
Harness the Power of
TSP™ Toolkit Software
 APPLICATION NOTE

Introduction
In an industry where rapid test development is crucial, the
need for effective automation and easy code development
has never been more pronounced. As businesses strive to
enhance their quality while reducing time to market, the
right tools can make all the difference. Enter Keithley TSP
Toolkit, a new scripting environment that makes adopting
Keithley’s Test Script Processor (TSP) language and
leveraging the benefits of on-instrument scripting more
straightforward than ever.

In this application note, we’ll define TSP and TSP Toolkit and
share some tips and tricks to help you leverage these tools
to increase your test throughput.

What is TSP?
TSP is a unique instrument automation command set and
programming language. TSP-enabled instruments contain
an embedded scripting engine that’s capable of executing
both instrument control commands and basic programming
functionality.

Each TSP-enabled instrument has a set of commands that
covers the entire range of functionality for that instrument.
In addition to operating like a traditional command set, TSP
is also a programming language. This offers two important
benefits for instrument control:

•	 The commands themselves mimic high-level languages
like C# or Python.

•	 The instruments can execute simple programming
structures such as for loops and while loops outside of the
instrument specific command set.

With TSP for test automation, we can create a file called
a TSP script that contains all or part of the test routine.
The TSP script can execute sweeps and collect data
without receiving commands remotely or requiring front
panel configuration, because it can be run directly on the
instrument. Unlike instruments that are only compatible
with SCPI, TSP-enabled instruments can store full scripts,
functions or variables in their memory, allowing it to
function autonomously once loaded with a script. For
writing these scripts, TSP Toolkit is the obvious choice.

2 | WWW.TEK.COM

Harness the Power of TSP™ Toolkit Software APPLICATION NOTE

TSP Toolkit
TSP Toolkit is an updated script development environment taking the form of a Microsoft Visual Studio Code extension
that includes instrument support for Keithley TSP-enabled instrumentation such as source measure units (SMUs), digital
multimeters (DMMs) and data acquisition systems (DAQs), plus many quality-of-life features that improve the script
development experience. TSP Toolkit is replacing Keithley Test Script Builder (TSB) and features all the same functionality
plus more.

TSP Toolkit features the modern user interface (UI) of the Microsoft Visual Studio Code editor (VS Code), complete with
syntax-highlighting for TSP to increase readability. VS Code also offers hundreds of additional extensions, so users
developing with multiple programming languages can seamlessly integrate TSP script development into their workflows.

The TSP Toolkit extension also features TSP command autocompletion alongside in-line and hover help, eliminating the need
to manually parse through dense reference manuals to confirm proper command usage and syntax.

Figure 1: TSP Toolkit command hover help feature in use.

WWW.TEK.COM | 3

Harness the Power of TSP™ Toolkit Software APPLICATION NOTE

TSP Toolkit can easily connect to TSP-enabled instruments
via the instrument pane, which comes equipped with
instrument autodiscovery. Discovered instruments in the
instrument pane can be expanded to view their model, serial
number, VISA or IP address and port number.

Right-click on a discovered instrument to access firmware
upgrades, the ability to rename your instrument and
establish a connection to the instrument.

Upon connection, an instrument terminal launches. This
terminal can function the same as any command line
terminal, including the one present in Test Script Builder.
You can have multiple terminals open at once, giving you the
option to connect to multiple instruments at a time.

Figure 3: TSP Toolkit instrument terminal in use.

Figure 2: TSP Toolkit instrument pane context menu options.

4 | WWW.TEK.COM

Harness the Power of TSP™ Toolkit Software APPLICATION NOTE

The terminal can be used to send individual TSP commands to the instrument or even execute function calls from pre-loaded
scripts. The terminal is also where any errors or queries are returned.

Figure 4: TSP Toolkit script editor window context menu options.

To run your script, right click anywhere within the script editor window and select “Send Script to Terminal”, or, if you have
multiple connections and want the script to run on all connected instruments, select “Send Script to All Terminals.”

The script will be sent to the instrument and run directly on the box, which improves throughput by reducing the number of
interactions across the bus and takes the processing burden away from the PC.

WWW.TEK.COM | 5

Harness the Power of TSP™ Toolkit Software APPLICATION NOTE

Saving Example Scripts from Test Script Builder
If you are a user of the original Keithley Test Script Builder, you know that it includes a library of example TSP scripts. TSP
Toolkit enables easy migration of these scripts and those developed with TSB.

To use TSB examples in TSP Toolkit, find the TSB Workspace file on your PC and copy it to a local directory on your PC. You
can find where the TSB Workspace file is stored on your computer by right clicking on any of the examples in the Navigator
tab and selecting properties.

Figure 5: Keithley Test Script Builder example workspace file location.

Open this new directory in VS Code by clicking File -> Open
Folder. This will give you access to all the files in the target
directory via the VS Code Explorer tab.

Figure 6: Microsoft Visual Studio Code explorer tab.

Example scripts are also available for download on the
official Keithley GitHub.

TSP Scripting Tips & Tricks
Scripting Rules
When a script is loaded into the runtime environment, a
global variable with the same name as the script is created
to reference the script.

1.	 Each script must have a unique name that cannot start
with a number.

2.	 Script names must not contain spaces.

3.	 Script names must be fewer than 27 characters long.

4.	 If you load a new script with the same name as an
existing script, an error event message is generated.
You must delete the existing script before you create a
new script with the same name.

5.	 If you revise a script and save it to the instrument with
a new name, the previously loaded script remains in the
instrument with the original name.

6.	 You can save scripts to nonvolatile memory in the
instrument. Saving a script to nonvolatile memory allows
the instrument to be turned off without losing the script.

It should be noted that these rules mainly apply to scripts
that are transferred to an instrument’s memory via USB
or another scripting language like Python. This is because
when running scripts within TSP Toolkit, the extension takes
care of many of these rules for you — but the script name
character limit must still be observed.

6 | WWW.TEK.COM

Harness the Power of TSP™ Toolkit Software APPLICATION NOTE

https://github.com/tektronix/keithley/tree/main/

Aliasing
If you do not like the naming conventions of traditional TSP commands or wish to abbreviate them, you can rename the
commands via aliasing. TSP commands are structured in levels, separated by periods. A portion of these levels or the entire
command can be stored to a variable and then the variable is used to call the command. With every level aliased, the script
performance will be better, and the commands are processed faster.

This example demonstrates how to create aliases for TSP commands:

TSP Toolkit Example 1: Aliasing

local dm = dmm.measure
local current = dmm.FUNC_DC_CURRENT
dm.func = current -- Alias for dmm.measure.func = dmm.FUNC_DC_CURRENT

local stop = trigger.model.abort
stop() -- Alias for trigger.model.abort()

local clear = eventlog.clear
clear() -- Alias for eventlog.clear()

Note in the above example, that the first line is aliasing 2 levels of a command, the second line is aliasing an enum and the
third line is using the aliases together to set the measure function to current.

When aliasing a function command like trigger.model.abort(), the parenthesis normally accompanied with the function is not
used. However, when calling the aliased function, stop(), the parenthesis is used normally. This behavior is the same for any
command that is a function.

Store & Run Scripts Locally
TSP scripts can also be saved to the instrument’s internal memory. This allows them to be accessed by any remote control
scheme or even be run without a controlling PC from the instrument’s front panel.

Scripts may be sent and saved to an instrument by using the loadscript and endscript keywords. This is especially helpful
when you need to automate the delivery of scripts, or when it is more practical to send scripts over an existing remote
connection. Note that the use of these keywords is not required for running the script in TSP Toolkit. They are used only if you
want to send the script to the instrument’s memory without executing it so that it can be saved on the instrument itself.

TSP Toolkit Example 2: Using the Loadscript and Endscript Keywords

loadscript testinfo --Send the loadscript command with a script name. This tells the instrument to
start collecting messages for a script named testInfo

display.settext(display.TEXT1, "Batch 233")
display.settext(display.TEXT2, "Test Information")
display.changescreen(display.SCREEN_USER_SWIPE)

endscript --Send the command that tells the instrument that the script is complete

testInfo() --Run the script by sending the script name followed by ()

testInfo.save() --To save the script to nonvolatile memory, send the command scriptname.save()

If using TSP Toolkit, a script can be saved to the instrument without the use of the loadscript and endscript keywords. Simply
open a connection to the target instrument and enter:
.script "path/to/scriptname.tsp" –save

in the instrument terminal.

WWW.TEK.COM | 7

Harness the Power of TSP™ Toolkit Software APPLICATION NOTE

Another method, which is more suited for small installation bases, involves simply saving the TSP script on a USB drive. The
front panel controls of TSP-enabled instruments will allow you to run the script directly from the USB drive or save the script
to the instrument’s internal memory. If a script on a USB flash drive is named autoinstall.tsp, the script is automatically
copied to the list of internal scripts when the drive is inserted into the instrument.

Automatic Execution Scripts
Scripts saved to USB drives or the instrument’s internal memory can be copied to start up. Scripts added to start up will
automatically execute as part of the instrument’s power on sequence. Below is an example script that changes the buffer
size and sets a Keithley DMM6500 6½-Digit Bench/System Digital Multimeter to measure current:

TSP Toolkit Example 3: Measuring Current When DMM is Turned On

reset() --Reset the instrument to a known state
defbuffer1.capacity = 1000 -- Change the size of the default buffer
dmm.measure.func = dmm.FUNC_DC_CURRENT -- Set the measurement function to current
dmm.measure.read() -- Take a reading

To save the script to the instrument’s power up sequence from TSP Toolkit, you can name your script autoexec.tsp and the
instrument will always run the script at startup.

Application Example: Sweeping with a Keithley 2450 SourceMeter®
SMU Instrument
As mentioned previously, scripts opened or developed in TSP Toolkit can be sent to the terminal to be run on a connected
instrument. In Figure 7, an example script from Test Script Builder has been opened within TSP Toolkit and executed. This
example, 2450_SweepI_MeasV.tsp, can be downloaded from the Keithley GitHub and instructs the 2450 SMU to output a
sweep from -100 mA to 100 mA in 101 steps while measuring the resulting voltage drop across the device under test.

The resulting current and voltage readings are printed to the terminal. You can copy and paste these readings into a
spreadsheet for further analysis and graphing.

Figure 7: 2450_SweepI_MeasV.tsp example script running in TSP Toolkit.

8 | WWW.TEK.COM

Harness the Power of TSP™ Toolkit Software APPLICATION NOTE

https://github.com/tektronix/keithley/blob/main/Instrument_Examples/Series_2400_Graphical/2450-SMU/SweepI_MeasV/2450_SweepI_MeasV.tsp

For the purposes of this application note, this test was run on an LED with a 20 mΩ resistance. The following image is a
screenshot from the 2450 front panel after the script finished executing, showing the collected data in a graph.

Figure 8: Resulting data shown on 2450 SMU front panel graph view.

Due to the highly extensible nature of Visual Studio Code, TSP Toolkit exists among other extensions for other programming
languages. This means that you can use TSP Toolkit to write a TSP script and then run the TSP file in your Python or
other framework.

The following example is a Python script that connects to an instrument via a VISA driver and then loads the 2450_SweepI_
MeasV.tsp script onto the instrument using a for loop. Once the script has been loaded into the instrument’s memory, it can
be executed on the instrument from Python using the *.run() function.

TSP Toolkit Example 3: Measuring Current When DMM is Turned On

import pyvisa as visa
rm = visa.ResourceManager()
smu_address = "TCPIP0::134.63.75.238::inst0::INSTR"
smu = rm.open_resource(smu_address)
smu.timeout = 20000

file_path = "C:\\Users\\stenagli\\OneDrive - Fortive\\Documents\\Scripts\\TSP\\User Manual
Test\\KE2450_SweepI_MeasV\\"
file_name = "2450_SweepI_MeasV.tsp"
file_path_and_name = file_path + file_name
print(file_path_and_name)

smu.write("loadscript SweepI_MeasV")
with open(file_path_and_name) as fp:
 for line in fp:
 smu.write(line)

smu.write("endscript")
smu.write("SweepI_MeasV.run()")
smu.close()

Conclusion
Using TSP as a powerful scripting tool can increase the overall functionality of your instruments and increase productivity
by creating and running test scripts faster. Scripting gives users the option to control multiple instruments with a single
program and significantly reduces communications over the bus. Fully integrating logical operations with remote commands
creates a plethora of possibilities for new tests, and TSP Toolkit makes it easier than ever to get started. Visit the TSP Toolkit
product page to learn more and download.

WWW.TEK.COM | 9

Harness the Power of TSP™ Toolkit Software APPLICATION NOTE

https://www.tek.com/en/products/software/tsp-toolkit-scripting-tool?pdfcode=tsp-toolkit-application-note

Contact Information:
 Australia 1 800 709 465

Austria* 00800 2255 4835
Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835
Brazil +55 (11) 3530-8901

Canada 1 800 833 9200
Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777
Denmark +45 80 88 1401
Finland +41 52 675 3777

France* 00800 2255 4835
Germany* 00800 2255 4835

Hong Kong 400 820 5835
India 000 800 650 1835

Indonesia 007 803 601 5249
Italy 00800 2255 4835
Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777
Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 88 69 35 25
Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835
New Zealand 0800 800 238

Norway 800 16098
People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077
Poland +41 52 675 3777

Portugal 80 08 12370
Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564
Singapore 800 6011 473

South Africa +41 52 675 3777
Spain* 00800 2255 4835

Sweden* 00800 2255 4835
Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688
Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835
USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not
accessible, call: +41 52 675 3777

Rev. 02.2022

Find more valuable resources at TEK.COM

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names
referenced are the service marks, trademarks or registered trademarks of their respective companies.
102824 SBG 1KW-74117-0

http://www.tek.com
http://www.tek.com

