

用 4200A-SCS 参数分析仪 测量 MOSFET 栅极电荷

应用文档

应用文档

介绍

功率 MOSFET 被用于各种应用程序,包括作为高速开 关。器件的开关速度受到内部电容的影响,通常在数 据表中指定为 C_{iss}和 C_{oss},这些数据表来自于输入栅 极和漏极电容 C_{gs}和 C_{gd}。除了指定电容外,门电荷 (Q_{gs} 和 Q_{gd}) 也可以用来评估 MOSFET 的开关性能。

在 JEDEC JESD24-2 标准"栅极电荷测试方法"中描述了一种测量 MOSFET 栅极电荷的方法。在这种方法中,将栅极到源极电压作为时间的函数。从由此产生的栅极电压波形中,推导出栅极 - 源极电荷(Q_{gs})、 栅极 - 漏极电荷(Q_{gd})和栅极电荷(Q_g)。

4200A-SCS 参数分析仪支持使用两个源测量单元 (SMU) 仪器和系统中包含的门电荷测量测试程 序,可以在 MOSFET 上进行门电荷测量。该测试是 4200A-SCS Clarius+软件套件中提供的广泛测试库 中包含的众多测试之一。本应用说明描述了如何使用 4200A-SCS 参数分析仪基于 JEDEC 门电荷测试方法 测量 MOSFET 上的门电荷。

门电荷测量概述

在栅极电荷方法中,将固定测试电流(I_g)引入 MOS 晶体管的栅极,并且测量的栅极源电压(V_{gs})与流入 栅极的电荷相对应。对漏极端子施加一个固定的电压 偏置。**图1**显示了功率 MOSFET 的栅极电压与栅极 电荷的关系。

栅电荷 (Q) 由给栅极施加电流和时间 (I_g dt) 提取得出。 门源电荷 (Q_{gs}) 是所需要的电荷,如图 1 所示,以达 到饱和区域的开始,在那里的电压 (V_{gs}) 几乎是恒定 的。根据 JEDEC 标准,平台(或 Miller)电压 (V_{pl}) 定义为 d V_{gs} /dt 最小时的栅源电压。电压平台是当晶 体管从 OFF 状态切换到 ON 状态时的区域。 完成这个开关所需的栅电荷,即将器件从平台区开始 切换到结束所需的电荷,被定义为栅漏电荷(Q_{gd}), 称为米勒电荷。栅电荷(Q_g)是指从原点到栅源电压 (V_{gs})等于指定最大值(V_{gSMax})的电荷。

图 1. 功率 MOSFET 的典型栅电压与栅电荷

S1 是线段从起点到第一个饱和电压点的斜率。S2 是 线段从最后一个平台点到指定的最大栅极电压 (V_{gsMax}) 的斜率。根据 JESD24-2 标准,用坡度计算 Q_{gs} 和 Q_{gd} 。

图 2 显示了典型的栅极和漏极波形作为时间的函数。 当电流被迫进入栅极时、 V_{gs} 增加,直到达到阈值电压。 此时,漏极电流 (I_d)开始流动。当 C_{gs} 在t1时刻充电时, I_d 保持恒定,漏极电压 (V_d)减小。 V_{gs} 一直保持不变, 直到它到达饱和电压的末端。一旦 C_{gd} 在时间 t2 被充 电,栅极 - 源极电压 (V_{gs})就会再次开始增加,直到 它达到指定的最大栅极电压 (V_{gsMax})。

图 2. MOSFET 的 Vgs、Vd 和 Id 与时间关系的曲线

使用 4200A-SCS 进行栅极电荷测量

4200A-SCS 使用两个 SMU 测量一个功率 MOSFET 的 门电荷。**图 3**显示了栅极电荷测试的基本电路图。一 个 SMU(SMU1)的 Force HI 端连接到 MOSFET 的 栅端,施加栅电流(I_g),并测量栅源电压(V_{gs})作 为时间的函数。第二个 SMU(SMU2)以指定的电流 符合要求(I_d。)对漏极施加固定电压(V_{ds})。4200-SMU 的最大限制电流为 0.1 A;4210-SMU 的最大限 制电流为 1A。

在栅电荷测试中,栅电压增加并打开晶体管。在饱和 区域的这个过渡期间,漏极 SMU(SMU2)从电压控 制切换到电流控制模式,因为电流超过了指定的符合 性水平。在从 OFF 状态过渡到 ON 状态期间,软件返 回漏极瞬态电流和漏极电压。

MOSFET 的源端子连接到 4200A-SCS 机箱的 Force LO 端子或 GNDU。

图 3. 使用两个 SMU 的栅极充电测试配置

Clarius+ 软件为栅电荷测试的配置

Gate Charge 测试位于测试库和项目库中,可以通过 搜索"Gate Charge"从选择窗格中找到。在测试库 中找到测试后,就可以通过选择并将其添加到项目树 来将其添加到项目中。此测试是由 GateCharge 用户 库中的 gate_charge 用户模块创建的。

输入参数

在执行测试之前,在 Clarius 软件的配置窗格中设置输 入参数(**图 4**)。输入参数将根据设备和使用的 SMU 模型而有所不同。

表1列出了输入参数的描述。首先,输入连接到 MOSFET 的栅极(gate SMU)和漏极(Drain SMU) 的 SMU。源端子应始终连接到 GNDU,或 Force LO。

由栅极 SMU 施加进入栅极的电流大小,是栅极电流(l_g) 参数。漏极电压(V_{ds})是施加到漏极上的偏置电压, 而 Limitl 是漏极 SMU 的限制电流。

该偏移参数用于校正偏移电容,在下面进行描述。

表 1. gate_charge 用户模块的输入参数

输入参数	值的范围	默认值	描述
gateSMU	SMU1-SMU9	SMU1	连接到栅极端子的 SMU 编号
drainSMU	SMU1-SMU9	SMU2	连接到漏极端子的 SMU 编号
source	GNDU	GNDU	源端子始终与 GNDU 上的 Force LO 端子相 连
Vds	\pm 200 V	10 V	漏极 SMU 的漏极偏置 电压的大小
drainLimitI	4200-SMU: 0.1A 4210-SMU: 1 A	0.1A	漏极电流限流
gateCurrent	± 1E-5 A	1e-7 A	栅极 SMU 的栅极电流 的大小
VgsMax	$\pm 200V$	10 V	栅极 SMU 的最大电压
timeOut	0~300 s	60 s	暂停前的秒数
measDrain	1 (yes) or 0 (no)	1	返回测量的漏极电流
Coffset	0 或 Ceff	0	使用开路方式运行测 试,然后输入返回到 工作表 Ceff 值

用 4200A-SCS 参数分析仪测量 MOSFET 栅极电荷

图 4. 栅极电荷测试的配置界面

修正偏移电容量

根据测量系统的布线和连接,偏移电容可以在 pF 到 数百 pF 范围内。这些电容可以通过开路执行 gate_ charge 用户模块来纠正,获得偏移电容,然后在软件 中输入偏移电容值进行补偿。以下是如何执行这些步 骤的方法:

- 测量偏移电容。设置测试参数,包括输入门电流, 设备已连接到 SMU。然而,仅为 Ceff 测量增加 V_{gsMax}。在执行测试之前,提起探头或从测试夹具上 取下器件。在开路时执行栅极充电测试。
- 2. 获得偏移电容。测试完成后,计算系统测量的测量 偏移电容,并出现在表中的 Ceff 列中。Ceff 由最 大栅电压、栅电流和时间提取。

由于在此步骤中测量了开路,因此在执行测试后, 测试表中可能会出现测试状态值 -9 或 -12。这是因 为没有测量任何设备,所以没有饱和区域。但是, Ceff 值是正确的,可以在"配置"视图中作为 C 偏 移量输入。

3. 输入测量的偏移电容并执行。在"配置"界面中 输入测量的偏移电容 Ceff。默认情况下,偏移为 0F。在后续读数中对偏移电容进行补偿。

执行测试

一旦输入输入参数,通过选择屏幕顶部的运行来执行 测试。当测试运行时,栅极电荷波形将在分析视图中 实时更新,计算出的输出参数将出现在工作表中。

输出参数

测试完成后,几个参数将返回到工作表中。**表 2** 列出 了这些参数的描述。

表	2.	gate_	charge	用户	模块的轴	渝出参数
---	----	-------	--------	----	------	------

输出参数	描述
gate_charge	测试状态值 - 有关说明,请见表 3
timeArray	测量时间(秒)
VgArray	测量的源电压(电压)
VgCharge	测量栅电荷(库仑)
VdArray	测量漏极电压(伏特)
IdArray	实测漏极电流(安)
Slope	栅极电压的动态坡度(dVg/dt)
Ceff	栅极电荷与最大栅极电压的比率
Vpl	平台或米勒电压(电压)
T1	平台区域开始的时间(秒)
T2	平台区域结束时的时间(秒)
Qgs	从栅极电荷的起点到第一个拐点,或电压 平台(库仑)
Qgd	栅电荷曲线中两个拐点之间的栅电荷(库 仑)
Qg	从原点到 VgsMax(库仑)

图形结果

栅极 - 源电压可以绘制成栅极电荷的函数,或者漏极 电流和漏极电压可以绘制成时间的函数。**图 5** 是由 4200A-SCS 测试的一个典型的栅极电压波形。

图 5. 由 4200A-SCS 产生的典型栅极电压波形

除了绘制 V_{gs} , V_{ds} 和 I_d 也可以绘制为栅极电荷或时间 的函数。**图 6**显示了 Clarius 软件的分析界面的图, 显示了所有三个参数被绘制为门电荷的函数。在这种 情况下,电压被显示在 Y1 轴上,而电流被绘制在 Y2 轴上。

图 6. V_{gs}、V_{ds}和 I_d作为栅极电荷的函数

检查测试状态

每次执行测试时,测试状态值将返回到工作表中的第 一列,名为 "gate_charge"。表3列出了 "gate_ charge"列中返回的测试状态值及其相应的描述和注 释。

结论

利用 4200A-SCS 参数分析仪可以方便地对晶体管进 行栅极电荷测量。使用连接到设备的栅极和漏极的两 个 SMU 仪器,Clarius 软件可以很容易地推导出栅极 电荷波形。

表 3. 测试状态值

测试状态	描述	备注
1	无差错	测试成功。
-1	栅极 SMU 不显示	指定正确的 SMU。
-2	漏极 SMU 不显示	指定正确的 SMU。
-3	VgsMax > 200 V	验证栅极电压是否小于 200V。降低栅极电压。
-4	漏极电流限值超过 1 A(4210-SMU)漏极电流限 值超过 0.1 A(4200-SMU)	验证漏极电流是否小于 1A(或中功率 SMU 为 0.1A)。降 低漏极电流限制(漏极限制 I)。
-5	超出功率限制	如果 V >20V,电流应为 < 0.1A。降低漏极电流限制(漏极 限制 I)或漏极电压(Vds)
-6	对输入条件检查错误,将超时时间限制为 200 秒。	指定对 <200 s 的超时时间。
-7	测试时间超过了指定的超时时间(超时时间)。	增加超时。最大值为 200 秒。尝试增加栅极电流以加快设 备充电速度。
-8	迭代 / 测量次数 >10000。	增加栅极电流
-9	迭代 / 测量次数 <5	降低栅极电流。检查设备、测试设置和监控模块是否正确。 如果在测量用于偏移校正的开路时发生此错误,则可以忽 略它。Ceff 值仍然有效。
-10	从原点到第一个平台点的点数为 <10	降低栅极电流
-11	计算斜率的误差 S1。相关因子 < 为 0.9。从原点 到第一个平台点的曲线不是线性的。	检查设备和测试设置。
-12	计算斜率的误差 S2。相关因子 < 为 0.9。从最后 一个平台点到 VgsMax 的曲线不是线性的。	检查设备和测试设置。如果 Vg 电荷或 Vd 显示过高,请尝 试减少栅极电流并重复测试。如果在测量开路以进行偏移 校正时发生此错误,则可以忽略此错误。Ceff 值仍然有效。
-13	Vds > 200 V	降低漏极电压。
-14	门电流 > 10 uA	降低栅极电流(lg)。

如需所有最新配套资料,请立即与泰克本地代表联系!

或登录泰克公司中文网站:tek.com.cn

泰克中国客户服务中心全国热线:400-820-5835

泰克科技(中国)有限公司

上海市浦东新区川桥路1227号 邮编:201206 电话:(8621)50312000 传真:(8621)58993156

泰克成都办事处

成都市锦江区三色路38号 博瑞创意成都B座1604 邮编: 610063 电话: (86 28) 8620 3028 传真: (86 28) 8527 0053

泰克北京办事处

北京市朝阳区酒仙桥路6号院 电子城•国际电子总部二期 七号楼2层203单元 邮编: 100015 电话: (86 10) 5795 0700 传真: (86 10) 6235 1236

泰克西安办事处

西安市二环南路西段88号 老三届世纪星大厦26层L座 邮编:710065 电话:(86 29)8836 0984 传真:(86 29)8721 8549

泰克上海办事处

上海市长宁区福泉北路518号 9座5楼 邮编: 200335 电话: (86 21) 3397 0800 传真: (86 21) 6289 7267

泰克武汉办事处 武汉市洪山区珞喻路726号 华美达大酒店718室 邮编: 430074 电话: (86 27) 8781 2760

泰克深圳办事处 深圳市深南东路5002号 信兴广场地王商业大厦30

信兴广场地王商业大厦3001-3002室 邮编:518008 电话:(86755)82460909 传真:(86755)82461539

泰克香港办事处

香港九龙尖沙咀弥敦道132号 美丽华大厦808-809室 电话: (852) 3168 6695 传真: (852) 2598 6260

更多宝贵资源,敬请登录:TEK.COM.CN

© 泰克公司版权所有,侵权必究。泰克产品受到已经签发及正在申请的美国专利和外国专利保护。本文中的信息代替所有以前出版的材料中的信息。本文中的技术数据 和价格如有变更,恕不另行通告。TEKTRONIX 和 TEK 是泰克公司的注册商标。本文中提到的所有其它商号均为各自公司的服务标志、商标或注册商标。 042518 SBG 1KC-61388-0

