi max 46ps) the given so	9mUI annel that 40 ps ± n 34ps and of ISI in	Tj(min)=55 Tj(max)=54 Using a ch introduces 6ps (i.e. m max 46ps) the given s	88mUI annel that 40 ps ± in 34ps and of IS(in	Tj(min)=498mUI Tj(max)=570 mUI Using a CIC that introduces a min 21ps and max 33ps of ISI in the given setup and that follows the definition in section 7.2.7 of SATA 3.0 Specification
Amplitude	TP2	Framed COMP with 2 Aligns and new LBP section	For this test the amplitude distribution will be either measured or projected to a 1E- 12 BER contour at the 50% location of the bit interval using previously calibrated edge rates and jitter. It is required to ensure that the maximum allowed voltage is not exceeded. Sections 7.4.3 and 7.4.12 of SATA 3.0 Specification		240 mV	275 mV	240 mV	240 mV

SerialXpress[™] for Serial ATA Pattern Generation

Ba	se Pattern	Transmitter	Channel/C	able													
	Periodic	Jitter (Pk-I	² k)									1					
		Mag	initude:				Frequency (Hz):		Pha	se ("):							
	🗹 Sine1	0.100		\$	UI	•	10.000000 M	*	0.00		*						
	🗖 Sine2	0.070		•	UI	T	33.000000 M	Basel	Pattern	Transmitter	Channel/C	able					
	🗖 Sine3	0.000		•	UI	-	10.000000 M	~	[ISI:]	0.100		😌 UI	-				
	🗌 Sine4	0.000		•	UI	-	10.000000 M		181.	10.100			· _				
		,					,	0	S-Par	ameter Filte	er:						
	Random	Jitter (RMS	•													_	
			itude:				quency-Low (Hz):		Read	from File:	C:\Pro)gram Files\Tektro	nix(Serial	Xpress\S	3amples\T	01 E	Irowse
	🗹 Rj1:	0.010	*	U	•	10	0.000 K		_							_	
	🗖 Rj2:	0.000	*	UI	-	10	0.000 K 🔣		l Inv	/erse Filter:							irowse
	SSC -								ISI Sc	aling:	1.000		*				
							Frequency -		- Tou	ichstone 4-I	Port Data T	vne					
	Shape:		Triangle	e	-		Deviation:		100			ype					
	Spread:		Down		•		Modulation:				Single	-ended	€ D	ifferentia	I		
	Unequal (Spread:	0.00		3 %		🗖 Noise:		To	uchstone 4	-Port Layou	ut					
	df/dt:		0.000		😂 pp	m/us							_			_	,
	awat.		1		- 44 -				6	DC12 (mo	ost commo	n)	S _{dd11}	S _{dd12}	S _{doll} S	S _{dc12}	
	🗆 Noise	:	0.0	000	😂 Vo	lt (RM	IS) Add Noise		0	CD12			S _{dd21}	S _{dd22}	S _{dc21} S	S _{dc22}	
	Pre/D	e-emphasi:	4.0	000	🛟 di	8 🔻	·		0	12DC							
							_						S _{cd11}	S _{cd12}	S _{cc11} S	Scc12	
										12CD			S _{cd21}	S _{cd22}	S _{cc21} S	S _{cc22}	
													L			-	1

Tektronix[®]

Serial ATA Revision 3.0 Receiver Testing


- Leading portfolio of Tektronix test instruments
 - Oscilloscopes with advanced jitter and link analysis software
 - Signal generators with stressed pattern generation software
- Tektronix Arbitrary Waveform Generator (6 Gb/s AWG)
 - Integrated DUT state control for disconnect-free solution
 - Digital Synthesis of CIC receiver ISI components with variable control.
 - Simplified SSC generation of complex dF/dT impairments or other modulation modeling needs
 - High Sinusoidal Jitter generation ability (0-100+UI, from *DC to Nyquist*!)
- PHY Receive Signal Requirements
 - **RSG-01:** Gen1(1.5 Gb/s) Receiver Jitter Tolerance Test (Normative)
 - RSG-02: Gen2(3.0 Gb/s) Receiver Jitter Tolerance Test (Normative)
 - **RSG-03:** Gen3(6.0 Gb/s) Receiver Jitter Tolerance Test (Informative)
 - **RSG-05:** Asynchronous Receiver Stress Test at +350 ppm (Informative)

TekExpress Serial ATA Revision 3 Solution

Tektronix[®] Innovation Forum

Serial ATA Logo test futures

- dFdT (Phase modulation slew rate) has been approved in SATA through TP-03 for Tx testing. A reciprocal test for the Receiver is currently being piloted at the SATA IW#8 event in April 2010.
- The Tektronix AWG with it's digital waveform synthesis capability is leading the field of advanced modulation analysis. These tests expand the scope of conventional Receiver testing, while providing many insights into capabilities of the Phy's tracking architectures and how well it's is tuned for operating in a system environment where SSC noise and modulation issues can be significant.

Complete Tektronix SATA/SAS Portfolio

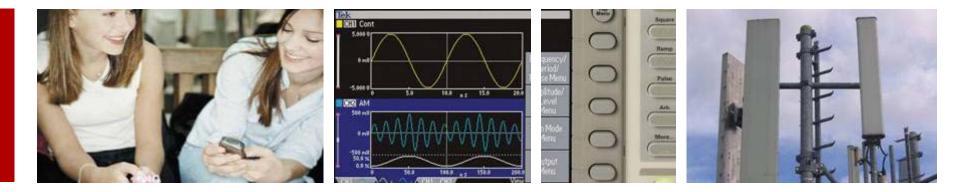
TekExpress Software	Comprehensive System level	Gen1-3 Instrument Automation
RSG/RMT Tests RSG/RMT- Receiver jitter and amplitude sensitivity compliance and margin test.	AWG7122B with Opt.1, 6 and 8 SerialXpress Digital Signal Generation	
Rx/Tx Channel Tests •Rx/Tx - Device and Host electrical channel performance, Impedance and return loss SI Cable Tests •SI - Cable crosstalk, skew and frequency domain	DSA8200 80E08 TDR Sampling Module for DSA8200 Sampling Scope S-Parameter Analysis Software 80SICON Software for DSA8200	
PHY, TSG, and OOB Tests PHY – Signal timing stability and SSC analysis.	80E08 TDR Sampling Module for DSA8200 Sampling Scope	
 PFY – Signal timing stability and SSC analysis. TSG – Transmitter AC parametric, Jitter, Amplitude. OOB- Out Of Band signal validation 	DSA72004B DPOJET Jitter Analysis software SMA Adapters TCA-SMA 2 per scope Differential SMA Probe P7313SMA (optional)	

Resources

- What equipment do I need to test SATA and SAS?
 - SATA:

www.tek.com/applications/serial_data/sata/sata_tests.html

– SAS:

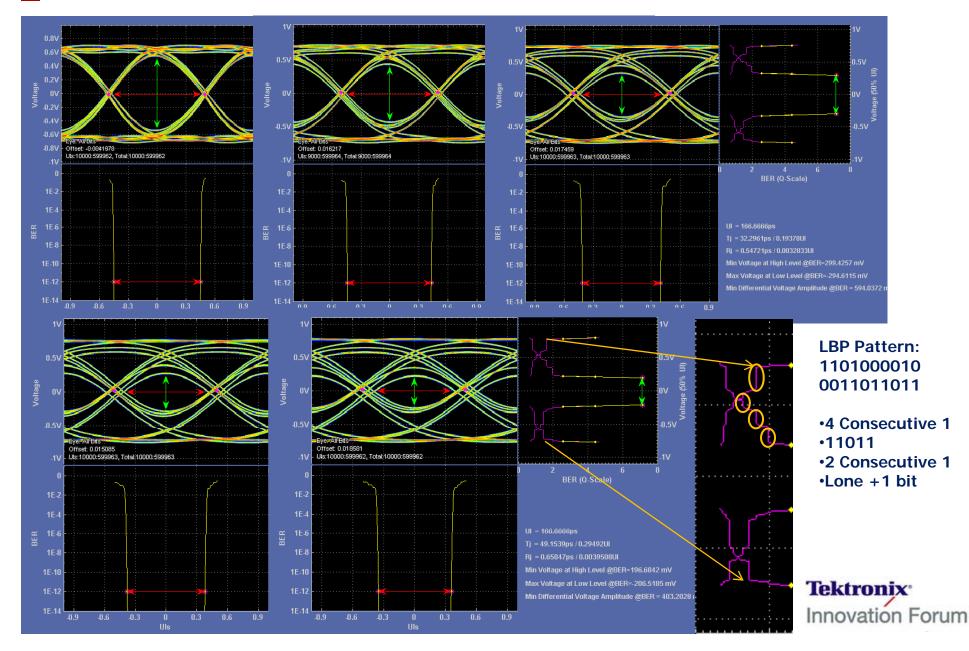

www.tek.com/applications/serial_data/sas/recommended_equipment.html

- How can I learn more about SATA/SAS testing?
 - Tektronix SATA Knowledge Center: www.tektronix.com/SATA
 - Tektronix SAS Knowledge Center: www.tektronix.com/SAS
 - SATA International Organization: www.serialata.org
 - SCSI Trade Association: www.scsita.org
 - T10 Technical Committee: www.t10.org
 - University of New Hampshire Interoperability Lab: www.iol.unh.edu/services/testing/sas

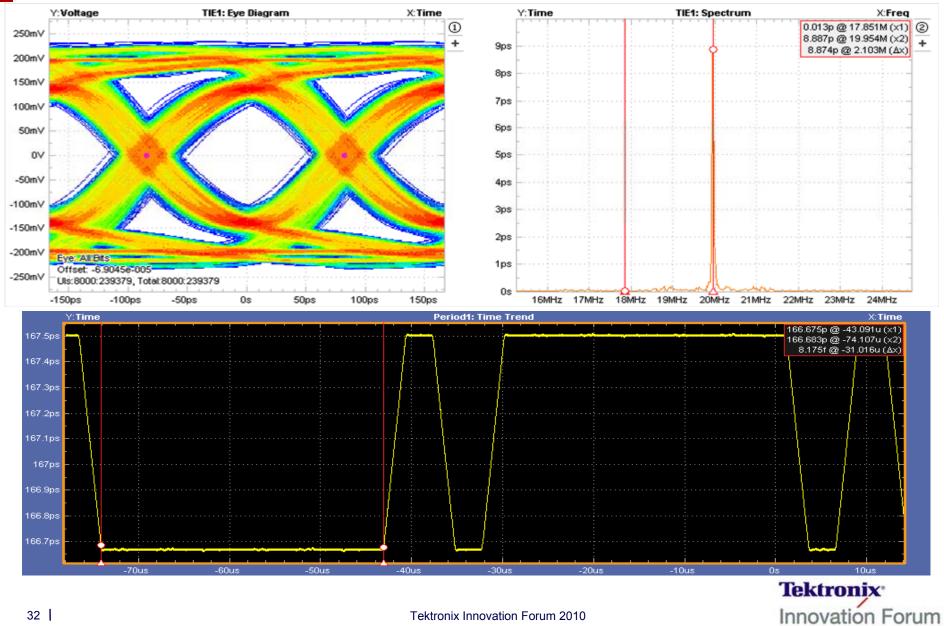
Enabling Innovation in the Digital Age

Accelerating Performance

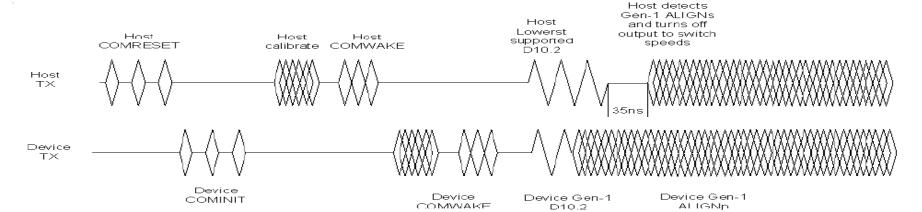
Enabled by High-speed Serial Technologies



Integrated Instrument BERT


- Tektronix DPO/DSA/MSO 72004B/71604B/71254B Oscilloscopes offer a variable rate Frame Error and Bit Error Detector integated into the base instrument trigger system which can operate from 1.5G to 6.25G. This is an instrument setup used in conjunction with the High Speed Serial Trigger (STU) option.
- Released to SATA-IO in Tek RSG MOI on January 15, 2010. Certified by SATA-IO on April 8 2010.

	lit ∣ Vert	tical	Horiz/Acq	Trig	Display	Cursors	Measure	Mask	Math	MyScope	Analyze
E Sta	tus: C	our	nting/Sig	nal/L	ocked/	maxAP	_0K '	- :	1 1		
E FE	ors: U Rate: (ın 1 0.00	509ॅ103ॅ6 0000e+0	0 00 m	axAPs	:2					
E Cha	aracte	er Er	rors: 0								
E-Dis	parity	' Err	rors: 0							· · +	
E- ·										· · ‡	
₽~		⊢ † ∶		-+		+ + +		+		-+-+ + 	
E ·										· · ‡	
E ·										· · ‡	
Ē.										· · ‡	
Ē.										· · +	
Ē.		i İ		, i	1 1	i i İ		, i	1 1	<u>, , ‡</u>	
C1) 100m	∩V/di	v t	50Ω B	w:16.0G						
8°		Т	rigger - S	Serial	Patterr	1					
2° 	Event	Т)ata Sr	c.	Stan	dard
	Event >B Seq		Trigger - S Trigger T Serial			Clk Src	[▼ Ch 1)ata Sr	c V	Stan Custom	dard
Δ-			Trigger T			Clk Src	▼ Ch 1		۲		
A- B	>B Seq Event		Trigger T	ype ▼		Clk Src	▼ Ch 1	Coding	۲	Custom	Rate
A- B	>B Seq		Trigger T Serial	ype ▼		Clk Src	▼ Ch 1	Coding	▼ 	Custom Bit F	Rate
A- B	>B Seq Event		Trigger T Serial	ype V		Clk Src	▼ Ch 1	Coding	▼ 	Custom Bit F	Rate
A- B	>B Seq Event		Trigger T Serial Select	ype V		Clk Src	▼ Ch 1	Coding	▼ 	Custom Bit F 5.00	Rate
A- B	>B Seq Event		Trigger T Serial Select Setting	ype V		Clk Src	▼ Ch 1	Coding	▼ 	Custom Bit F 5.00	Rate ib/s (
A- B	>B Seq Event		Trigger T Serial Select Setting	ype V		Clk Src	▼ Ch 1	Coding	▼ 	Custom Bit F 5.00	Rate ib/s (


Eye Waveform Synthesis Fidelity Progressive Impairment of a SATA Gen3 (6Gb/s) Lone Bit Pattern

Additional Material

 AWG based sequences referred to as BIST-L initiators are used to negotiate the devices and hosts LSTM.

	P6	DP6:		Davias		and an all a
Go To	Event Jump To	Repeat	Wait	Ch 2 Waveform	Ch 1 Waveform	Index No
		10		Empty	IDLE-12x	1
				Empty	crs01+_16x-24Gs	2
		10		Empty	IDLE-12x	3
				Empty	cwke01+_x16_24Gs	4
		5		Empty	IDLE-12x	5
		20		Empty	D10_2710_24Gs	6
		400		Empty	-align_32_24Gs	7
		65000		Empty	-sync_256_al2_24Gs	8
	Comm-Reset	65000		Empty	-sync_256_al2_24Gs	9
ck) Activate	Speed Negotiation	65000		Empty	-sync 256 al2 24Gs	10
	BIST-FIS (LOOPDA	100		Empty	-r rdy32 24Gs	11
				Empty	-align_32_24Gs	12
		10		Empty	-r_rdy32_24Gs	13
		2		Empty	-r ip32 24Gs	14
		2		Empty	-r ok32 24Gs	15
		10		Empty	-align 32 24Gs	16
		10		Empty	-sync 256 al2 24Gs	17
		20		Empty	-x rdy32-24Gs	18
				Empty	-SOF 24Gs	19
	Next	Infinite		Empty	-HF-32Dword 24Gs	24
atterns	Next Test pa	Infinite		Empty	Gen3-FCP-2A-Clean	25
25				Empty	Gen3-FCP-2A-1Err	26
	lektron					

Serial ATA Compliance Test Solution

Advanced Technical FAQ

Training: BIST-T –vs- BIST-L

BIST-T (Built In Self Test) – Transmit: Optional capability (not supported on all devices) which allows an 80 bit sequence to be broadcast from a phy's transmitter channel.

Advantages: Ultra low cost method of getting simple patterns out of a device (HFTP, MFTP, LBP etc).

No Align primitives inserted into data stream

Disadvantages: Not all silicon supports this mode of operation.

Pattern is very short. No crosstalk Can only test Phy/TSG/RxTx with this mode of operation. Hosts typically require proprietary SW tools to enable this mode.

BIST-L (Built In Self Test) –Loopback: Required capability (devices are non SATA spec compliant without this) which accepts a signal on it's receiver, retimes it to the local device clock domain, and transmits the received signal out the transmitter.

Advantages: All devices are required to support this mode of operation.

Allows devices to broadcast complex patterns with easy external control. We send it the pattern we want the device to broadcast and it copies the received signal on it's transmitter.

This test mode is fundamental to testing receivers.

Disadvantages: Requires additional equipment cost for an external generator

Sometimes loopback modes include ALIGN primitives in the returned signal stream.

TekExpress Position:

By using the "Manual BIST" mode of operation and pausing the system on the DUT power-cycle Drive-Master or Intel's NAZBist can be used today, to issue a BIST-T command and have the DUT broadcast the required pattern. BIST-T mode of operation is supported today for the PHY/TSG and RxTx tests today provided that user intervention is acceptable to the user.

Serial ATA Compliance Test Solution ASR

Advanced Technical FAQ

ASR (Asynchronous Recovery): This is a silicon based feature which detects a number of error conditions and resets the link based on these conditions.

- 1. Disconnect detected
 - a. Loss of Data Sync condition
 - b. ComReset (DC input signal for more than 20mSec).

This is an important architectural feature designed to allow devices to automatically reestablish a link condition should it be dropped for any reason.

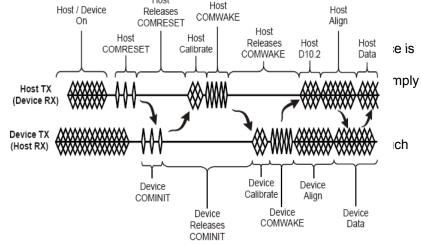
The down side of this feature is that it makes testing nearly impossible (unless you use an AWG7102 or AWG7122B) it this capability is enabled.

30-40% of the silicon in industry today has this feature turned on.

Why does ASR interfere with testing?

ASR interferes with testing when one is required to use an external BIST initiation tool such as Drive Master or Intel's NAZ-Bist tools to set the test state. At which point you need to disconnect from the device and attach a test stimulus system (BERT, pattern generator etc). This disconnect triggers ASR and resets the device.

The AWG seamlessly initiates the BIST-L state and proceeds to testing with the required test pattern, without ever triggering the ASR circuitry. Competitors use power splitters, or solid state switches to get around this problem, but you now have additional hardware between the Tx source and the DUT.


Serial ATA Compliance Test Solution OOB Channel Calibration

The OOB (Out of Band signaling) phase:

The OOB sequence is a multi stage sequence designed to put a SATA Phy into a suitable starting state. It negotiates line rate (Gen1-Gen3) between a host and a drive or port-multiplier. There is a critical step here called "Power-On Calibration" where the source impedance is adjusted once during startup to adapt to the line conditions presented by that host, cable and device pairing (adaptive equalization). Once OOB competes, no further line conditioning is performed. If ones uses a bus analyzer or PC to put the DUT into a test state, and then disconnects and attaches a BERT (what is commonly done) the line conditions change radically. The internal adapted source impedance settings are not meant for a BERT configuration yielding different results than if the AWG initiates the OOB and BIST-L test states and not detached through the course of the

measurements..

SATA 2.6G Spec page 2 7.4.21 OOB Signaling Te: OOB signaling is used to in an active mode, a low i This section specifies the to the OOB signaling seq 7.4.21.1 Power-On Seque 7.4.21.1.1 Calibration When the host controller that the electrical requirer

Advanced Technical FAQ