

100G Physical Layer Characterization and Test of 25+ Gb/s signaling in latest Ethernet and OIF CEI Standards

Tektronjx^e

Agenda

100G Physical Layer Characterization and Test of 25+ Gb/s signaling in latest Ethernet and OIF CEI Standards

50 Minutes:

100G Technology - An update on the standards

- Market Drivers, Common Topologies, Trends

Tx Testing Overview – Instrumentation/ Signal acquisition requirements

- Signal Decomposition
- Eye Diagram & Jitter Analysis

Rx Testing Overview – Instrumentation/ Signal generation requirements

- Pattern Generation
- Stressed Receiver Error Detection

Tektronix

Market Drivers: (Bandwidth, Bandwidth, Bandwidth)

 The continuing drive to ever higher data rates for electrical devices is evidenced by the following emerging standards:

Standard	Description	Bit Rate
100GBASE-R4	100 Gb/s Ethernet, implemented as 4 x 25 Gb/s	• 25.78 Gb/s
SONET OTU4	100 Gb/s Telecom standard, implemented as 4 x 25 Gb/s	• 27.95 Gb/s
OIF CEI 3.0 IA	CEI-25G-LR supports backplane interfaces up to 680 mm with two connectors CEI-28G-SR supports chip-to-chip interfaces up to 300 mm with one connector at 28 GBaud/s	25 GBaud/s28 GBaud/s
INCITS T11.2	32GFC Fibre Channel	 28.05 Gb/s

- 15 billion fixed and mobile networked devices and machine-to-machine connections by 2015.
- By 2015, global IP Traffic will expand 4X from 20 exabytes/month to 81exabytes/month. (IEEE report). CAGR 32%
- Networked Storage Capacity will grow to 7910 exabytes by 2015 with 50% of this being accessed via Ethernet.

Tektronix

System Configurations

 The 100G ecosystem is converging on a modulo 4 configuration for reasons related to scalability advances in silicon design which make 28Gb/sec SERDES a common building block.

Standard	Description	Geometry	Reach	Data Rate	BER
IEEE 802.3ba / 802.3bj	100GBASE-LR4 100GBASE-ER4	2 SM fibers	10 km 40 km	4×25.78125 Gb/s	≤ 10-12
	100GBASE-SR4*	8/12 MM fibers	≤ 10 m	4x25.78125 Gb/s	≤ 10-12
	100GBASE-CR4* 100GBASE-KR4*	4 cables, backplane	*	4x25.78125 Gb/s	≤ 10-12
OIF CEI	CEI-28G-LR/SR CEI-28G-VSR*	N traces on PCB	30 cm 15* cm	19.90-28.05 Gb/s	≤ 10-15
INCITS T11.2 Fibre Channel	32GFC	8/12 MM channels optical and 8 electrical	TBA* ~≤ 10 m	28.05* Gb/s	≤ 10-12*

 Established Electrical, SM Optical interconnects and emerging MM technology present unique opportunities test challenges.

Tektronix

TX: Measurement Challenges - System Bandwidth

For characterization purposes, one typically requires bandwidth sufficient to examine the 3rd (or ideally the 5th) harmonic of the signal acquired. Shown below are a number of the current and emerging standards, their bit rates and the required/desired bandwidth:

Standard	Bit Rate (Gb/s)	Required Bandwidth (3 rd harmonic)	Desired Bandwidth (5 th harmonic)
16G Fibre Channel	14.025	21 GHz	35 GHz
PCle4.0	16.00	24 GHz	40 GHz
100GBASE-R4	25.781	39 GHz	64 GHz
CEI-28G-SR/VSR	27.975	42 GHz	70 GHz
40GBASE-FR	41.25	62 GHz	103 GHz

Tektronix

Transmitter Measurement Challenges and Instrumentation: DSA8300

 As bit rates continue to increase, the amplitudes of high bit-rate signals decreases.

- Depending on the slew-rate (i.e. rise time/signal amplitude), vertical noise can exhibit itself as additional jitter and eye closure.
- Electrical, Long and Short wavelength Optical signal acquisition.
 - 3rd harmonic of 28 Gb/s is 42 GHz: 50 GHz is desired
 - Dynamic range: VECP requires 50+ dB of dynamic range
- Jitter on Optical and Electrical signals
 - <100 to <200 fs component specifications

 - 300 fs electrical system specification
 - 400 fs optical system specification
- Concurrent Electrical and Optical Signal Capture

Tektronix^{*}

Ethernet: Measurements for 40GBASE-LR4, 100GBASE-LR4/ER4

- Similar to 10GBASE-*R singlemode optical
- Newly defined aspects are:
 - Optical Reference Receiver at 19.34 GHz; Clock Recovery at 10 MHz PLL LBW
 - Masks scaled version of 802.3ae. New masks for 25 and 28 Gb/s available as files from Tektronix
 - Masks **hit ratio** of 5×10^{-5} hits per sample (0.005%); calculation in oscilloscope math (contact Tektronix for details)

100GBase-I R4 Mask Test DSA8300 & 80C10C-F1 Reference Receiver

Tektronix

It is recommended that each Table 1-9. Host-to						9.	OIE CEI
Parameter	Symbol	Min.	Max.	Units	Conditions	_	OIF-CEI – Co
Differential Voltage, pk-pk	T_Vdiff	600	-	m∨	PRBS31 pattern. Emphasis off. Note 1		de hig ver
Common Mode Voltage	T_Vcm	-100	1700	m∨	Note 2		are
Differential resistance	T_Rd	80	120	ohms			de
Differential resistance Mismatch	T+_Rdm	-	10	96	at 1 MHz		- T_I
Differential Return Loss	T_SDD22	-	See 10.3.1.3 (CEI-28G- SR)	dB			coi Bo Un
Transition Time: 20/80%	T_tr, T_tf	8	-	ps	Emphasis off.		(В
Common Mode Noise, rms	T_Ncm	-	12	m∨	See 12.3		Pre
Uncorrelated Unbounded Gaussian jitter	T_UUGJ	-/	0.15	UI			Jitt – T
Uncorrelated Bounded high probability jitter	T_UBHPJ	/-	0.15	UI	Note 4		Ra
Duty Cycle Distortion (component of UBHPJ)	T_DCD	-	0.035	UI	Note 5		be to
Total Jitter	T_TJ	-	0.28	UI	Note 3		the
Note 1: Max voltage is limited by Note 2: Load type 0 with min. T_\ Note 3: T_TJ includes all of the jit Note 4: Measured with all possibl Note 5: Included in T_UBHPJ	/diff, AC-Cou ter componer	oling or floating	without any tra		alization		too

- specifications
 - lex Jitter nposition and lynamic range al noise analysis y to current
 - HPJ is the nation led related Jitter and High bility Bounded (PJ) [°] GJ is just
 - om Jitter (RJ) very pedantic ninate BUJ from ix which is a ion problem

ektronix[,]

Key 100G Transmitter Test Products Summary

- Enhanced phase reference module and electrical sampling modules
 - 82A04B enhanced phase reference module that enables <100 fs instrument jitter
 - Highest performance, multi-channel, low jitter solution
 - 80E11, 80E11X1 ultra-low jitter (85 fs RMS, typical), 70 GHz dual and single channel samplers
 - Highest bandwidth, ultra-low jitter, high fidelity signal acquisition
 - 80E07B, 80E08B, 80E09B, 80E10B ultra-low jitter (95 fs RMS, typical) versions of the existing remote samplers
 - Remote samplers minimize aberrations due to cabling and test fixturing.
 - Select modules to meet bandwidth and noise requirements (20 GHz – 60 GHz)
 - 80E08B and 80E10B include highest performance integrated TDR capability

Receiver Measurement Challenges and Instrumentation

Tektronix

- Generator jitter noise levels and specifically jitter constituent components (Rj, DDJ etc) are key to ensure the various minimum impairment levels can be achieved and full receiver margins reached.
- Error location and advanced error profiling tools to offer insights to where the signal failures occur.
- Electrical to Optical conversion process is needed at various short and long wavelengths, with a linear E/O transfer function.
- Optical to Electrical conversion systems which can operate at short and long wavelengths, with good SNR capabilities.
- Electrical and Optical BER Measurements to BER levels of 10e-15.

Tektronix

Receiver testing for High Speed DataCom at 100G Instrument Intrinsics. 100GBase-*R4 100GBase BSA286C:

- - Support for rates through 28.6G offer 3% margin over standard base spec's.
- 32G Fibre-Channel CEI 28.0500 28.0500 35.8500 35.8500 0.14 0.13 (FEC) 25.7813 38.7879 0.13 Rates Rate I UI (period) Allocated Rj (UI) Rj in Psec RMS
 - <350pSec RMS Rj allows following the J2 and J9 jitter intercepts</p> with margin.

Data Source: CH1		Data Rate:	28 Gbps Filter: False		Total Jitter @ BER			Total Noise @ BER			
SSC: Off		Pattern: 12		Channel: I		TJ (1E-12)	=	5.92 ps	TN (1E-12)	-	220.38 m
Phase Reference: 7 GHz		Sample Co	unt: 52.70 k	Equalizer:	None	Eye Opening (1E-12)	=	29.79 ps	Eye Opening (1E-12)	-	684.89 m
Nitter (Decision Threshold: -7	7.73 mV)		Noise (Sampling Phase:	OUI)					Ey e Amplitude	=	905.27 m
Random Jitter			Random Noise			Dual Dirac			SSC Modulation		
RJ (RMS)	=	199.01 fs	RN (RMS)	=	4.98 mV	RJ(d-d)	=	223.73 fs	Magnitude	=	0 ppm
RJ(h) (RMS)	=	160.06 fs	RN(v) (RMS)	=	4.98 mV	DJ(d-d)	=	2.77 ps	Frequency	-	0 Hz
RJ(v) (RMS)	-	118.26 fs	RN(h) (RMS)	=	108.30 u/	DJPD			DDJ vs Bi		
Deterministic Jitter			Deterministic Noise			0.05			EARLS BELL	rihru	181
DJ	=	3.59 ps	DN	=	161.33 m	0.04			a MAM a	11111	ועטוו
DDJ	=	3.17 ps	DDN		155.62 m	0.02	1		an Mar A Mar	$^{\sim}$	₩
DCD	=	198.77 fs	DDN(level 1)	=	144.05 m	0.01	"-				niili
DDPWS	=	1.13 ps	DDN(level 0)	=	171.04 m	BER Ba	thtub	5 06	30 ns 31 BER Eye	33	34 ns
P)	=	144.94 fs	PN	=	4.53 mV	•			600 m/v-		
P3(h)	=	97.27 fs	PN(v)	=	4.53 mV	6.0			200		
P3(v)	-	107.46 fs	PN(h)	=	65.82 uV	20 E		20 ps	400 mV 20 ps 0		4
15									Tektı	m	iv.

5

Tektronix°

Receiver testing for High Speed DataCom at 100G Summary

- The BERTScope instrument has to have low ~350fSec intrinsic Rj to have a solution which can simultaneously intercept the J2/J9 spec points.
- VECP requires high fidelity signal integrity. High Vertical noise will never permit convergence on the require 1.8dB VECP values.
- One Sampling Instrument can perform simultaneous optical, single and multi-channel electrical with Bandwidth and Noise floor levels well in excess of most margin needs.
- Established CRU technology and with proven performance and years of a deployed track-record.

Tektronix.

