
How to Write Scripts for 
Test Script Processing (TSP®)
––
APPLICATION NOTE

http://www.tek.com


Introduction
This application note introduces scripting with Keithley's Test 

Script Processor (TSP) technology and its most powerful and 

enticing features. With scripting, programs and code can be 

loaded directly onto an instrument and run locally. 

Keithley’s TSP goes well beyond just sending instrument 

commands. The TSP language is a fully featured 

programming language with all the capabilities you 

would expect including variables and variable typing, 

math operators, tables, creation of user functions, logical 

operators, string manipulation, conditional branching, 

loop control, and built-in standard libraries. All these tools 

together, built into the TSP language, allow TSP-enabled 

instruments to be their own controller and execute complete 

test sequences, running local scripts and performing local 

data analysis without the communication overhead inherent 

in other remote instrument control methods.

What is TSP?
Keithley’s TSP is a flexible hardware/software architecture 

that allows message-based programming, much like SCPI, 

with enhanced capabilities for controlling test sequencing/

flow, decision-making, and instrument autonomy. TSP-

enabled instruments operate like conventional SCPI 

instruments by responding to a sequence of commands 

sent by the controller. You can send individual commands 

to the TSP-enabled instrument the same way you would 

when using SCPI with any other instrument. Making the 

switch to TSP will afford you improved throughput, access to 

additional interfacing options between instruments, and the 

convenience of autonomous instrumentation. 

The use of an on-board Test Script Processor has made it 

possible to create “smart” instruments, with built-in decision-

making capabilities, which reduces the need to communicate 

so frequently with an external controller over the bus. This 

approach to test system design allows smart instrument 

systems to be much more efficient than those that rely 

on standard programming. As the number of TSP-based 

instruments grows, test system developers will have greater 

flexibility to build test systems with far higher throughput 

without compromising measurement integrity. 

TSP encompasses both the TSP command set and the TSP 

scripting language. The TSP scripting language is based 

on Lua version 5.0, and when used together with the TSP 

command set, allows for logic and subroutines that would 

normally reside on a PC to run inside the instrument, which 

reduces the amount of data and number of messages sent 

over the communications bus by a considerable amount.  

What is Lua?
Lua is a powerful and robust yet lightweight scripting 

language that is easy to learn. Lua’s small footprint and 

readability made this scripting language the best choice to 

implement into measurement instruments. The Test Script 

Processor scripting engine is a Lua interpreter. Keithley 

instruments use a modified Lua version 5.0. In TSP-

enabled instruments, the Lua programming language has 

been extended with Keithley-specific instrument control 

commands. Lua commands can be sent and executed one 

at a time like with SCPI. Unlike instruments that are only 

compatible with SCPI, TSP instruments can store full scripts, 

functions, or variables in their memory, meaning that an 

instrument can function completely autonomously once 

loaded with a script. For writing these scripts, Keithley Test 

Script Builder is the obvious choice. 

Keithley Test Script Builder
Keithley Test Script Builder (TSB) is a free integrated 

development environment (IDE) available for TSP. Using 

TSB allows you to maximize the benefits of scripting with 

TSP. The included instrument console can open a direct 

connection to the instrument from the controlling PC. Unlike 

other programming environments, TSB does not require you 

to directly reference communications libraries or wrappers 

in their code. You can integrate TSP commands in with the 

rest of your code seamlessly, without having to use a function 

to send the command to the instrument because Test Script 

Builder automatically runs IVI VISA in the background. 

Test Script Builder has a built-in control structure, and 

allows you to debug your code, including the usage of TSP 

commands. The included instrument console allows you 

to read error messages and “watch” returned data with the 

appropriate commands. It should be noted that the TSP 

2  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



command set does not require any specific development 

environment since scripts are compiled and run once they 

are sent to the instrument. However, while IDEs built around 

compiled languages are not necessary for TSP, they can be 

used all the same. TSP commands can also be used within 

other scripting languages such as Python or Perl, although 

Test Script Builder along with Lua based scripting will yield 

the best results. 

To download Keithley Test Script Builder, visit: 

https://www.tek.com/keithley-test-script-builder 

Why Use Scripting?
Scripting is an integral function of TSP that allows users to 

have direct, automatic control of their instrument without 

the need for an external computer in a similar way that you 

would script a microcontroller such as an Arduino. Scripts 

can accomplish complex tasks ranging from changing a 

sourced value based on the last reading to synchronizing 

trigger sweeps across multiple instruments, or simple tasks 

like displaying text on the instrument display or applying a 

mathematical formula to readings in a buffer. With scripting, 

the logic control is moved from an external computer to the 

instrument itself, cutting down on communication overhead 

and giving the instrument the power to make decisions 

on the fly.

The instrument performs more quickly and efficiently when it 

processes scripts than it does when it processes individual 

commands. Scripts eliminate repeated data transfer times 

from the controller, reducing interface bandwidth. Performing 

more data processing on the instrument can reduce 

bandwidth across networks and increase test throughput. 

For example, where you would normally need to take 100 

readings, send them to the PC, and then apply a filter before 

obtaining a single result, with a TSP script you can offload the 

necessary processing and calculations onto the instrument 

so that only a single result is returned to the PC. 

Consider the following diagram. It depicts the amount of 

interactions across the communication bus when sending 

individual commands from a controlling PC to an instrument. 

Perhaps the computer is running a Python script to change 

settings on the instrument and take readings in a for loop. 

This method places all the programming logic on the 

computer side of the connection and requires the most 

interactions across the bus. As a result, assuming all other 

factors are equal, this method is the slowest. 

>For
 func()

Computer

Instrument
Individual Commands

Raw Data

×100 times

This next diagram depicts using a computer to send function 

calls over the bus. This method splits the programming logic 

such that the controller is still performing the loop operation, 

but the instrument is processing the function. Perhaps the 

previously mentioned Python script has been cut down to 

only perform the loop, while the instrument now handles 

configuring itself and taking its own readings before returning 

them to the computer. The number of interactions between 

the computer and the instrument are significantly reduced, 

but can still be shaved down further. 

>For

func()

Computer

Instrument
Function Call

Formatted Data

×10 times

The final diagram shows a TSP script call being sent to the 

instrument by the computer, while all of the logic and data 

processing is done by the instrument. The computer might 

still be running a python program to call the script, but now 

the computer only receives the final result, allowing the 

instrument to perform all the needed math and loops. This 

method requires only a single interaction across the bus and 

is by far the quickest method for running tests.

>For
 func()

Computer

Instrument
Script Call

Result

×1 times

WWW.TEK.COM  |  3

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE

https://www.tek.com/keithley-test-script-builder 


In the instrument, the Test Script Processor engine processes and runs scripts. Scripting with TSP offers repeatability, a test 

running on the instrument gives best repeatability in timing because the test environment is totally in the instrument. A single 

script can apply the same test to dozens of instruments via instrument-to-instrument communication techniques. Scripts can 

even be stored in the instrument’s non-volatile memory or on a USB drive to be accessed from the front panel.

Advanced Features of TSP
An Example: Python to TSP

If you currently have a partial or fully developed solution for you application in a language other than TSP, you may be wondering 

how you’ll incorporate TSP into your workflow, or even how to convert your existing code into TSP scripts. The following 

example will walk through the process step by step as described by the previous diagrams.

This Python code controls a 2450 SourceMeter® Source Measure Unit (SMU) using the open source PyVISA library. The SMU is 

configured to source current and measure voltage in order to determine the forward voltage of a diode. The Python code then 

instructs the SMU to source several different current levels and measure the forward voltage at each of those levels. Finally, the 

difference between the maximum and minimum forward voltages is printed to the python console.

Now, all the configuration commands are moved into two TSP functions called config() and forwardv(). These functions run 

the same commands as the previous python code ran, but they are now stored directly on the instrument so the number of 

interactions the Python code has with the instrument has been greatly reduced. You can find the full contents of each function 

in the appendix of this application note. 

Where before the Python code had 7 interactions during configuration and 5 each loop iteration, the code now has 1 interaction 

for configuration and 1 each loop iteration. However, we have changed the communication timeout from Python since each 

TSP function will not return a response immediately as before. Instead each function will run multiple TSP commands before 

returning a response that the function has completed.

Python
import visa
rm = visa.ResourceManager()
address = "TCPIP0::192.0.0.1::inst0::INSTR" #Keithley 2450 SMU
inst = rm.open_resource(address)

inst.write("reset()")
inst.write("smu.source.func = smu.FUNC_DC_CURRENT")
inst.write("smu.source.vlimit.level = 21")
inst.write("smu.source.autorange = smu.ON")
inst.write("smu.source.autodelay = smu.ON")
inst.write("smu.measure.func = smu.FUNC_DC_VOLTAGE")
inst.write("smu.measure.autorange = smu.ON")
inst.write("smu.measure.nplc = 1")

currlist = [1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2] # list of currents to source
voltlist = [None for curr in currlist] # Create an empty array for voltage measurements the 
same size as our source list
for i, current in enumerate(currlist): # Loop over the current source list
    inst.write("smu.source.level = "+str(current))
    inst.write("smu.source.output = smu.ON")
    inst.write("smu.measure.read()")
    inst.write("smu.source.output = smu.OFF")
    voltlist[i] = inst.query("print(defbuffer1.readings[defbuffer1.endindex])") #
Grab the last reading 
    voltlist[i] = float(voltlist[i]) # .query returns a string, so it must be casted 
to a number
voltDiff = max(voltlist) - min(voltlist)
print(voltDiff)

4  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE

https://pyvisa.readthedocs.io/en/master/index.html


This final Python code accomplishes the same task as before, but now with only a single interaction with the instrument. All 

the logic of looping and creating arrays has been moved to TSP so that the Python code now only calls a script and prints the 

result. Once again, you can find the full script in the appendix of this application note. At this point, if desired, the computer 

could be removed from the equation entirely and the result could instead be printed to the front panel of the instrument, rather 

than returned to the computer’s console.

Script Rules

Important points regarding scripts:

• Each script must have a unique name that cannot start 
with a number.

• Script names must not contain spaces.

• If you load a new script with the same name as an 
existing script, an error event message is generated. You 
must delete the existing script before you create a new 
script with the same name.

• If you revise a script and save it to the instrument with a 
new name, the previously loaded script remains in the 
instrument with the original name.

• You can save scripts to nonvolatile memory in the 
instrument. Saving a script to nonvolatile memory allows 
the instrument to be turned off without losing the script. 

Store & Run Scripts Locally

To enjoy the full benefits of scripting, the TSP script must be 

saved to the instrument’s internal memory. This allows them 

to be accessed by any remote control scheme or even to be 

run without a controlling PC from the instrument’s front panel. 

There are several ways to accomplish this and they all reach 

the same goal.

If using Test Script Builder, scripts can be sent and saved 

to an instrument directly. This method is particularly helpful 

for larger scripts or applications with many functions as 

TSB provides tools to manage a large number of scripts 

across many different instruments, along with its debugging 

capabilities.

Another method, more suited to single or few instrument 

setups, involves simply saving the script with the *.tsp 

extension and placing it on a USB drive. The front panel 

controls of TSP enabled instruments will allow you to run 

the script directly from the USB drive, or save the script to 

instrument’s internal memory. 

Finally, when you need to automate the delivery of scripts, 

or when it is more practical to send scripts over an existing 

remote connection, scripts may be sent and saved to an 

instrument line-by-line. Using the loadscript and endscript 

keywords, any remote communication interface can save TSP 

scripts to an instrument.

Python
voltDiff = inst.query("FullDiodeTest()")
print(voltDiff)

Python
inst.timeout = 10000 
inst.write("config()")

currlist = [1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2] 
voltlist = [None for curr in currlist] 
for i, current in enumerate(currlist): 
 voltlist[i] = inst.query("forwardv("+str(current)+")")
 voltlist[i] = float(voltlist[i]) 

voltDiff = max(voltlist) - min(voltlist)
print(voltDiff)

WWW.TEK.COM  |  5

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



Automatic Execution Scripts

Scripts saved to USB drives or the instrument’s internal 

memory can be copied to start up. Scripts added to start up 

will automatically execute as part of the instrument’s power-

on sequence. Below is an example script that changes the 

buffer size and sets a DMM6500 6½-Digit Bench/System 

Digital Multimeter to measure current:

TSP
reset()
-- Change the size of the default buffer
defbuffer1.capacity = 1000
-- Set the measurement function to current
dmm.measure.func = dmm.FUNC_DC_CURRENT
-- Take a reading
dmm.measure.read()

To save the script to the DMM6500’s power up sequence 

from the front panel, load the script onto the instrument’s 

local memory. Then, go to MENU > SCRIPTS > RUN and 

then select the script you want saved to the power up 

sequence and select Copy to Power Up. Alternatively, you 

can name your script autoexec.tsp and the instrument will 

always run the script at startup. 

Using Display Windows

TSP scripts give access to user interactions on the instrument 

display itself. Display commands will allow you to write 

scripts that publish custom messages, button prompts, and 

data input screens on the front panel of the instrument. The 

following example for Keithley’s Touch, Test, Invent® line of 

instruments features a short script that creates a menu with 

two options on the front panel. After a selection is made, an 

input screen appears and takes a numeric input from the 

user. Then, the input is printed to the USER swipe screen on 

the front panel:

TSP
-- Creates a GUI with two buttons labeled Set Voltage and Set Current
func_choice = display.input.option("Select a Function", "Set Voltage", "Set Current")

-- If user selects Set Voltage 
if func_choice == display.BUTTON_OPTION1 then
 -- Prompt user to specify voltage with numeric input box
 -- Default value is 0, min is 0, max is 15
 voltage = display.input.number("Set Voltage (V)", display.NFORMAT_DECIMAL, 0, 0, 15)
 -- Change swipe screen to USER
 display.changescreen(display.SCREEN_USER_SWIPE)
 -- Print specified voltage to USER swipe screen
 display.settext(display.TEXT1, voltage .. " (V)")
end

-- If user selects Set Current
if func_choice == display.BUTTON_OPTION2 then
 -- Ask user to specify current limit with numeric input box
 -- Default value is 0, min is 0, max is 3
 current = display.input.number("Set Current Limit (A)", display.NFORMAT_DECIMAL, 0, 0, 3)
 -- Change swipe screen to USER
 display.changescreen(display.SCREEN_USER_SWIPE)
 -- Print specified voltage to USER swipe screen
 display.settext(display.TEXT1, current .. " (A)")
end

6  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



Aliasing

If you do not like the naming conventions of traditional TSP commands or wish to abbreviate them, you can rename the 

commands via aliasing. To alias a command, you can store up to the third “.” , the lowest level, into a variable. With every “.” 

aliased, the better the script’s performance and the faster the commands are processed. This example demonstrates how to 

create aliases for TSP commands:

TSP
dm = dmm.measure
current = dmm.FUNC_DC_CURRENT
dm.func = current -- Alias for dmm.measure.func = dmm.FUNC_DC_CURRENT

stop = trigger.model.abort
stop() -- Alias for trigger.model.abort()

clear = eventlog.clear
clear() -- Alias for eventlog.clear()

Note in the above example, when aliasing a function command like trigger.model.abort, the parenthesis normally 

accompanied with the function is not used. However, when calling the aliased function, stop, the parenthesis is used normally. 

This behavior is the same for any command that is a function.

Reading and Writing to the Front Panel USB

You can write data to files and read data from files saved on a USB drive plugged into the instrument’s front panel using scripts. 

TSP commands that create and manipulate files are useful for a multitude of purposes, ranging from storing buffer data to a 

USB, to accessing initialization files for more complex scripting applications. The code snippet below uses TSP commands and 

scripting logic to read data from an initialization file if one exists, or create an initialization file with inputs from the user via the 

front panel if one is absent:

TSP
-- Check for USB plugged into front panel
usb_exist = file.usbdriveexists()
-- If USB exist is true
if usb_exist == 1 then
 -- Check for target file
 file_check = fs.is_file("/usb1/Config.ini")
 if file_check == true then
 -- Open and read config file, store config data in variable
  config_file = file.open("/usb1/Config.ini", file.MODE_READ)
  config_data = file.read(config_file, file.READ_ALL)
  file.close(config_file)

 elseif config_data == nil or file_check == false then
  -- Allow user to input config data and write data to a config file
  config_data = display.input.string("Input Config Data", display.SFORMAT_ANY)
  config_file = file.open("/usb1/Config.ini", file.MODE_WRITE)
  file.write(config_file, config_data)
  file.close(config_file)
 end
end

WWW.TEK.COM  |  7

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



Sweeping

Sweeps allow you to set a source measure unit (SMU) to source specific voltage or current values to a device under test, where 

a measurement is made for each sourced value. The 2400 Series of SMUs can generate linear staircase, logarithmic staircase, 

linear dual staircase, and logarithmic dual staircase sweeps from the front panel or from a remote interface. When generating a 

sweep, the instrument creates a source configuration list and a trigger model that contains the settings that were selected for 

the sweep. In addition to these generated sweeps, custom list sweeps can be defined using remote commands. 

When defining a custom sweep, specified source levels are added to a source configuration list. The benefit of a custom sweep 

is that you can programatically define all the levels of the source configuration list, giving you direct control of sweep rather 

than allowing a sweep function to define the levels for you. The following example for the 2460 SMU defines and executes a 

custom voltage sweep, calculates several values, and prints the results to the terminal of Test Script Builder and the front panel 

of the 2460.

TSP
-- Reset the Model 2460 and clear the buffer.
reset()

-- Set the source and measure functions.
smu.source.func = smu.FUNC_DC_VOLTAGE
smu.measure.func = smu.FUNC_DC_CURRENT

-- Configure the measurement settings.
smu.measure.terminals = smu.TERMINALS_FRONT
smu.measure.sense = smu.SENSE_4WIRE
smu.measure.autorange = smu.ON
smu.measure.nplc = 1

-- Configure the source settings.
smu.source.highc = smu.OFF
smu.source.range = 10
smu.source.readback = smu.ON
smu.source.highc = smu.OFF
smu.source.ilimit.level = 5

-- Create a configuration list of current source levels
smu.source.configlist.create("VoltListSweep")

-- Add source levels to configuration list
for v = 1, 9 do
 smu.source.level = v
 smu.source.configlist.store("VoltListSweep")
end
-- Add Configuration List to Sweep
smu.source.sweeplist("VoltListSweep")

-- Start the sweep and wait for it to complete.
trigger.model.initiate()
waitcomplete()

-- Define values for next step.
voltage = defbuffer1.sourcevalues
current = defbuffer1
imax = current[1]
vmax = voltage[1]
pmax = voltage[1]*current[1]

-- Calculate Max Power, Current, and Voltage
for i = 1, 9 do

8  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



TSP
-- Initialize constant value(s) and global variable(s)
local remote_port = 5025    -- Default ethernet port
local remote_ip = "169.254.136.120" -- Remote instrument IP address
local KE3390_idString = "Keithley Instruments Inc.,3390" -- 3390 ID String
local tspnet_instID = nil   -- Instrument connection object

-- Initialize connection between DAQ and controlled instrument
function tspnet_init(remote_ip, remote_port)
 tspnet.timeout = 5.0
 tspnet.reset()
 tspnet_instID = tspnet.connect(remote_ip, remote_port, "*RST\n")
 if tspnet_instID == nil then return nil end
 tspnet_ipaddress = remote_ip
 tspnet.termination(tspnet_instID, tspnet.TERM_LF)
 
 tspnet_send("*RST")
 return tspnet_instID
end

 print(voltage[i],current[i],voltage[i]*current[i])
  if (voltage[i]*current[i] > pmax) then
  pmax = voltage[i]*current[i]
  imax = current[i]
  vmax = voltage[i]
  end
end
pmax = math.abs(pmax)
imax = math.abs(imax)
print("Pmax = pmax, Imax = imax, Vmax = vmax)

-- Display values on the Model 2460 front panel.
display.changescreen(display.SCREEN_USER_SWIPE)
display.settext(display.TEXT1, string.format("Pmax = %.4fW", pmax))
display.settext(display.TEXT2, string.format("Imax = %.4fA, Vmax = %.2fV", Imax, Vmax))

TSP-Net

With Keithley TSP-Net, an included library of TSP, you can use TSP-enabled instruments to control any ethernet controllable 

instrument. Using this feature, measurement instruments can be controlled remotely by other instruments without a PC. This 

type of setup is especially convenient when an older instrument lacks a front panel or requires navigating through settings with 

numerous buttons or knobs. Using TSP-Net, you can use an instrument with a touchscreen to act as a front panel for another 

instrument that is lacking one. To set up a TSP-Net connection, connect the desired instruments to the same network or to one 

another via ethernet cable and upload a TSP-Net script onto the controlling instrument.

TSP-Net works similarly to sockets-based programming between a computer and an instrument. Instead of using a PC, one 

of the instruments connected to the network acts as the controller, driving the target instruments through a TSP script via an 

ethernet network connection. This allows one or more instruments that are not necessarily located in the same immediate area 

to control the others remotely and communicate with each other. The controlling instrument uses commands from the TSP-Net 

library to transfer string data, including commands, to a remote instrument. In the same way, the controlling instrument can 

retrieve and manipulate data from the target instruments. Because strings are sent over the bus, a TSP instrument can send 

SCPI commands, which are strings of ascii characters, to an instrument that is not TSP compatible with a script using TSP-Net. 

This example demonstrates the main coding structures and commands associated with the use of TSP-Net. Note the similarities 

between these commands from the TSP-Net library and typical sockets based programming:

WWW.TEK.COM  |  9

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



-- Send command to controlled remote instrument
function tspnet_send(command)
 tspnet.execute(tspnet_instID, command)
end

-- Query data from the controlled instrument
function tspnet_query(command, timeout)
 timeout = timeout or 5.0 -- Use default timeout of 5 secs if not specified
 tspnet.execute(tspnet_instID, command)
 timer.cleartime()
 
 while tspnet.readavailable(tspnet_instID) == 0 and timer.gettime() < timeout do
  delay(0.1)
 end
 return tspnet.read(tspnet_instID)
end

-- Terminate the connection between the master and subordinate instrument
function tspnet_destroy()
 if tspnet_instID ~= nil then
  tspnet.disconnect(tspnet_instID)
  tspnet_instID = nil
 end
end

See the appendix at the end of this document for the full example script, which uses TSP-Net to send SCPI commands from a 

DAQ6510 6½-Digit Data Acquisition and Logging Multimeter System to a Keithley 3390 Arbitrary Waveform Generator.

Conclusion
Using TSP as a powerful scripting tool can increase the overall functionality of your instruments. TSP affords you a multitude 

of advantages, including the ability to run scripts as part of an instrument’s boot sequence and applying custom text and 

graphical interfaces to the front panel. Scripting gives users the option to control multiple instruments with a single program, 

and significantly reduces communications over the bus. Fully integrating logical operations with remote commands creates a 

plethora of possibilities for new tests. 

10  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



TSP
-- Initialize constant value(s) and global variable(s)
local instPort = 5025    -- Default ethernet port
local instAddr = "169.254.136.120" -- Remote instrument IP address
local KE3390_idString = "Keithley Instruments Inc.,3390" -- 3390 ID String
local tspnet_instID = nil   -- Instrument connection object

-- Initialize connection between DAQ and controlled instrument
function tspnet_init(remote_ip, remote_port)
 tspnet.timeout = 5.0
 tspnet.reset()
 tspnet_instID = tspnet.connect(remote_ip, remote_port, "*RST\n")
 if tspnet_instID == nil then return nil end
 tspnet_ipaddress = remote_ip
 tspnet.termination(tspnet_instID, tspnet.TERM_LF)
 
 tspnet_send("*RST")
 return tspnet_instID
end

-- Send command to controlled remote instrument
function tspnet_send(command)
 tspnet.execute(tspnet_instID, command)
end

-- Query data from the controlled instrument
function tspnet_query(command, timeout)
 timeout = timeout or 5.0 -- Use default timeout of 5 secs if not specified
 tspnet.execute(tspnet_instID, command)
 timer.cleartime()
 
 while tspnet.readavailable(tspnet_instID) == 0 and timer.gettime() < timeout do
  delay(0.1)
 end
 return tspnet.read(tspnet_instID)
end

-- Terminate the connection between the master and subordinate instrument
function tspnet_destroy()
 if tspnet_instID ~= nil then
  tspnet.disconnect(tspnet_instID)
  tspnet_instID = nil
 end
end

-- *** Setup Functions for 3390 ***********************************************************
-- Get 3390's instrument ID
function KE3390_GetIdString()
 myID = tspnet_query("*IDN?\n", 5)
 delay(0.1)
 return myID
end

-- Set Waveform Type
function KE3390_SetWave()
 type, result = display.input.option("Set Waveform Type", "Sine", "Square", "Ramp")
 

Appendix
The following example script uses TSP-Net to send SCPI commands from a DAQ6510 to a Keithley 3390 arbitrary waveform 

generator:

WWW.TEK.COM  |  11

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



 if type == display.BUTTON_OPTION1 then
  freq = display.input.number("Set Frequency (Hz)", display.NFORMAT_DECIMAL, 1000, 
.0000001, 50000000)
  amp = display.input.number("Set Amplitude (Vpp)", display.NFORMAT_DECIMAL, 0.1)
  off = display.input.number("Set Offset Voltage (V)", display.NFORMAT_DECIMAL, 0)
  
  tspnet_send("APPLy:SINusoid " .. tostring(freq) .. "," .. tostring(amp) .. "," .. 
tostring(off) .. "\n")
  delay(0.1)
 elseif type == display.BUTTON_OPTION2 then
  freq = display.input.number("Set Frequency (Hz)", display.NFORMAT_DECIMAL, 1000, 
.0000001, 25000000)
  amp = display.input.number("Set Amplitude (Vpp)", display.NFORMAT_DECIMAL, 0.1)
  off = display.input.number("Set Offset Voltage (V)", display.NFORMAT_DECIMAL, 0)
  
  tspnet_send("APPLy:SQUare " .. tostring(freq) .. "," .. tostring(amp) .. "," .. 
tostring(off) .. "\n")
  percent = display.input.number("Set Duty Cycle (%)", display.NFORMAT_DECIMAL, 0)
  KE3390_SetDCycle(percent)
  delay(0.1)
 elseif type == display.BUTTON_OPTION3 then
  freq = display.input.number("Set Frequency (Hz)", display.NFORMAT_DECIMAL, 1000, 
.0000001, 200000)
  amp = display.input.number("Set Amplitude (Vpp)", display.NFORMAT_DECIMAL, 0.1)
  off = display.input.number("Set Offset Voltage (V)", display.NFORMAT_DECIMAL, 0)
  
  tspnet_send("APPLy:RAMP " .. tostring(freq) .. "," .. tostring(amp) .. "," .. 
tostring(off) .. "\n")
  percent = display.input.number("Set Ramp Symmetry (%)", display.NFORMAT_DECIMAL, 0)
  KE3390_SetRampSymm(percent)
  delay(0.1)
 end
end

-- Set Amplitude
function KE3390_SetAmp(amp)
 tspnet_send("VOLT " .. tostring(amp) .. "\n")
 delay(0.1)
end

-- Set Frequency
function KE3390_SetFreq(freq)
 tspnet_send("FREQ " .. tostring(freq) .. "\n")
 delay(0.1)
end

-- Set Voltage Offset
function KE3390_SetVoltOff(off)
 tspnet_send("VOLT:OFFS " .. tostring(off) .. "\n")
 delay(0.1)
end

-- Set Duty Cycle
function KE3390_SetDCycle(percent)
 tspnet_send("FUNC:SQU:DCYC " .. tostring(percent) .. "\n")
 delay(0.1)
end

-- Set Ramp Symmetry
function KE3390_SetRampSymm(percent)
 tspnet_send("FUNC:RAMP:SYMM " .. tostring(percent) .. "\n")
 delay(0.1)
end

12  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



-- Set 3390 Output State ON
function KE3390_outputStateON()
 tspnet_send("OUTP ON\n")
 delay(0.1)
end

-- Set 3390 Output State OFF
function KE3390_outputStateOFF()
 tspnet_send("OUTP OFF\n")
 delay(0.1)
end

-- Check Output State
function KE3390_checkOutput()
 query_output = tspnet_query("OUTP?\n", timeout)
 delay(0.1)
 return query_output
end

-- *** Connection Status ******************************************************************
-- A function that tests the connection between DMM and 3390
function test_connection()
 -- Connect DMM to 3390 
 tspnet_init(instAddr, instPort) 
 display.waitevent(1)
 -- Print (connection_status)
 
 -- Check for initial tsp connection
 if tspnet_instID == nil then
  display.changescreen(display.SCREEN_USER_SWIPE)
  display.settext(display.TEXT1, "Connection failed.")
  display.settext(display.TEXT2, "Please check connection.")
  return 0
 else 
  -- Query 3390's ID string
  KE3390_GetIdString()
  print (myID)
  
  -- Change to user swipe screen
  display.changescreen(display.SCREEN_USER_SWIPE)
  
  -- Check for query ID string nil value
  if myID == nil or myID == "" then
   display.settext(display.TEXT1, "Failed to query ID.")
   display.settext(display.TEXT2, "Please restart 3390 Controller.")
   
   -- Terminate connection to controller
   tspnet_destroy()
   return 0
  else 
   -- Get manufacturer and model number from ID string
   -- Instruments's name is formated as follows: manufactuer, model number, serial 
number, firmware level.
   -- Each variable is separated by a comma ","
   -- The manufacturer_model variable is getting manufactuer and model number by getting 
the index of 
   -- The first 2 comma ","
   _, endPosition = string.find(myID, ",")
   _, endPosition = string.find(myID, ",", endPosition+1)
   manufacturer_model = string.sub(myID, 1, endPosition-1)
   

WWW.TEK.COM  |  13

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



   -- If the manufactuer and model name are not matched
   if manufacturer_model != KE3390_idString then
    display.settext(display.TEXT1, "Connection failed.")
    display.settext(display.TEXT2, "The instrument is not a 3390")
    
    -- Terminate connection to controller
    tspnet_destroy()
    return 0
   else
    display.settext(display.TEXT1, "Connection Success!")
    display.settext(display.TEXT2, "Keithley Model 3390 50MHz AWG")
    return 1
   end
  end
 end
end

-- A function that displays exit text
function display_exit_text()
 -- change to user swipe screen
 display.changescreen(display.SCREEN_USER_SWIPE)
 display.settext(display.TEXT1, "Program exited.")
 display.settext(display.TEXT2, "")
end 

-- *** 3390 Control Code ******************************************************************

reset()

-- Change to User Swipe Screen and clear all messages in this swipe screen
display.changescreen(display.SCREEN_USER_SWIPE)
display.settext(display.TEXT1, "")
display.settext(display.TEXT2, "")

-- A reminder to ensure connection
display.prompt(display.BUTTONS_OK, "Please ensure TSPNet connection between DMM6500 and 3390.")
prompt_ID, result = display.waitevent()
display.changescreen(display.SCREEN_USER_SWIPE)

display.settext(display.TEXT1, "Please Wait ...")
display.settext(display.TEXT2, "Checking Connection")

-- Test/establish LAN connection
test_status = test_connection()

while tspnet_instID ~= nil do
 func_choice, result = display.input.option("Select a Function", "Set Waveform", "Set 
Amplitude", "Set Frequency", "Set Volt Offset", "Set Duty Cycle", "Set Symmetry", "Output ON/
OFF", "Exit Script")
 display.waitevent(1)
 
 if func_choice == display.BUTTON_OPTION1 then
  -- Ask user to specify waveform type
  KE3390_SetWave()
 elseif func_choice == display.BUTTON_OPTION2 then
  -- Ask user to specify the amplitude
  amp = display.input.number("Set Amplitude (Vpp)", display.NFORMAT_DECIMAL, 0.1)
  KE3390_SetAmp(amp)
 elseif func_choice == display.BUTTON_OPTION3 then
  -- Ask user to specify the frequency
  freq = display.input.number("Set Frequency (Hz)", display.NFORMAT_DECIMAL, 1000)
  KE3390_SetFreq(freq)
 elseif func_choice == display.BUTTON_OPTION4 then

14  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



  -- Ask user to specify the offset voltage
  off = display.input.number("Set Offset Voltage (V)", display.NFORMAT_DECIMAL, 0)
  KE3390_SetVoltOff(off)
 elseif func_choice == display.BUTTON_OPTION5 then
  -- Ask user to specify the duty cycle for square waveforms
  percent = display.input.number("Set Duty Cycle (%)", display.NFORMAT_DECIMAL, 0)
  KE3390_SetDCycle(percent)
 elseif func_choice == display.BUTTON_OPTION6 then
  -- Ask user to specify the symmetry for ramp waveforms
  percent = display.input.number("Set Ramp Symmetry (%)", display.NFORMAT_DECIMAL, 0)
  KE3390_SetRampSymm(percent)
 elseif func_choice == display.BUTTON_OPTION7 then
  -- Check if the output is ON or OFF
  KE3390_checkOutput()
  if query_output == "1" then
   -- Set 3390 Output State OFF
   KE3390_outputStateOFF()
  elseif query_output == "0" then
   -- Set 3390 Output State ON
   KE3390_outputStateON()
  end
 elseif func_choice == display.BUTTON_OPTION8 then
  -- Stop the script and disconnect the TSPNet connection
  display_exit_text()
  tspnet_destroy()
 end
end

tspnet_destroy()

WWW.TEK.COM  |  15

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



The following TSP code contains the functions referenced config() and forwardv() references in the earlier Python example. 

(include hyperlink to section?) Once stored in the instrument’s memory, these functions can be called like any other 

instrument command.

This Python will load the functions into an instruments memory.

Python
function config() -- The config function
    reset()
    smu.source.func = smu.FUNC_DC_CURRENT
    smu.source.vlimit.level = 21
    smu.source.autorange = smu.ON
    smu.source.autodelay = smu.ON
    smu.measure.func = smu.FUNC_DC_VOLTAGE
    smu.measure.autorange = smu.ON
    smu.measure.nplc = 1
end
function forwardv(current) -- The forwardv function
    smu.source.level = current
    smu.source.output = smu.ON
    smu.measure.read()
    smu.source.output = smu.OFF
    print(defbuffer1.readings[defbuffer1.endindex])
end

Python
import visa
rm = visa.ResourceManager()
address = "TCPIP0::192.0.0.5::inst0::INSTR" #Keithley 2450 SMU
inst = rm.open_resource(address)

inst.write("loadscript DiodeTest") # Begin loading the script, named DiodeTest
inst.write("function config()") # The config function
inst.write("reset()")
inst.write("smu.source.func = smu.FUNC_DC_CURRENT")
inst.write("smu.source.vlimit.level = 21")
inst.write("smu.source.autorange = smu.ON")
inst.write("smu.source.autodelay = smu.ON")
inst.write("smu.measure.func = smu.FUNC_DC_VOLTAGE")
inst.write("smu.measure.autorange = smu.ON")
inst.write("smu.measure.nplc = 1")
inst.write("end")
inst.write("function forwardv(current)") # The forwardv function
inst.write("smu.source.level = current")
inst.write("smu.source.output = smu.ON")
inst.write("smu.measure.read()")
inst.write("smu.source.output = smu.OFF")
inst.write("print(defbuffer1.readings[defbuffer1.endindex])")
inst.write("end")
inst.write("endscript")
inst.write("DiodeTest.save()") # Save the script, DiodeTest, into nonvolatile memory
inst.write("DiodeTest()") # Run the script to load the functions into memory

16  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



The following TSP code is the full script, FullDiodeTest from the earlier Python example (again, hyperlink?). You can save this 

script to a 2450 SourceMeter® instrument with the name FullDiodeTest to run the earlier Python example without any changes. 

Note the structure, it contains 3 functions. The first two are largely the same as before and are helper functions, the third is a 

"Main" function, forwardDiff() that does everything necessary to obtain the needed result. The script ends by calling that 

Main function, which otherwise would just be defined, but not run. 

import visa
rm = visa.ResourceManager()
address = "TCPIP0::192.0.0.5::inst0::INSTR" #Keithley 2450 SMU
inst = rm.open_resource(address)

inst.write("loadscript FullDiodeTest")
inst.write("function config()") # The config function
inst.write("reset()")
inst.write("smu.source.func = smu.FUNC_DC_CURRENT")
inst.write("smu.source.vlimit.level = 21")
inst.write("smu.source.autorange = smu.ON")
inst.write("smu.source.autodelay = smu.ON")
inst.write("smu.measure.func = smu.FUNC_DC_VOLTAGE")
inst.write("smu.measure.autorange = smu.ON")
inst.write("smu.measure.nplc = 1")
inst.write("end")
inst.write("function forwardv(current)") 

This Python code will save the script into an instrument’s memory. Once loaded into memory, the full test can be run by calling 

the forwardDiff() function so that the entire script does not need to be reloaded into memory.

Python
function config() -- The config function
    reset()
    smu.source.func = smu.FUNC_DC_CURRENT
    smu.source.vlimit.level = 21
    smu.source.autorange = smu.ON
    smu.source.autodelay = smu.ON
    smu.measure.func = smu.FUNC_DC_VOLTAGE
    smu.measure.autorange = smu.ON
    smu.measure.nplc = 1
end
function forwardv(current) -- Before, we printed the last reading to return the value to 
python, since we’re working all in TSP now, the value needs to be returned, not printed
    smu.source.level = current
    smu.source.output = smu.ON
    smu.measure.read()
    smu.source.output = smu.OFF
    return defbuffer1.readings[defbuffer1.endindex] -- changed print to return

function forwardDiff()
    config() -- It’s okay to call other scripts from within a TSP script!
    currlist = {1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2}
    voltlist = {n = table.getn(currlist)}
    for i , current in ipairs(currlist) do --ipairs is similar to the Python 
enumerate() function
        voltlist[i] = forwardv(current)
    end
    voltDiff = math.max(unpack(voltlist)) - math.min(unpack(voltlist))
    print(voltDiff)
end
forwardDiff()

Python

WWW.TEK.COM  |  17

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



inst.write("smu.source.level = current")
inst.write("smu.source.output = smu.ON")
inst.write("smu.measure.read()")
inst.write("smu.source.output = smu.OFF")
inst.write("return defbuffer1.readings[defbuffer1.endindex]") # changed print to return, since 
the logic is all in TSP now, we don’t want these values printed to console
inst.write("end")
inst.write("function forwardDiff()")
inst.write("config()") # It’s okay to call other scripts from within a TSP script!
inst.write("currlist = {1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2}")
inst.write("voltlist = {n = table.getn(currlist)}")
inst.write("for i , current in ipairs(currlist) do")
inst.write("voltlist[i] = forwardv(current)")
inst.write("end")
inst.write("voltDiff = math.max(unpack(voltlist)) - math.min(unpack(voltlist))")
inst.write("print(voltDiff)")
inst.write("end")
inst.write("forwardDiff()") # Run the "Main" function
inst.write("endscript")
inst.write("FullDiodeTest.save()") # Save the script, FullDiodeTest, into nonvolatile memory

18  |  WWW.TEK.COM

How to Write Scripts for Test Script Processing (TSP®) APPLICATION NOTE



Contact Information:
 Australia 1 800 709 465

Austria* 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3759 7627

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not  

accessible, call: +41 52 675 3777
Rev. 02.2018

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that  
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names 
referenced are the service marks, trademarks or registered trademarks of their respective companies. 

031121 SBG 1KW-61540-0

http://www.tek.com
http://www.tek.com

