
Validating and Debugging DDR2, DDR3 SDRAM Designs

- Comprehensive Test solution from Analog to Digital Validation for All DDR Versions

name

title

Memory Design and Validation

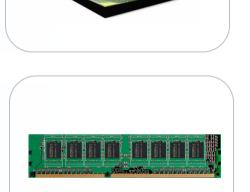
Chip/Component Design

- Precise understanding of circuit behavior under range of conditions
- Margin testing

System Integration

- Signal integrity and timing analysis, discovery of issues under nominal conditions
- Debug interoperability issues

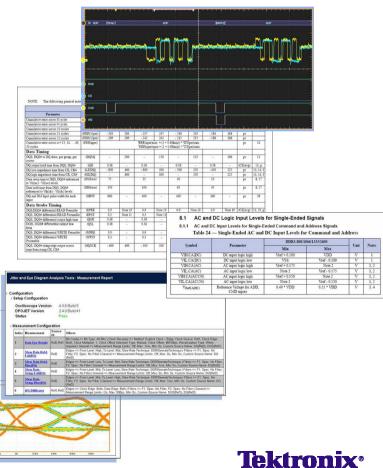
Embedded Systems


Easy test setup

2010-4-26

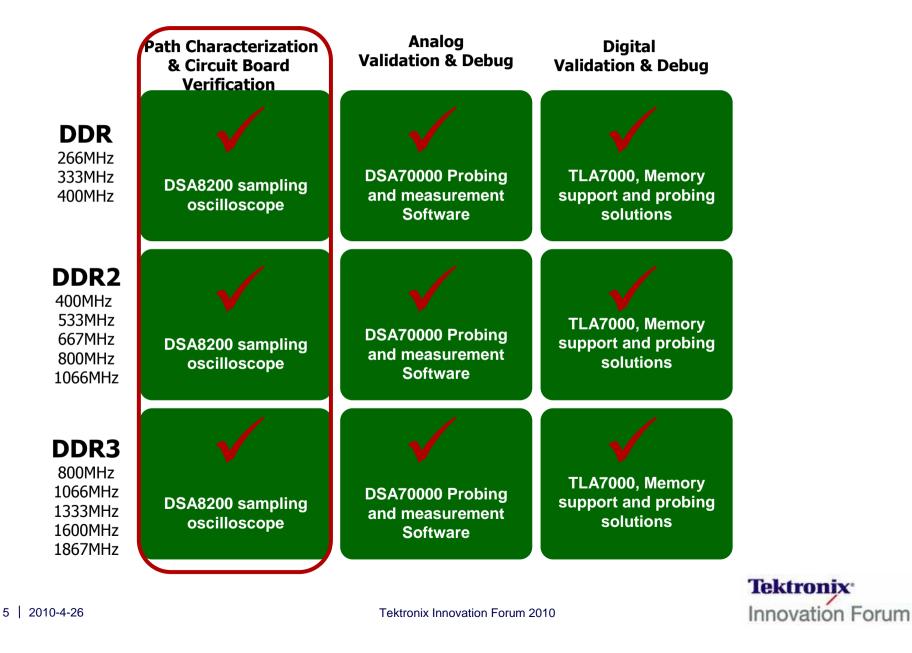
2

Quick pass/fail results



DDR Test Challenges

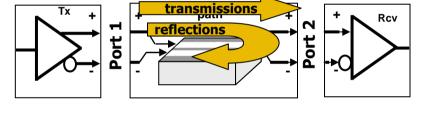

- Signal Access & Probing
 - Easy-to-use / reliable connections
 - Bandwidth & Signal Integrity
 - Affordable
- Isolation of Read/Write bursts
 - Triggering or Post-Processing
- Complexity of JEDEC Conformance Tests
 - Parametric timing/amplitude measurements
 - Vref / Vih / Vil, Derating
- Results Validity / Statistics
- Effective Reporting / Archiving
- Advanced Analysis
 - Characterization
 - Debug



3 2010-4-26

Fast & Accurate instrument solutions DDR, DDR2 & DDR3 SDRAM Solutions

Tektronix DDR Test Solutions


Problem: verify correct design and performance Path Characterization & Circuit Board Verification

Characterize board/DIMM with TDR and S-Parameters Frequency-domain characterization of reflections and loss in a network

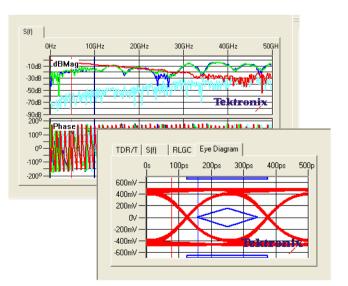
Quantitative insight into the causes of signal integrity problems

Measurements:

- Impedance measurements
- Insertion & Return Loss
- Frequency domain crosstalk

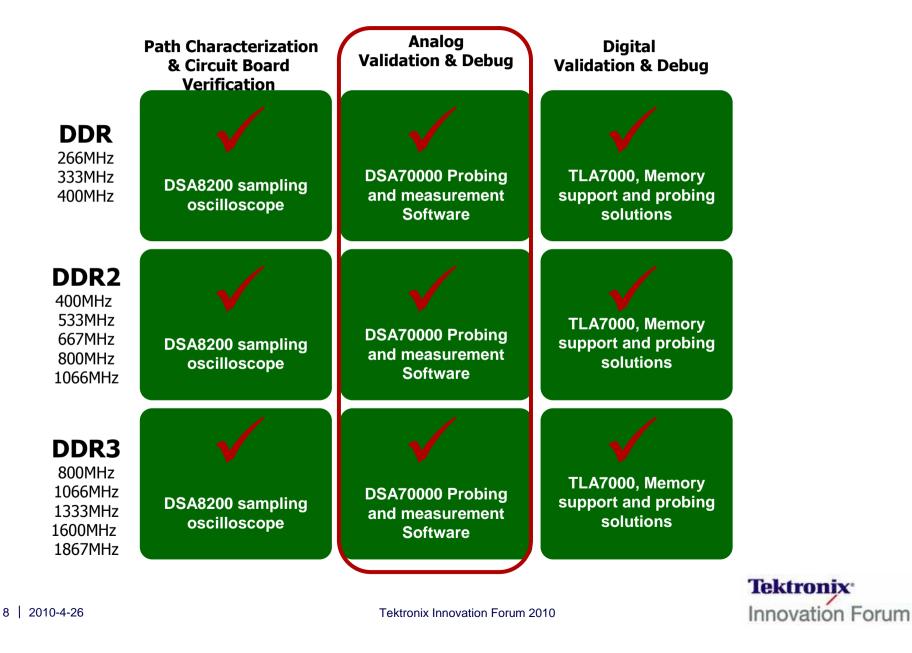
Verify correct design and circuit performance Path Characterization & Circuit Board Verification

DSA8200 Sampling Oscilloscope with TDR and S-parameter generation software


Performance

- Over 70GHz sampling bandwidth & lowest Jitter floor
- Improved impedance measurement accuracy and resolution (Z-Line)
- IM record length enables measurements of long interconnects at higher frequency

Efficiency & Simplicity


- Emulate channel effect on jitter & noise using TDR/TDT or S-parameter description
- Automated procedures minimize errors & reduce test time
- Complete analysis tasks in minutes not hours

Tektronix[.] Innovation Forum

Tektronix DDR Test Solutions

DDR Analog Validation & Debug – Tektronix Solutions

Signal Access - Probing

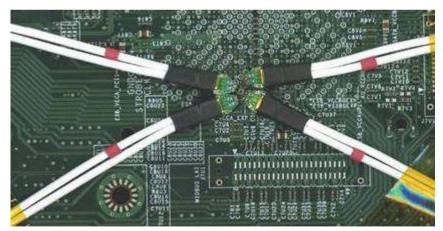
- Requires easy but reliable physical connectivity
 - access to various measurement points on DRAM or Memory
- Requires maximum signal integrity
 - sufficient performance for signal speeds

Signal Acquisition

- Automatically trigger and capture DDR signals
 - Identify and trigger directly on DQ, DQS in real-time to isolate Reads/Writes
 - Automatically set voltage levels and data rates
- Capture long time duration at high resolution
 - Direct connection to DPOJET for signal analysis

Signal Analysis

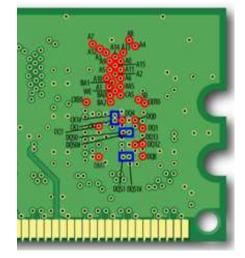
- DDRA Automated setup, read/write burst detection, JEDEC pass/fail meas.
- DPOJET The most powerful Jitter, Eye and Timing analysis tool
 - Time, Amplitude, Histogram, measurements
 - Advanced Jitter, Eye diagram measurements and Pass/Fail testing
 - Many display and plotting options
 - Report generator

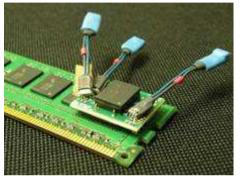

9 | 2010-4-26

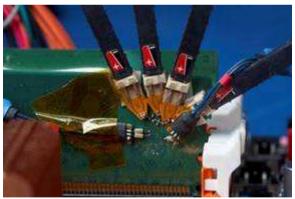
Leading Connectivity Signal Access Complexity

- Higher Data Rates Drive Probe Connection Complexity
 - Higher data rate = less margin
 - Higher signal fidelity requirements
 - Component geometries shrinking
 - Fine pitch pin spacing of <20 mils
 - Fewer & nearly inaccessible test points
- Key Applications: Validation, Debug & Troubleshooting
 - Semi-permanent & reliable fine pitch solder down connections for repeatable system validation
 - Mobile probing without compromise for debug & troubleshooting requirements
 - Low cost leave-behind solder points for less critical measurements

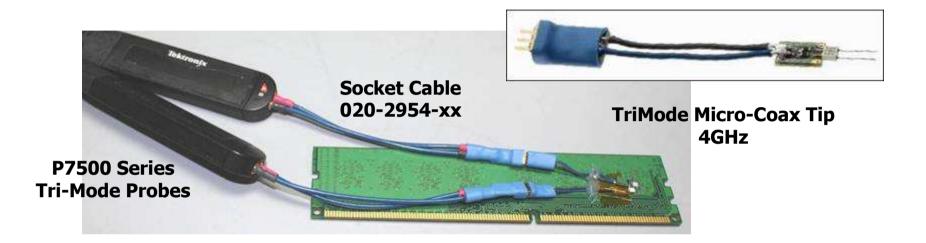
DDR probing: signal integrity challenges




Densely packed high-speed circuits stress probe access

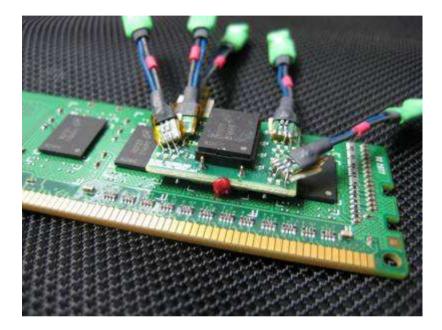

Signal Access

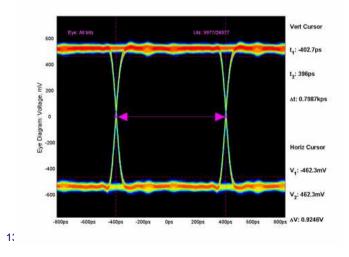
- Computer Systems use standardized DIMM's for which several probing solutions are available
- Memory in Embedded Designs is usually directly mounted on the PCB
- All DDR2 & DDR3 Components use BGA Packages
- Probing a BGA package is Difficult
 - Unable to probe at the Balls of the Device
- Signal Access Solutions
 - Component Interposers
 - Direct Probing
 - Analog Probing
 - DQ, DQS, Clock
 - Digital Probing
 - Address
 - Command
 - Power, Reset, and Reference

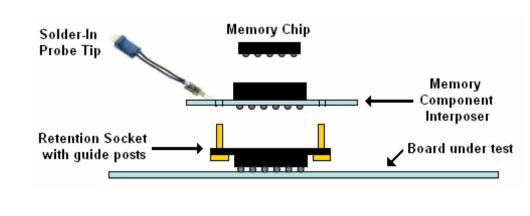

Component Interposer

Analog and Digital Probing

Analog Solder-In Probing Solutions

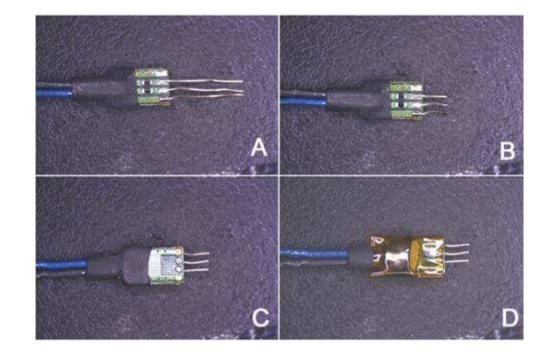


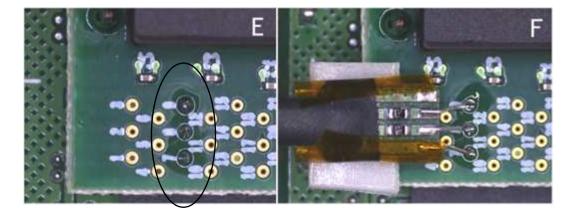




BGA Chip Access For DDR2, DDR3

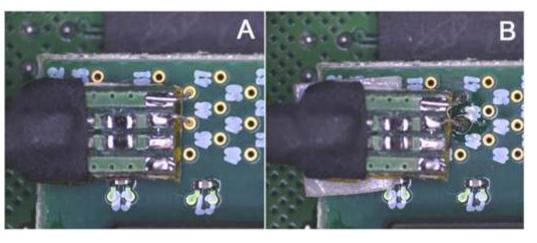
- Unique, reusable socket design allows for multiple chip exchanges
- Nexus DDR Interposers sold by Tektronix
 - DDR2 and DDR3 versions
 - X4/x8, x16 pins
 - Socket and solder models





Leading Connectivity Soldering Probe Tips – Example

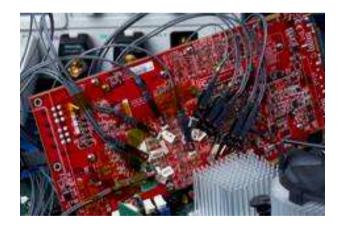
- A Tip with long wires
- B Wires cut short
- C Back side of tip
- D Tip covered with anti-static tape


- E Solder placed on signal vias
- F Tip soldered to vias and secured with tape

Leading Connectivity Soldering Probe Tips – Example (cont'd)

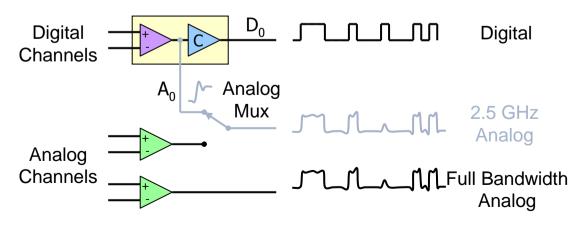
- A Tip wires in via and ready for soldering
- B Tip soldered to board

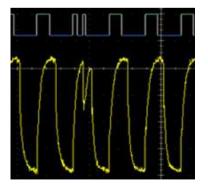
- All tips soldered to
 - **DDR Component Interposer**
 - 5 signals of interest
 - A4, CK0, DQ0, DQS0, and CS2
 - Minimized wire length for best signal fidelity



Mixed Analog and Digital Validation

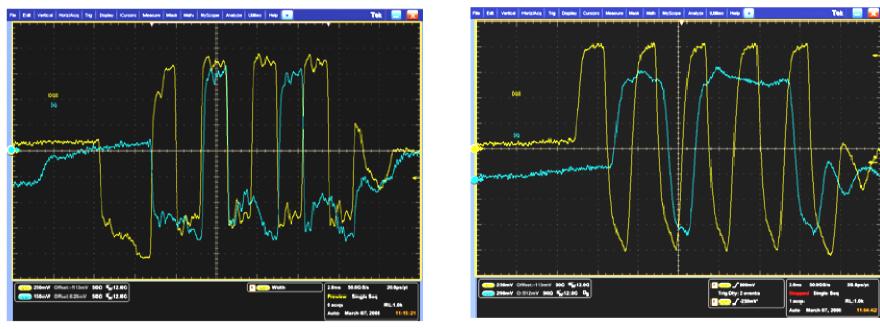
- P6780 Active Differential Logic Probe
 - 16 channel + 1 Clock Qualifier (CQ)
 - 2.5 GHz bandwidth with low loading (<0.5pf)
 - Small form factor for high density circuit access
- P6717 Single-Ended Logic Probe
 - 16 channel + 1 CQ
 - > 350 MHz bandwidth
 - General purpose mixed signal applications
- iCapture on MSO70000
 - Route digital signal through analog system
 - Removes need for double-probing





iCapture[™] - One Connection for Analog and Digital

- Industry's only single probe connection for analog and digital
 - Measurement flexibility while preserving signal access
 - No need to reconfigure probing
- Quickly route any digital channel to any analog channel Simultaneously
 - See both digital and analog views of the same signal
 - Validate signal connection, logic threshold
 - Check signal integrity, improve timing resolution



Read/Write Burst Identification

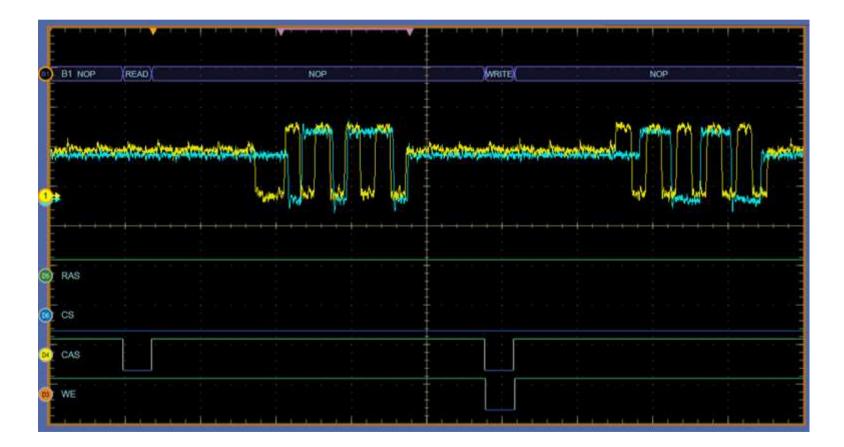
- Locate the right kind of bursts (read vs write)
- Locate the precise edges of each burst
- Refine burst identity based on other criteria (rank, secondary bus state, etc)

DDR3 Read Burst

DDR3 Write Burst

Symbol Files for Bus Decoding

Basic Command Bus (CS, RAS, CAS, WE)


DDR3 Symbol File Example.tsf - 1 File Edit Format View Help H DDR3 SDRAM Symbol Ta #					 	 		th Table A0/1, Addr	-
<pre># TSF Format File Radix # ======== #+ Version 2.1.0 PATT # # # # # # # # # # # # # # # # # #</pre>	Type Type Command Signa S0# RAS# CAS# Command Pattern ======= 0000 0011 0100 0011 0101 0111 1×××	 == File Edit Form # DDR3 SE IN # TSF For # TSF For # TEktror # ====== #+ Versic # ======	End Truth Table.tsf at View Help IRAM Command mat File it Nov 4, 20 i Format	- Notepad Truth Tab 09 Type D ====== =	ool File udix Fi		ваз × × × × × × × × × × × × × × × × × × ×	A12/BC# A10/AP X X X X X 0 1 X 0 1 X 0 1 X 0 1 X 0 1 X X X X X X X X X X X X X	LSB

Tektronix Innovation Forum 2010

Tektronix[®]

Burst Identification using Command Bus

- Using bus state, specific transactions can be isolated
 - For example, locate only Reads from a specific memory rank
 - Advanced Search & Mark is used for fine burst positioning

Measurement Setup

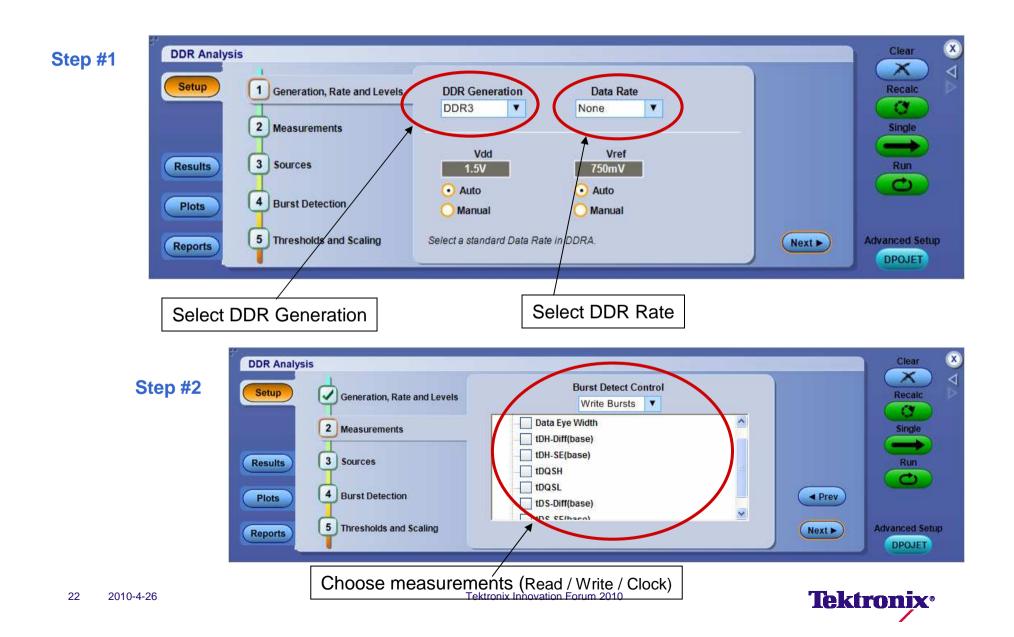
 JEDEC Standards specify measurements & methods

measureme	ents	& m	ethc	Das		Results	V Mer	normanits ICES		ACO	Witte Bursts Slew Ride(Cill) Clock(Cill) Clock(Single Ended)							
NOTE: The following general note				arameters b te a. VDD =VI			CO. 1997		DEC St age 164	andard No	.79-3C		*	Rest P	Shine P Advanced BY OA			
	1	DDR	-800	DDR3-1	366	DDR3-	1333	DDR3-1	600	1								
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes							
Cumulative error across 8 cycles	tERR(Sper)	- 241	241	- 217	217	- 193	193	- 169	169	ps.								
Cumulative error across 9 cycles	tERR(9per)	+ 249	249	+ 224	224	- 200	200	- 175	175	ps								
Cumulative error across 10 cycles	tERR(10per)	- 257	257	- 231	231	- 205	205	-1\$0	180	ps								
Cumulative error across 11 cycles	tERR(llper)	- 263	263	- 237	237	- 210	210	- 184	184	ps								
Cumulative error across 12 cycles	tERR(12per)	- 269	269	- 242	242	- 215	215	- 188	188	ps								
Cumulative error across n = 13, 14 49, 50 cycles	tERR(nper)			¹ ERR(nper)m ¹ ERR(nper)m						pi	24							
Data Timing																		
DQS, DQS# to DQ skew, per group, per access	tDQSQ		200	80 - N	150	*	125		100	P ^s	13							
DQ output hold time from DQS, DQS#	tQH	0.38		0.38		0.38		0.38		tCK(avg)	13.g							
DQ low-impedance time from CK, CK#	tLZ(DQ)	- 800	400	- 600	300	- 500	250	+ 450	225	pt	13, 14, f							
DQ high impedance time from CK, CK#	tHZ(DQ)	1.1	400		300		250		225	P ⁶	13, 14, f							
Data setup time to DQS, DQS# referenced to Vih(ac) / Vil(ac) levels	tDS(base)	75		25		30		10		ps	d, 17							
Data hold time from DQS, DQS# referenced to Vib(dc) / Vil(dc) levels	tDH(base)	150		8.1							-Ended Si							
DQ and DM Input palse width for each imput	DIPW	600		8.1.1		1000					and and Ad Levels for C			ddress				
Data Strobe Timing					100000	St. 85				0.000	100000000000000	22722012802	000000	alla a car	7/			
DQS.DQ5# differential READ Preamble	tRPRE	0.9	Note 19	1211	120121				DDR3-800/10		066/1333/1600							
DQS, DQS# differential READ Postamble		0.3	Note 11	Syı	nbol		Paran	neter	-	Min		Max	8	Unit	Note			
DQS, DQS# differential output high time	tQSH	0.3\$							_	1000	Carrie	50527	1					
DQS, DQS# differential output low	tQSL	0.38	×.		A(DC)		DC input l	S. S.		Vref + (1122107	VDD		v	1			
line	AUTODE	0.0	-		A(DC)		DC input l			VS	5.)	Vref - 0.1	100	V	1			
DQS, DQS# differential WRITE Preamble		0.9		VIH.C	A(AC)	1.1.1.2	AC input l	ogic high		Vref + (0.175	Note .	2	V	1, 2			
DQS, DQS# differential WRITE Postamble	tWPST	0.3	1	VIL.C	A(AC)		AC input l	ogic low		Note	2	Vref - 0.1	175	V	1, 2			
DQS, DQS# rising edge output access	TDQSCK	- 400	400	VILCA	(AC150)	1 23	AC input l	ogic high		Vref + (0.150	Note 2	2	v	1,2			
				-	11 01 001					A \$ 13 275		Vref - 0.1	160		10.00			
time from rising CK, CK4	1000000000			VIL.CA	(AC150)		AC input l	ogic low		Note	2 1	viel - 0	139	v	1.2			

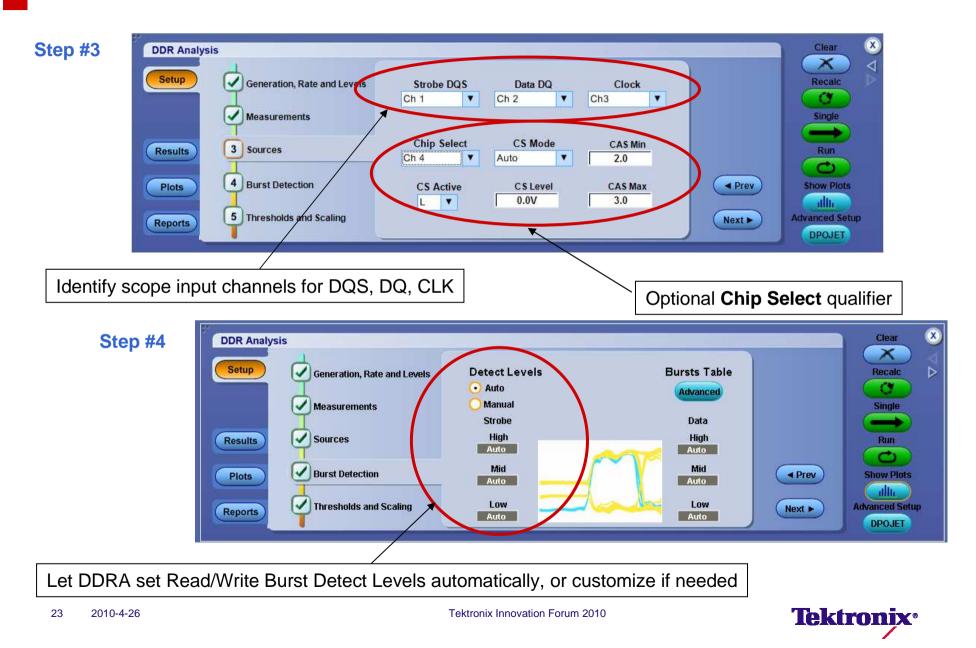
DDR Analysis

Generation, Rate and Lovels

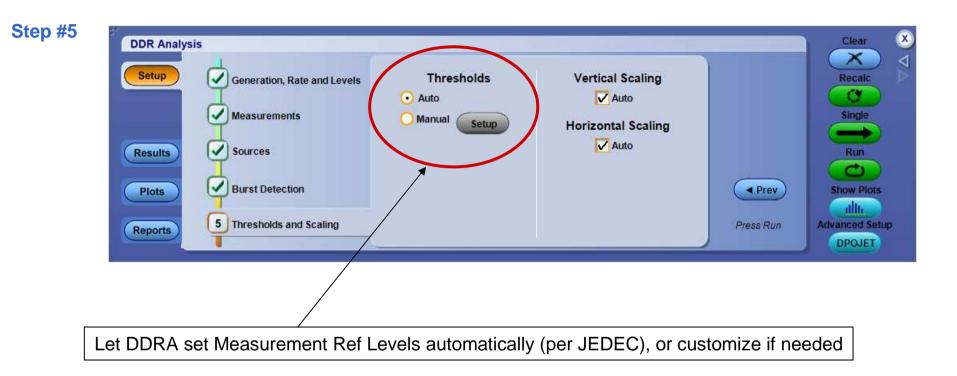
Tektronix Innovation Forum 2010


x

X


Measurement Type

Read Burste


Automated Test Setup

Source and Level Selection

Threshold and Auto Scaling

Comprehensive Measurement Support

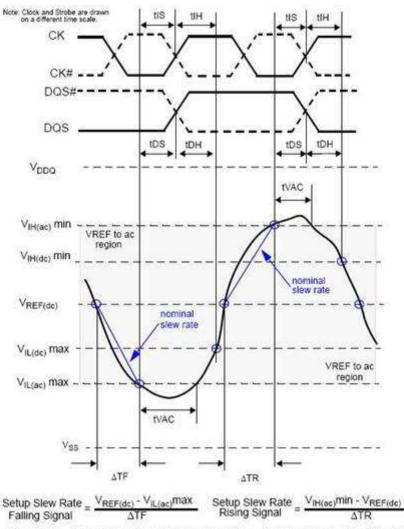
Option DDRA supports a broad range of JEDEC-specified measurements for DDR, DDR2, DDR3, LPDDR, LPDDR2

Example measurements list for DDR2 :

- tCK(avg)
- tCK(abs)
- tCH(avg)
- tCH(abs)
- tCL(avg)
- tCL(abs)
- tHP
- tJIT(duty)
- tJIT(per)
- tJIT(cc)
- tERR(02)
- tERR(03)
- tERR(04)
- tERR(05)
- tERR(6 10 per)
- tERR(11 50 per)
- tDQSH

- tDS diff (base)
- tDS SE (base)
- tDS -diff DERATED
- tDS -SE DERATED
- tDH diff (base)
- tDH SE (base)
- tDH -diff DERATED
- tDH -SE DERATED
- tDIPW
- tAC diff
- tDQSCK -diff
- tDQSCK SE
- tDQSQ diff
- tDQSQ SE
- tQH
- tDQSS
- tDSS
- tDSH

- tIPW
- tIS (base)
- tIH (base)
- tIS DERATED
- tIH DERATED
- Vid diff (AC)
- Vix (AC) DQS
- Vix (AC) CLK
- Vox (AC) DQS
- Vox (AC) CLK
- Input Slew-Rise (DQS),
- Input Slew-Fall (DQS),
- Input Slew-Rise (CLK),
- Input Slew-Fall (CLK),
- AC Overshoot Amplitude diff
- AC -Undershoot Amplitude diff
- AC Overshoot Amplitude SE
- AC Undershoot Amplitude SE
- Data Eye Width

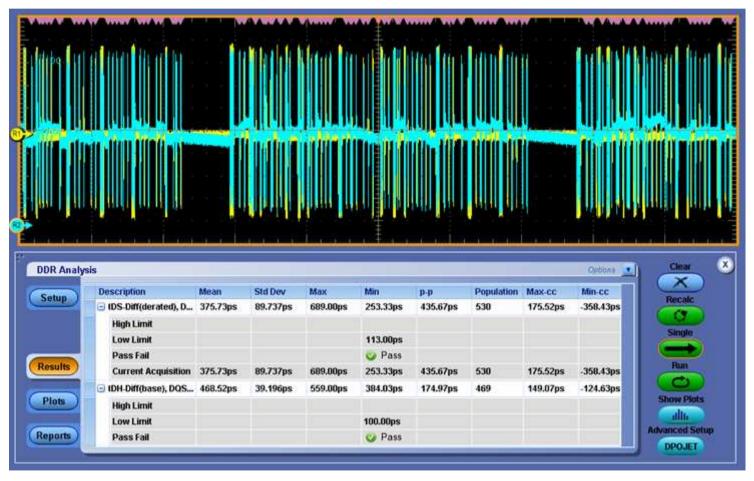

Measurement De-rating

• JEDEC stipulates de-rating of DDR2 and DDR3 pass / fail limits for Setup & Hold measurements based on signal slew rate*

• Option DDRA automatically calculates slew rates and applies the appropriate de-rating values to the measurement limits.

- tDS diff (base)
- tDS -diff DERATED
- tDS SE (base)
- tDS -SE DERATED
- tDH diff (base)
- tDH -diff DERATED
- tDH SE (base)
- tDH -SE DERATED
- tIS (base)
- tIS DERATED
- tlH (base)
- tlH DERATED

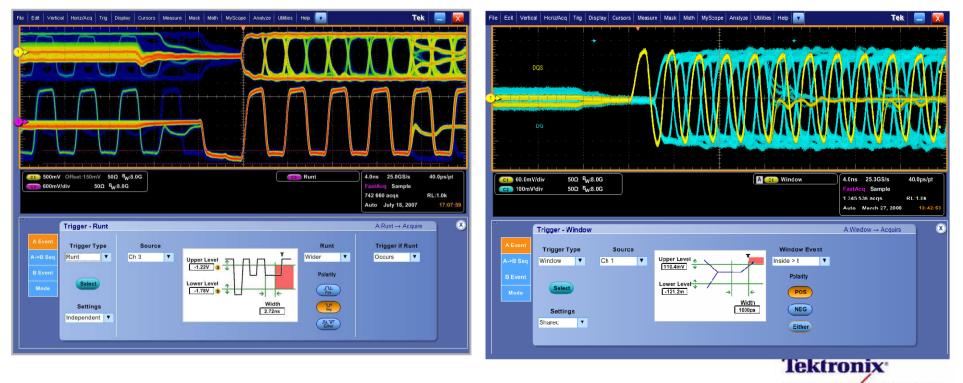
JEDEC Standard No. 79-3C Page 176 13 Electrical Characteristics and AC Timing (Cont'd) 13.3 Address / Command Setup, Hold and Derating (Cont'd)


$$\label{eq:Figure 110} \begin{split} Figure 110 & -- Illustration of nominal slew rate and t_{VAC} for setup time t_{DS} (for DQ with respect to strobe) and t_{IS} (for ADD/CMD with respect to clock). \end{split}$$

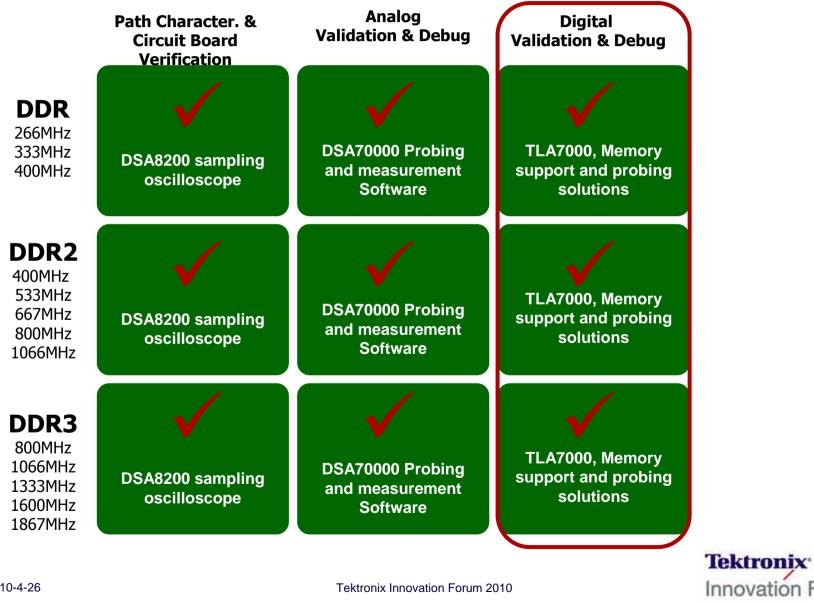
* JESD79-2E, JESD79^{tr}30^{tr}specifications^{m 2010}

Results and Statistical Validity

- To have confidence in your test results, you need 100's, 1000's or even more observations of each measurement
- As a practical matter, measurement throughput is essential



27 2010-4-26


Beyond DDRA: Other Tektronix Scope DDR Debug Tools

- Fastest way to solve sophisticated Memory signaling issues
 - Superior real-time insight into the complex DDR2/DDR3 signaling
 - DPX (FastAcq) and Pinpoint Triggering gives you "the power to see what others can't"
 - FastAcq shows any disparities on strobe/data like infrequent glitch on Write data. You can choose to display consecutive eyes on the data only (w/o showing the strobe information)

Innovation Forum

Tektronix DDR Test Solutions

29 2010-4-26

Innovation Forum

Digital Design and Validation

- Additional Visibility Needed
 - Data flow in and out of memory
 - Timing across many channels all strobes and clock.
 - Data flow to/from a processor and memory
- Identify bus/system level issues
 - Protocols Sequences & Timing
 - Memory system power up initialization protocols & timing
 - DRAM Mode register settings
 - Refresh operations
 - Time Correlation with other system buses
 - Time Correlation with Oscilloscope waveforms

	Sample	B_DDR3D_2B Address	B_DDR3D_28 Mnemonics	B_DDR3D_2B DataHi	B_DDR3D_2B DataLo
	12		DESL - IGNORE COMMAND		
2	13	11DA1	ACT - BANK ACTIVATE (SO#) Bank: 1		
	14		DESL - IGNORE COMMAND		
	15		DESL - IGNORE COMMAND		
	16		DESL - IGNORE COMMAND		
	17		DESL - IGNORE COMMAND		
T)	18	162F8	WR – WRITE (SO#) Bank: 1		
	19		DESL - IGNORE COMMAND		
	20		DESL - IGNORE COMMAND		
	21		DESL - IGNORE COMMAND		
	22		DESL - IGNORE COMMAND		
1)	23		WRITE DATA	00100000	00080000
			WRITE DATA	00400000	00200000
	24		WRITE DATA	01000000	00800000
			WRITE DATA	04000000	02000000
	25		WRITE DATA	10000000	08000000
			WRITE DATA	40000000	20000000
	26		WRITE DATA	00000001	80000000
			WRITE DATA	00000004	00000002

🕑 &_DDR3D_2B: MagniVu: Data_Hi	0000000	00100000	00400000 01000000 00 0
	0000000	0020000	00800000 02000000
B_DDR3D_2B: Sample	12.480 r		
B_DDR3D_28: WrA_DatHi	0000000	00100000	01000000
➡ B_DDR3D_2B: WrA_DatLo	00000000		0080000
₱ 8_DDR3D_28: Wr8_DatHi	0000000	00400000	04000000
B_DDR3D_28: WrB_DatLo	0000000	00200000	02000000

Digital Validation & Debug DDR2/3 Data Access - Probing

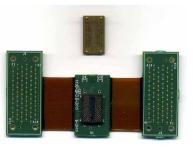
Performance

- Sufficient performance for all DDR signal speeds
- Preservation of frequency components
- Preservation of timing
- Minimizes effects of reflections
- Lowest probe loading in industry <0.5pF

Connectivity

Wide Range of probes for all DDR2/3 speeds – up to DDR3-1867

- NEXVu instrument DIMMs only for Tektronix Logic Analyzers
 - Enhanced JEDEC layout DIMMs to include logic analyzer probing very close to the SDRAM
- DIMM Interposers
- BGA Memory Component Interposers that use
 Innovative Socket Design
- Direct probing to circuit board


Direct Probing

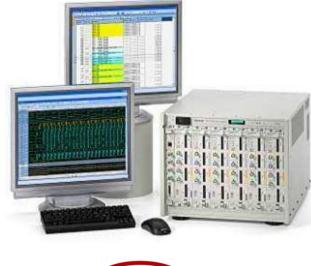
DDR3 DIMM Interposer

DDR3 NEXVu Instrumented DIMM

BGA Memory Component interposer

Write Data Strobes Skew Analysis Logic Analyzer MagniVu 20 ps (50 GS/s) timing resolution

· Mark 1 · 10 Mark 2 · 127	ns	[⊴ Time/Div' 2368ns 👻 🗇 🕅 ♥ Search	× 📫
	8	Mg Mark 23	
	700+# -2.350+# 0+# 2.550+# 4.700+# 7.650+#	9.400m 11.750m 14.100m 16.450m 18.800m 21.150m 23.500m	25.890m 28.200m
Maankle Sample debilde			291922
Magniful DONCKI			
Mogn/Vir Address	X	45309	
MegmVir Contol 11	× × × ×	ac	
Alegn/Vir Stober	600		000
MageWir DOSS			
MaanWr DOS7		الكليجين الأرجع الأرجع الأرجع كالتجريك	1-1
Magnilly DUS8			
MaanWir DOSS			
Magn/Vir DOS4		ہوں کے کری کروں کے اور اور	
Maan/Wr DOSJ			
Magnivia DOS2		وكاو كي الوكي كي ال	
MagniVir DOST			
Magn/Vic DOSU			
MagnVir Data, Hi	00000000	EBACAGEA	
MagniNic Date: Lo	00000000	ED-CHEA	
	4		3
4	(Mark 2)		ê

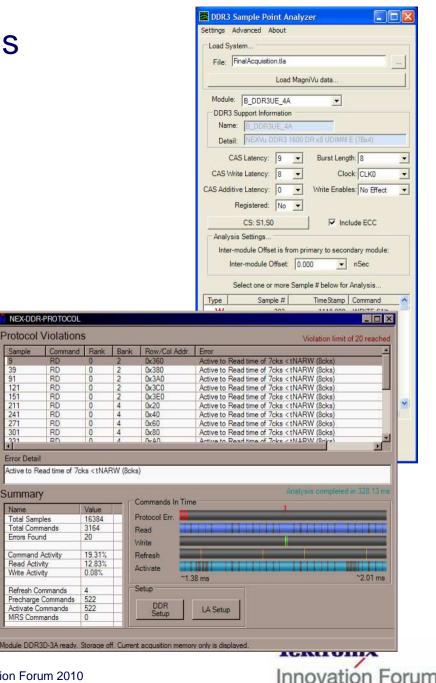

32 | 2010-4-26

Innovation Forum

Digital Validation & Debug

- Acquisition
 - 1.4 Gb/s data, 1.4GHz clock, 64Mb, Full Channel
 - 2.8 Gb/s data, 1.4GHz clock, 128Mb, Half Channel
 - Simultaneous timing & state acquisition
 - MagniVu 20ps (50GHz) timing resolution
 @ 128K record length
- Triggering
 - 16 state IF-THEN-ELSE trigger state machine
 - 24 word recognizers
- Module
 - 136 channel module
 - Merge with other modules
 - Uses P68xx and P69xx probes
 - Uses TLA7016 and TLA7012 mainframes

The only Logic Analyzer module fast enough to address all DDR3 speeds


DDR3 Enhanced Analysis Tools

DDR3 Sample Point Analysis Tool

- Helps to easily and quickly setup the Logic Analyzer for Acquiring the DDR data
- Optimally Adjusts the Threshold on the DQS and DQ Channels
- Determines the best sample point for each . data group

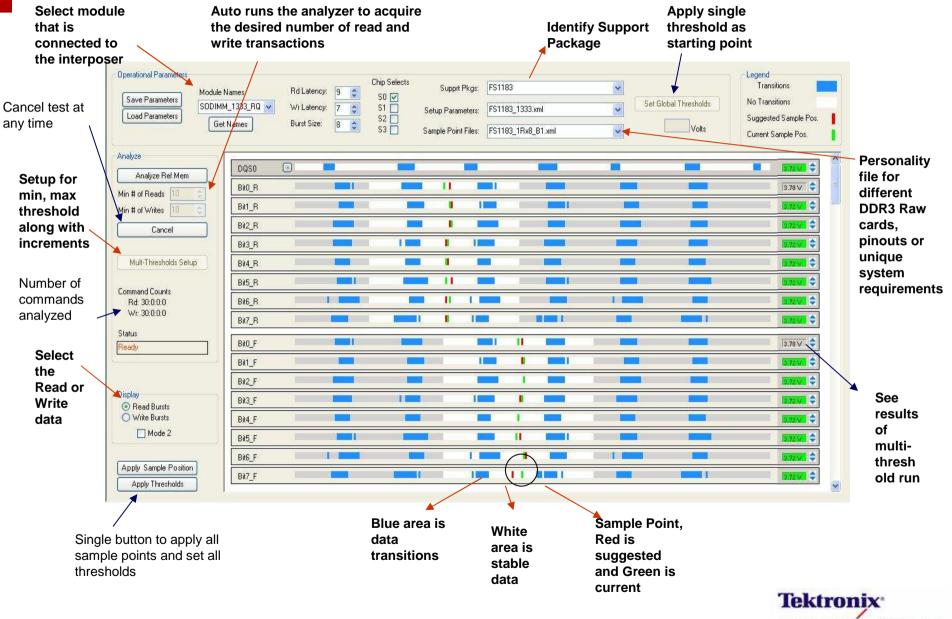
DDR3 Protocol Violation Tool

- **Quickly Identifies Protocol Violations**
- Gives Global view of the DDR Bus Activity across the Entire LA Memory
- Navigates the user to the protocol errors in • the listing or waveform window

Tektronix Innovation Forum 2010

121

151


211

241

271 301

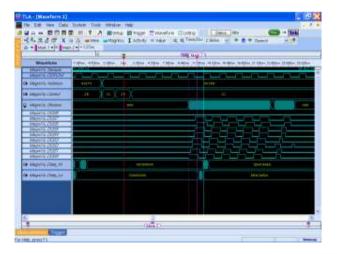
Name

DDR3 Sample Point Finder (SPF) Software

Innovation Forum

Digital Validation & Debug Data Analysis

TLA7000 Series & Nexus & FuturePlus Memory support:


- Extensive Analysis capability enabled by exceptional timing resolution (MagniVu)
- SDRAM initialization, commands, sequence and timing analysis
- Read and Write Data analysis
- Complete system visibility, directly transfer signals to an oscilloscope *without the need of double probing*

Nexus & FuturePlus Memory support

- Protocol analysis features automates the analysis of DDR2 and DDR3 to quickly and easily identify protocol violations
- Provision of easy to read DDR symbols
- Decode of DDR/2/3 SDRAM command signals into mnemonics.

Tektronix + Nexus & FuturePlus = the world's leading DDR3 test solution

Tektronix[•] Innovation Forum Verify and debug command sequence, timing, data, and more

Digital Validation & Debug

Data Access - Probing

- Requires reliable physical connectivity with minimal loading
 - Interposers
 - instrument DIMMs
 - Direct probing to circuit board
- Requires maximum signal integrity

Data Acquisition

- The only Logic Analyzer fast enough to capture all DDR3 speeds
- Timing resolution high enough for thorough debugging
- Trigger state machine flexible enough to trigger only on relevant events
- Channel count scalable and high enough to capture all required signals
- Scalable and time correlated system for cross bus analysis

Data Analysis

- Verify and debug memory system operation
 - Data valid windows
 - Read/Write data operation
 - DDR commands and mode register initialization
- Quickly and easily identify protocol violations

NEW DDR probing solution

NEW DDR3 Logic Analyzer module

New Memory support packages

Fast & Accurate instrument solutions DDR, DDR2 & DDR3 SDRAM Solutions

Signal Path Characterization and Circuit Board Verification

DSA Sampling Oscilloscopes

Over 70GHz of sampling bandwidth & the lowest Jitter floor

Emulate the channel effect on jitter & noise using channels' TDR/TDT or Touchstone® (Sparameter) description

TDR impedance measurements & S-parameter characterization of the PCB traces

Analog & Electrical Debug

DPO/DSA real time scopes & software

Pinpoint triggering on DDR reads & writes

Automatic detection of voltage levels & data rates

Automated clock jitter measurements based on JEDEC specification

SDRAM eye diagram measurements for read or write cycles

TLA Logic Analyzers with Nexus

Technology memory supports

Only solution available to capture and analyze all DDR3 speeds

Up to 20 ps timing resolution on all

Selective clocking only stores useful

Complete system visibility with

digital/analog correlation

channels, all the time

& FuturePlus

Digital Validation & Debug SDRAM Probing Solutions

Active differential oscilloscope probes

Slot interposers

Midbus probes

Instrumented DIMMs

Oscilloscopes can either use direct probing or probing via the logic analyzer with logic analyzer probes

The world's leading DDR3 test solution

Tektronix Innovation Forum

38 | 2010-4-26

Tektronix Innovation Forum 2010

data

Digital Validation and Debug DDR SDRAM Memory Support

	DDR	DDR2	DDR3
Logic Analyzer Mainframe	ті	A7102 Portable or TLA7016 Be	enchtop
Logic Analyzer Module**	TLA7AA4	TI	_A7BB4
Test Fixture/Support Package	Nexus Techn	ology NEXVu & FuturePlus Sys	tem DDR Support
Probing	Tektronix midbus probes o interposer and inst		P6960HCD (>1500MT/s) or NEX- PRB1XL (< 1500MT/s)
39 2010-4-26	Te	ktronix Innovation Forum 2010	Tektronix [®]

Analog Validation and Debug DDR SDRAM Memory Support


	LPDDR LPDDR2 DDR	DDR2	GDDR3 DDR3*			
Oscilloscope	DPO/DSA70404B or MSO70404 or higher	DPO/DSA70604B or MSO70604 or higher	DPO/DSA70804B or MSO70804 or higher			
Probing	P73	P7300 or P7500 Series Differential Probes				
Analysis Software	DDR Analysis (DDRA), Adva	DDR Analysis (DDRA), Advanced Search & Mark (ASM), DPOJET Jitter/Eye Analysis (DJA)				
Command Bus Triggering/Decode iCapture (Analog Mux)	MSO70404 or higher	MSO70604 or higher	MSO70804 or higher			

*Additional speeds supported with custom clocking selection in analysis software 2010-4-26 Tektronix Innovation Forum 2010

40

Should I use a Logic Analyzer, MSO, or Digital Oscilloscope?

	TLA7000 Logic Analyzer	MSO70000 MSO	DPO/DSA70000B
	Full digital system visibility	Debugging high-speed events in a mixed signal environment	Debug & measurements to 20 GHz
Ap	Processor bus validation Full System (CPU, mem., I/O) visibility	High-speed timing analysis and Debug High Speed FPGA or Embedded Memory interfaces	High speed transceiver analysis/characterization, Physical layer analysis
plica	Memory bus protocol verification DDR2/DDR3 Debug	Memory bus analog verification DDR2/DDR3 Debug	Memory bus analog verification
Applications	System validation	HSS Phy layer, characterization & debug Low-speed serial/parallel (command) bus correlated to high-speed signals (data/strobe/clock)	High speed validation and margin analysis
Cap	State and Timing analysis (sync & async sampling), Correlated Analog + Digital with iView	Timing Analysis, Correlated Analog + Digital validation	Timing Analysis, Analog characterization
apabilitie	Powerful, complex, 16-stage trigger equations, Memory bus disassembly	Hardware-based bus triggering, Bus/State qualified signal integrity	Single stage trigger for finding analog faults and logic patterns
es	Hundreds of channels	4 analog + 16 digital channels	4 analog
41	2010-4-26	Tektronix Innovation Forum 2010	Tektronix•

/

DDR

Summary – World's Best DDR Test Solution

► COMPLETE

- Provides total validation and characterization and full measurement support
- DDR1/2/3, LP-DDR1/2 and GDDR3 support in one tool
- Partnership with Nexus & FuturePlus provides most complete protocol and probing support

Performance

- Based upon highest performing oscilloscopes, Logic Analyzers and software analysis tools
- TriMode probing enables three
- Read/Write burst identification on <u>all</u> bursts
- Automated setup with JEDEC pass/fail limits

DDRA Validation Software DPO/DSA70000B Series Oscilloscopes P7500 Series TriMode Probes TLA7BBx Logic analyzer module for DDR

Comprehensive Test from Analog to Digital Validation for All DDR Versions

Resources

- What equipment do I need to test DDR?
- Tektronix Knowledge Center: <u>www.tektronix.com/memory</u>
- How can I learn more about DDR testing?
- DDR Application Note: <u>www.tektronix.com/ddr</u>
- Memory Implementers Forum: <u>www.memforum.org</u>

- 0 3 2 0 -	A THE A PROPERTY OF A PROPERTY		40×				JEDEC	
DRAMemory Strategy and a second	tin, name en ante hanne insta e bina Martin (127 state) solar porte parte				Electrical Verification of Application of Application for Application of Application for Application of Application for Applic	In capital mapping sources. To the importances of tamp paralog surfacepart of hermitian allowed the plane of transmission control in the maintening market mapping starts (Herd Herdalm) to actuate hermitian the safety approximation transmission hermitians and the safety and a set of the transmission hermitians with the transmission of the transmission hermitians and the transmission of the transmission in the comparison and the transmission of the transmission in the comparison of the transmission of the transmission frame allowed in the transmission of the transmission of the transmission comparison of the transmission of the transmission frame allowed the transmission of the transmission of the transmission where the transmission of the transmission of the transmission where the transmission of the transmission of the transmission of the same of the transmission of the transmission of the transmission where the transmission of the transmission of the transmission of the same of the transmission of the transmission of the transmission where the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmission of the transmissio	STANDARD DDR3 SDRAM Standard JESD79-3 Jau: 2007	1
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Contract Lang Contrac		Taktrunts	Thanging of the law representation of the more grant methods approximate and approximate and an approximate and approximate proximate and the representation report for the test set and the set of the product report for the test set and the set of the product report for the test and the test of	Tektronix	JEDEC	