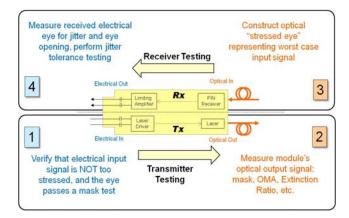
Next Generation Ultra-High speed standards' measurements of Optical and Electrical signals

Apr. 2011, V 1.0, prz

Agenda

- Speeds above 10 Gb/s: Transmitter and Receiver test setup
- Transmitter Test 1,2 : Interconnect, TX Out
- Meet the test equipment:
 - BERT
 - Clock Recovery
 - Oscilloscope
- Setup for Electrical and for Optical test details
- 25 Gb/s, 40 Gb/s
- Receiver Test Setup
- Summary

Apr. 2011, v. 1.0

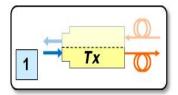

High Speeds in Serial Data

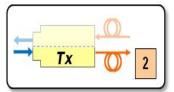
- PCle III available on latest generation CPUs at 8 Gb/s el. physical (details available in another presentation)
- THUNDERBOLT at 10 Gb/s physical interface
- 16GFC (Fibre Channel) at 14.1 Gb/s deployed in SFP+ modules this physical signaling is running at 14.1 Gb/s electrical
- 40 / 100 Gb/s Ethernet running as fast as 25 and 40 Gb/s optical physical signaling (4x25 Gb/s); no electrical signaling above 10 Gb/s (e.g. 100 Gb/s is 10x10 G on the electrical interface)
- CEI-25G (short reach, long reach) <u>25 Gb/s electrical interface</u>
- 25 Gb/s backplane and cable study group started at IEEE; this is 25 Gb/s electrical physical signaling

Apr. 2011, v. 1.0

Tektronix

Focus on 14 Gb/s and 25 Gb/s test

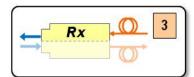


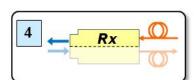

Commercial standards use Transceiver modules

Apr. 2011, v. 1.

Transmitter Test

- The input signal used to test the transmitter must be good enough. Measurements of jitter and an eye mask test should be performed to confirm the quality using electrical measurements.
- The output of the transmitter must be tested using several quality metrics such as a mask test, OMA (optical modulation amplitude) or VMA (voltage MA), and if optical, Extinction Ratio.



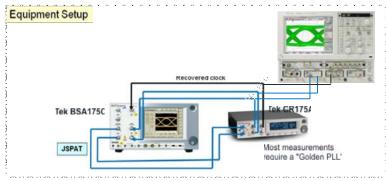

Apr. 2011, v. 1.0

Tektronix

Receiver Test

- Testing the receiver involves sending in a signal that is of poor enough quality. To do this, a stressed eye representing the worst case signal shall be created.
- Finally, testing the electrical output of the receiver should be performed.

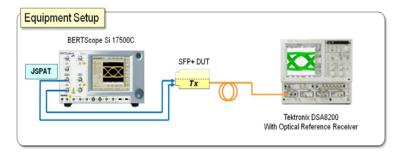
Apr. 2011, v. 1.0


- Speeds above 10 Gb/s: Transmitter and Receiver test setup
- Transmitter Test 1,2: Interconnect, TX Out
- Meet the test equipment:
 - BERT
 - Clock Recovery
 - Oscilloscope
- Setup for Electrical and for Optical test details
- 25 Gb/s, 40 Gb/s
- Receiver Test Setup
- Summary

Apr. 2011, v. 1.0

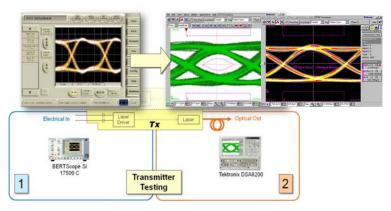
Tektronix

Transmitter Test step 1


- BERTScope generates the signal to the DUT
- Verify with either BERTScope Error Detector or with an electrical input of a Sampling oscilloscope DSA8200

Apr. 2011, v

Transmitter Test step 2 – test TX Output


- BERTScope generates the signal to the DUT
- Capture TX Output on a sampling oscilloscope
- Example below 16GFC Optical

Apr. 2011, v. 1.0

Tektronix^a

Comparison of Module In and module TX Out

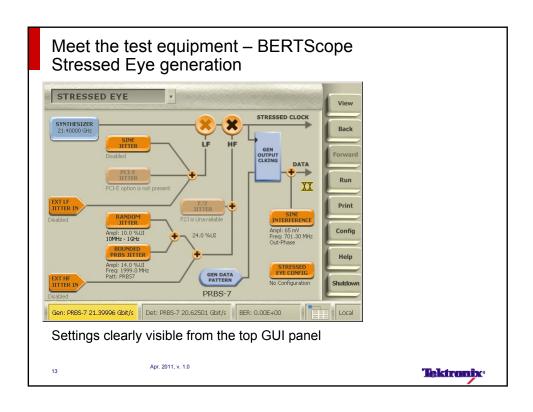
• In this example an electrical signal into an SFP+ module is captured on the BERTScope BSA175C. TX Output is captured first (green trace) on 0th generation 16GFC module, then (black background) on a 1st generation module. Oscilloscope: 80C14 in DSA8200

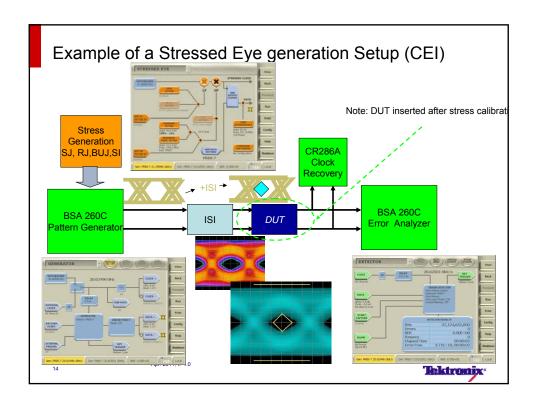
Apr. 2011, v. 1.0

- Speeds above 10 Gb/s: Transmitter and Receiver test setup
- Transmitter Test 1,2: Interconnect, TX Out
- Meet the test equipment:
 - BERT
 - Clock Recovery
 - Oscilloscope
- Setup for Electrical and for Optical test details
- 25 Gb/s, 40 Gb/s
- Receiver Test Setup
- Summary

Apr. 2011, v. 1.0

Tektronix


Meet the test equipment – BERTScope: BSA175C or BSA260C


 The BERTScope 175C, and 260C (and slower 85C, 125C) can generate precise amount of jitter for stressed eye generation.

Alternatively, they can use existing live traffic from a network and add calibrated SJ, RJ, BUJ, F/2 and SI to it, and re-transmit stressed data to the linecard under test – so stressed eye testing can be taken from the device or component level up to the system test level.

Apr. 2011, v. 1.0

Meet the test equipment – Clock Recovery: CR175A, CR286A

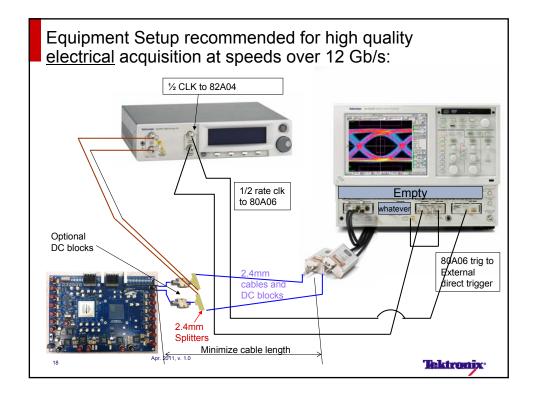
- The Tektronix CR286A and CR175A CR175A provides compliant clock recovery up to 28.6 Gb/s with configurable loop bandwidth and peaking settings. Many measurements, such as jitter measurements, require the use of a Golden PLL, provided by the CRU.
- The CRU is used with BERTScope BSA, and with the Sampling oscilloscope DSA8200. It is typically not needed for troubleshooting with a Real Time Oscilloscope (RTO), e.g. DPO72004C.

Apr. 2011, v. 1.0

Tektronix

Meet the test equipment – Sampling Oscilloscope: DSA8200 with 80C14 (10g+16GFC) or 80C10B

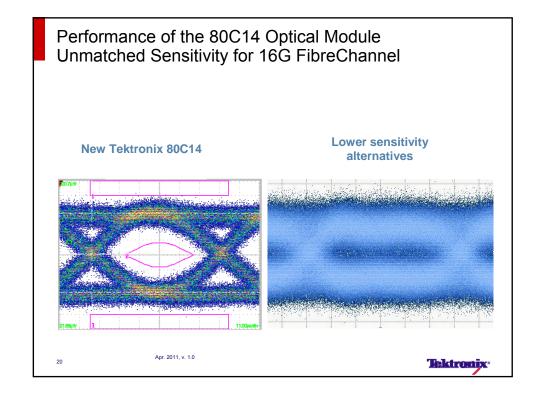
- The TX signal from an optical DUT is measured with a device that gives maximum margins and accuracy at high bit-rates: a Sampling Oscilloscope
- For Electrical Signals at high speeds Tektronix recommends the 80E07/08 and 80E09/10 family of modules (BW to 60 GHz).


- For optical Signals a Module with an integrated ORR (Optical Reference Receiver) is necessary
- At highest speeds Tektronix today offers these two optical modules:
- a super-sensitive module for 8GFC to 10 to 12.5 Gb/s and also16GFC: the 80C14
- A flexible BW module for 25 and 40 Gb/s, the 80C10B

Apr. 2011, v. 1

- Speeds above 10 Gb/s: Transmitter and Receiver test setup
- Transmitter Test 1,2 : Interconnect, TX Out
- Meet the test equipment:
 - BERT
 - Clock Recovery
 - Oscilloscope
- Setup for Electrical and for Optical test details
- 25 Gb/s, 40 Gb/s
- Receiver Test Setup
- Summary

Apr. 2011, v. 1.0


Tektronix

Optical acquisition: bit-rate specific modules. Tek 80C14:new 8 G to 16GFC Single/Multi-mode Solution

Description	Tek 80C14	Alternative
Optical Bandwidth	14 GHz (matches standard)	20 GHz
Specified ITU Compliant ORRs For 14 G, 10G	Yes	Not stated
RMS Noise at 1310 typ	2 to 3 uW	8 uW
Sensitivity (at 1310 nm) (about 2dB worse at 850 nm)	-14 dBm	-9 dBm
Max Power (AOP)	+5 dBm	+5 dBm
Dynamic Range	19 dB	14 dB
Wavelength Range	700 to 1650 nm	750 to 1650 nm
Number of Optical Channels	1	1
Number of Electrical Channels	0	1
Max. Acq. Speed	200 kS/s	~50 kS/s

19 Apr. 2011, v. 1.0 **Tektrombs**

- Speeds above 10 Gb/s: Transmitter and Receiver test setup
- Transmitter Test 1,2: Interconnect, TX Out
- Meet the test equipment:
 - BERT
 - Clock Recovery
 - Oscilloscope
- Setup for Electrical and for Optical test details
- 25 Gb/s, 40 Gb/s
- Receiver Test Setup
- Summary

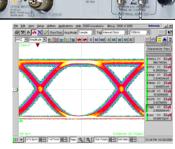
Apr. 2011, v. 1.0

Tektronix

Fastest signals at 25 Gb/s, 40 Gb/s Optical

- ITU bit-rates are around 40 Gb/s
- Ethernet 802.3ba around 10 Gb/s and 25 Gb/s
- Ethernet 802.3b around 40 Gb/s

Question: how to handle so many bit-rates?


Answer: 80C10B handles both 25 Gb/s and 40 Gb/s

Slower rates: 80C12 or 80C14

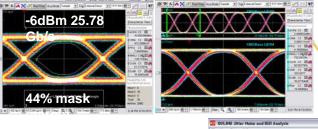
Apr. 2011, v. 1.0

25 Gb/s and 40 Gb/s: 80C10B: performance and versatility

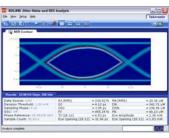
- ♦ Performance: 80C10B
 - Up to 80 GHz Optical Bandwidth
 - Industry's Best Noise Performance @ 40G and beyond
 - Best signal fidelity
- Versatility: 80C10B F1
 - Only single module solution to 100GbE (4x25), OC768, G.709 FEC, OTU3, and 40GbE in a single module

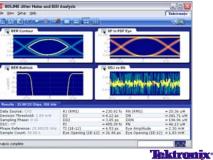
25.78Gb/s

- ♦ Lower cost: 80C25GBE
 - 100GbE (4x25) compliance test solution; no 40 Gb/s support.
- Complete solution
 - Data and Data_ outputs for CRUs and/or BERT

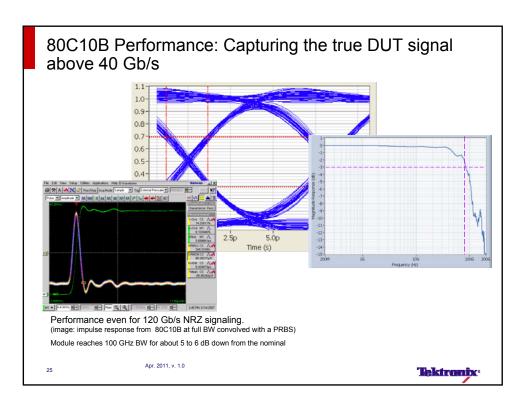


Apr. 2011, v. 1.0


Tektronix^a


80C10B Performance:
Cleanest 25G & 40G Eye Diagrams

• IEEE802.3bg 40GBASE-FR filter included in all 80C10B modules



Apr. 2011,

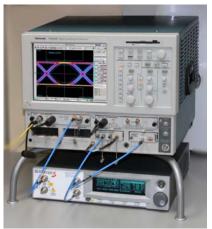
Equipment flexibility: 8.5 to 40 to 100GbE Optical Compliance testing in ONE Instrument

DSA8200 Digital Serial Analyzer

- + 80C14 Optical Module (New 16GFC Module)
- + 80C10B-F1 Optical Module

The only ALL-IN-ONE solution with:

- All Reference Receiver Filters from 8.5Gb/s thru 44.5Gb/s
- · Highest Repeatability & Best Sensitivity
- SMF and MMF support to 14G
- 4x throughput over alternative
- Calibrated Extinction-Ratio Measurements 1
 Highest bandwidth supported currently: 10G+


Apr. 2011, v. 1.0

Summary of Sampling setup

Basic Mask test

• Complete (Jitter test etc.)

Apr. 2011, v. 1.0

Tektronix^{*}

Standards >8 Gb/s

Optical Reference Receivers from 8.5Gb/s to 44.5Gb/s for Physical Layer Compliance

Testing of IEEE 802.38

· Telecom,

• Datacom, T11 FC

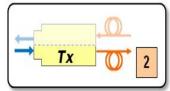
 Storage Area Network Transmitters

ITU Related

Around 10 Gb/s: Tek Solution: 80C08C, 80C12 and 80C14

888 802.35

New speeds Include 25 Gb/s and 40 Gb/s

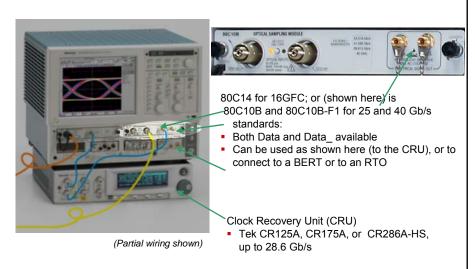

EEE 952.3bg

... and Tektronix Solution is **80C10B**

Standard	Line Rate	
OC-192 / STM-64 10GBASE-W	9.953 Gb/s	
10GBASE-{E,L,S}R 10GBASE-LRM	10.3125 Gb/s	
OTU2 FEC	11.096 Gb/s	
8GFC 10GFC 16GFC	8.50 Gb/s 10.519 Gb/s 14.1 Gb/s	
OC192 + G.975 FEC OTU2 (OC192 + G.709 FEC)	10.664 Gb/s 10.709 Gb/s	
10008408-38-9	10 8 11 3 125	
	4 x 25.781 Gb/s	
	4 × 27.738 Gb/s	
	43 916 Gb/s	
VSR-2010 + FEC 4x10G LAN PHY (0103)		

Electrical versus Optical test Q...

 Electrical input or output is available on BERTScope, RTO (Real-Time Oscilloscope), and on Sampling oscilloscope modules



- Optical input is only available on 80C.. Sampling modules; how to connect the RTO or the BERTScope to the signal?
- Answer: Latest Tek Optical modules offer buffered DATA Out (and Data_ Out_)
- These signals can be used for Clock Recovery, but also to drive an RTO (oscilloscope) for troubleshooting, or a BERTScope Error Detector for BER measurements.

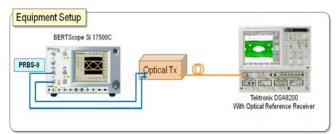
Apr. 2011, v. 1.0

Tektronix

Electrical versus Optical test ... and Answer: buffered Data Out outputs on new optical modules

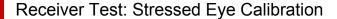
Apr. 2011, v. 1.0

Tektronix^{*}

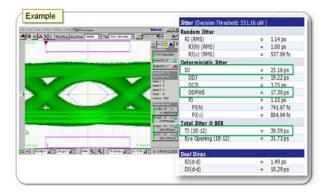

- Speeds above 10 Gb/s: Transmitter and Receiver test setup
- Transmitter Test 1,2: Interconnect, TX Out
- Meet the test equipment:
 - BERT
 - Clock Recovery
 - Oscilloscope
- Setup for Electrical and for Optical test details
- 25 Gb/s, 40 Gb/s
- Receiver Test Setup
- Summary

Apr. 2011, v. 1.0

Tektronix

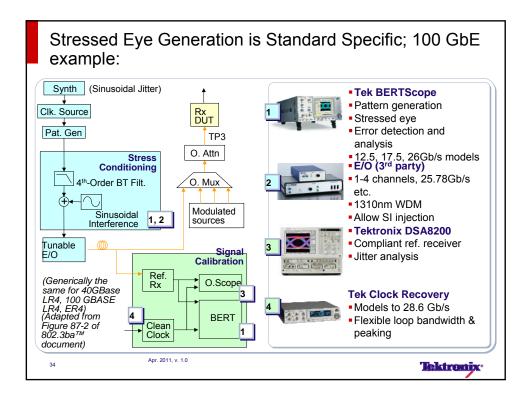

Receiver Test: Stressed Eye Calibration

- Sampling Oscilloscope is recommended for the Stressed Eye Calibration, ...
- ...in case of electrical Stressed Eye an BERTScope error detector can also be used.
- In case of optical RX test, an additional component is needed the E/O (electrical to optical) transceiver.
- Please contact the factory for recommended equipment.



Apr. 2011, v. 1.0

Tektronix^{*}



Example of a generated Stressed Eye with several measurements.
 Many of the jitter measurements are built into jitter tools (80SJNB on the DSA8200 Sampling Oscilloscope; the Jitter Map in the BERTScope BSA175 or BSA260.

Apr. 2011, v. 1.0

33

Summary

We've discussed:

- •Speeds above 10 Gb/s: Transmitter and Receiver test setup
- ■Transmitter Test 1,2 : Interconnect, TX Out
- •Meet the test equipment:
 - BERT
 - Clock RecoveryOscilloscope
- •Setup for Electrical and for Optical test details
- ■25 Gb/s, 40 Gb/s
- Receiver Test Setup
- Summary

Please visit Tektronix website www.tek.com for application notes and other details.

Apr. 2011, v. 1.0