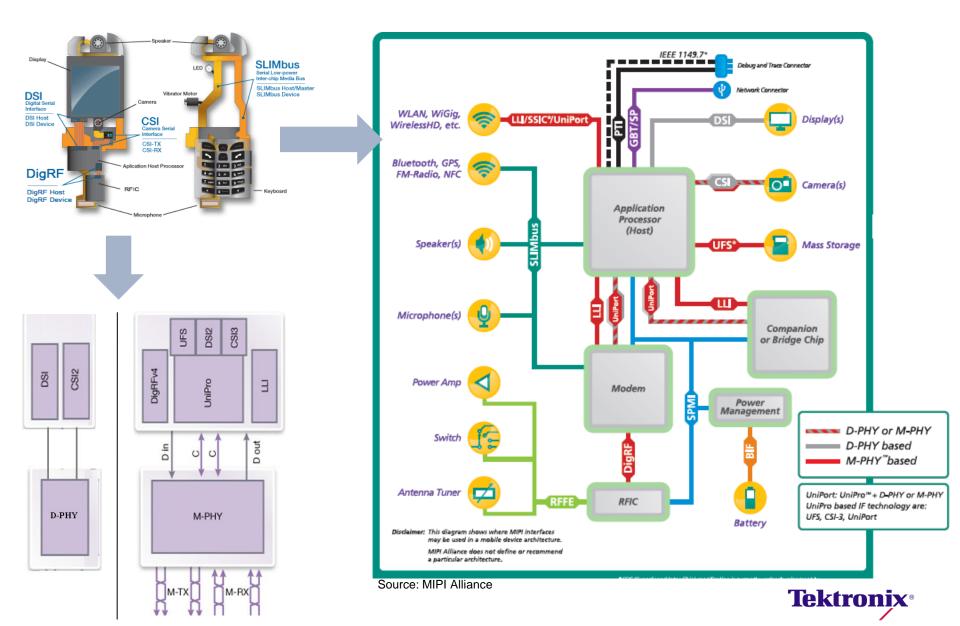
MIPI Physical Layer Test Solutions

D-PHY and M-PHY

MIPI® Solutions Team Updated June, 2012

www.Tek.com/MIPI


Agenda

- MIPI® Technologies & Tek Strategic Involvement
- D-Phy testing
 - Tx
 - Scopes-Decode: CSI, &DSI
 - Rx
- M-Phy testing
 - Tx
 - Scopes-Decodes:, 8b-10b, DigRF, LLI, &UniPro
 - Rx
- Summary, Q&A

MIPI Technologies Overview Example of a Mobile Platform


Tek Strategic Involvement With MIPI Alliance & UNH-IOL

- Tektronix is a Contributor Member of the MIPI Alliance
- M-PHY Tx/Rx CTS Test Document "Co-Authored" by Tektronix
- Tektronix has a close working relationship with UNH-IOL.
- Joint Press-Announcements of Tek with MIPI Alliance and UNH.
 - http://www2.tek.com/cmswpt/prdetails.lotr?ct=PR&cs=News+Release&ci=19076&lc=EN
 - "As an active MIPI contributor, Tektronix products speed the assessment of D-PHY and M-PHY performance and signal integrity. Tektronix is helping to simplify physical-layer test and validation."
 - Joel Huloux, Chairman of the MIPI Alliance, Sept'2011
 - http://www2.tek.com/cmswpt/prdetails.lotr%3Fct%3DPR%26cs%3DNews%2BRelease%26ci%3D17639%26lc%3DEN&urlhash=HZu6
 - "...Tektronix spurring the adoption of D-PHY and M-PHY specifications.."
 - Joel Huloux, Chairman of the MIPI Alliance, Sept'2010
 - "Tektronix has been supportive of UNH-IOL's collaborative efforts of physical layer measurement methodologies"
 - Andy Baldman, MIPI Interop R&D Technical Staff, UNH-IOL, Sept'2010

Tek Strategic Involvement

Tek Tools listed on MIPI Official Webpage, UNH Webpage &CTS Spec

mipi alliance Tektronix

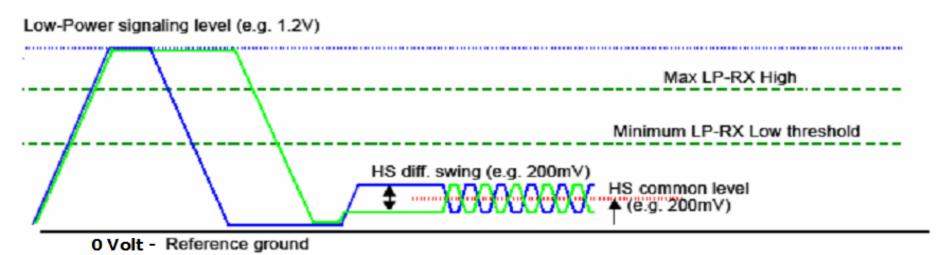
UNH (University of New Hampshire) is a 3rd party test house Using Tektronix setup

Tek Strategic Involvement

Key-Customer Testimonials

Joint Announcements of Tek with ST-Ericsson, Synopsis & Mixel

- http://www.marketwatch.com/story/tektronix-further-strengthens-support-for-automated-mipirm-phy-testing-2012-06-12
- "We have been using Tektronix M-PHY test bench for over a year for M-PHY electrical characterization and analysis and to significantly speed up compliance testing. Advanced test solutions such as those available from Tektronix are critical to the emergence of a new standard like M-PHY."
 - Steve Kwiatkowski, HSS Test Engineer, ST-Ericsson, Grenoble, June 2012
 - Ahmed Bouaiss, HSS Test Project Lead, ST-Ericsson, Grenoble, June 2012
- http://www2.tek.com/cmswpt/prdetails.lotr?ct=PR&cs=News+Release&ci=19076&lc=EN
- "Synopsys used the Tektronix DPO70804 and DSA8200 oscilloscopes to ensure that the silicon-proven DesignWare MIPI M-PHY met the necessary electrical characteristics and performance requirements"
 - Hezi Saar, Product marketing manager, Synopsis, Inc. August' 2011
- "MIPI testing requirements involve a large set of PHY layer checkpoints.
 Automating PHY testing is essential for high efficiency and predictability. We were glad to support Tektronix...."
 - Ashraf Takla, CEO, Mixel Inc, July' 2010


Agenda

- MIPI Technologies &Tek Strategic Involvement
- D-Phy testing
 - Tx
 - Scopes-Decode: CSI, &DSI
 - Rx
- M-Phy testing
 - Tx
 - Scopes-Decodes: 8b-10b, DigRF, LLI, &UniPro
 - Rx
- Summary, Q&A

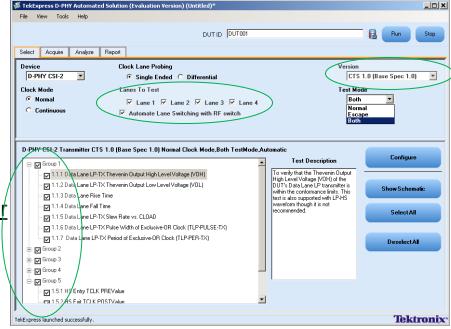
What is D-PHY?

- It's a PHY standard for interfacing Camera (CSI) & Display (DSI)
- Two modes of transmission
 - High Speed (HS) and Low Power (LP)
- Modes are mixed during the operation
 - Transitions from LP to HS and back to LP on the fly
- Maximum Data Rate
 - High Speed mode: 80 Mbps 1 Gbps, Typically at ~500 Mbps.
 - Low Power mode: Up to 10 Mbps
- Bus termination
 - 50 ohms in HS
 - Hi-Z in LP

D-PHY Testing Challenges

- Logo testing is not required, but Optional.
 - MIPI is Chip-to-Chip/ Chip-to-Peripheral interface, similar to a DDR bus.
 - Mobile Phones do not need compliance logo, unlike USB/SATA devices
- No two MIPI devices are the same
 - Variable Data Rates
 - Up to 4 lanes of Data traffic,
 - Multiple different data formats
 - Specification enables custom limits.
- Characterization is significantly important
 - Mobile OEMs select the suppliers based on characterization reports.
- Several measurements (Total 49) to be performed.
 - Clock Lane
 - Data Lane
 - Clock-Data Timing

D-PHY Tx: Opt.D-PHYTX Conformance Test Solution

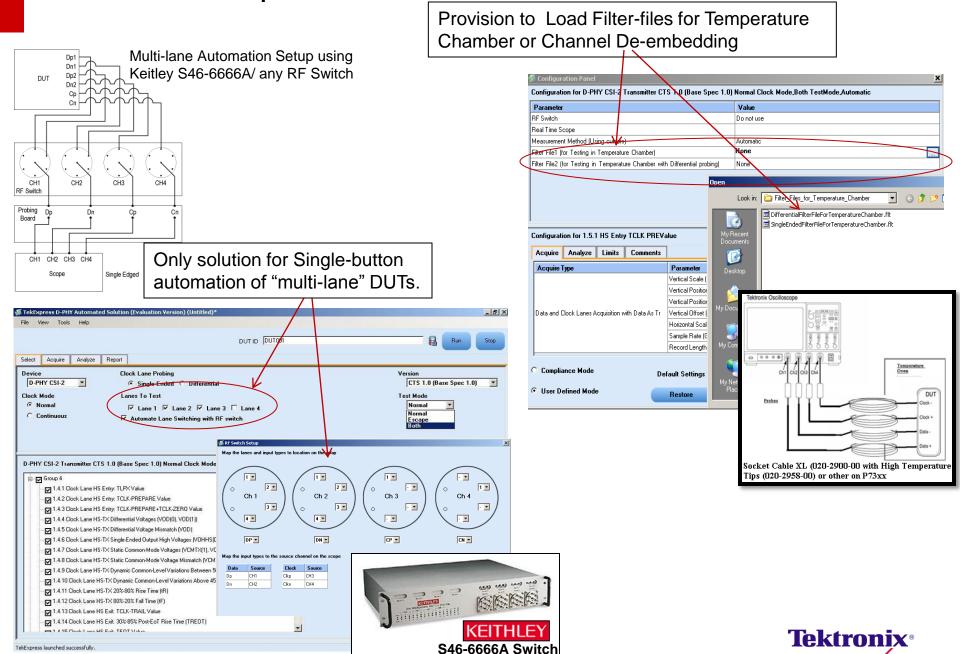

- Opt.D-PHYTX : D-PHY Automated Solution
 - TekExpress option for Fully-Automated testing
 - Provides <u>Conformance and Characterization</u> Testing
 - Runs on 7K/C and 70K/B/C/D scopes
 - Opt.TEKEXP is Pre-Requisite

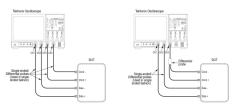
Differentiation

- <u>Un-parallel</u> Automation (Auto-Cursors)
- <u>100%</u> Widest Test Coverage
- Fully-Automated for <u>Multi-lane DUTs</u>
- Fully-Automated <u>Temperature Chamber</u>
- Conformance to Latest CTS (v1.0)
- Based on Latest Base spec (v1.0)

Value proposition

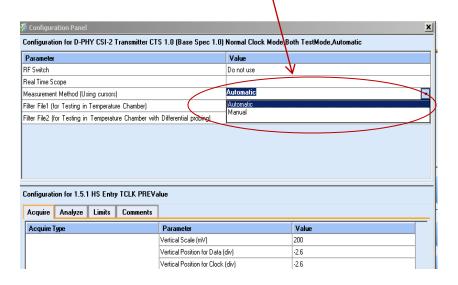
- Custom-limits/ Limits-Editing
- Test Reports with Pass/Fail summary, margins, & "Zoom-in" Waveform Captures
- Tek 3.5GHz scope is the minimal configuration for accurate testing
- D-PHY extension spec (1.5G) ready




D-PHY Tx : Opt.D-PHYTX Features

Feature	Benefit
Unparallel-Automated Testing	 Performs <u>Single-button Fully-Automated</u> testing. "Automatically" Identifies the testing region for each test using autocursors, and does not require operator intervention. Minimizes your testing time and resources.
Widest Tests Coverage	 100% Coverage 49 out of 49 total CTS tests
Fully-Automated Multilane Testing	 Enables Single-button execution for "multi-lane" DUTs, using any external RF switch (Recommended Keithley S46-6666A switch: www.keithley.com/products/switch/rfmicrowave/?mn=S46) Provide single-printable report for all tests and all lanes together, tabulated lane-by-lane.
Fully-Automated TemperatureChamber	Validate All High Speed tests using differential probes, Socket XL cables, High-Temperature Tips and Standard Filter Files.
Characterization/ Margin Testing	 Unit Intervals automatically calculated based on the DUT datarates Allows to perform ULPS &Normal Mode tests Allows <u>custom-limits or limits-editing</u> to perform Margin testing. Allows selective tests run in Clock Continuous mode
Test-Reports	Provides "Zoon-In" screenshots of cursors for each telektronix

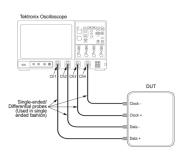
D-PHY Tx : Opt.D-PHYTX Features

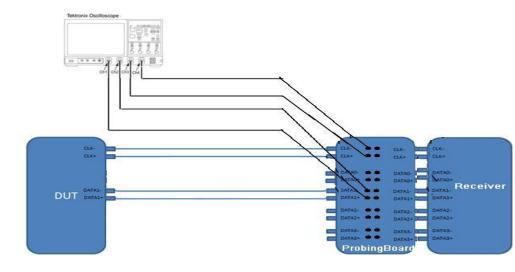


D-PHY Tx: Opt.D-PHYTX Features

Single-Lane Automation Setup using SE/Diff probes

Switch between Automatic and Manual cursor palcement. In Automatic mode, software can find the LP/HS regions automatically. Switch to Manual for debug or if your signal is too noisy.

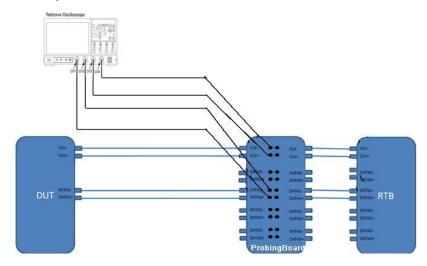

Test Reports with "ZOOM-IN" screenshots of the cursors placement for each test.



D-PHY Tx : D-PHY DUT Scenarios Use Cases/ Test Setup Examples – 1 (Live-Setups)

- Use-Case: Single-lane Live-Setup (i.e Tx-Rx ends connected), and DUT has no SMA i/f.
- Test Setup: "No Termination Board"
 Required. No Probing board Required.
 Use Solder-In/ Square-Pins directly to connect at the PINs of the DUT.

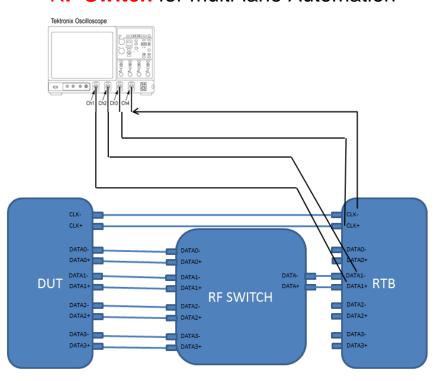
- Use-Case: Single-lane Live-Setup (ie.Tx-Rx ends connected), and DUT has Only SMA i/f.
- Test Setup: "No Termination Board"
 Required, But a Probing-Board Required for SMA i/f.



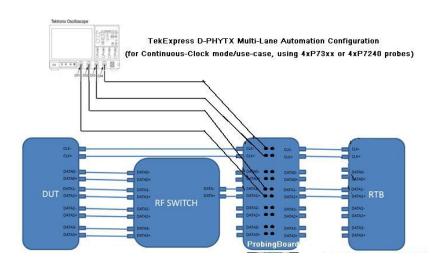
D-PHY Tx: D-PHY DUT Scenarios Use Cases/ Test Setup Examples – 2 (Non-live Setups)

- Use-Case: Single-lane Non-Live-Setup with Stand-alone DUTs, and DUT has no SMA i/f.
- Test Setup: "Termination Board" Required. Use Solder-In/ Square-Pins directly to connect Test Setup: "No Termination Board" Required. Use Solder-In/ Square-Pins directly to connect. Cables between RTB and DUT must be shortest matched pair as possible.
 - CLKCLK+
 DATAODATAODATAI-

- Use-Case: Single-lane Non-Live-Setup with Stand-alone DUTs, and DUT has Only SMA i/f.
- Test Setup: "Termination Board" Required. And, a Probing-Board Required for SMA i/f..



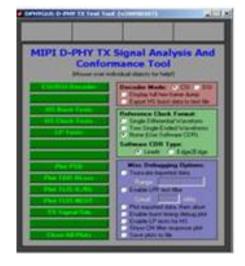
D-PHY Tx : D-PHY DUT Scenarios Use Cases/ Test Setup Examples – 3 (Multi-Lane DUT)


 Use-Case: Multi-lane Non-Live-Setup with Stand-alone DUTs, and DUT has no SMA i/f.

Test Setup: "Termination Board"
Required. Use Solder-In/ Square-Pins
directly to connect. Optional: **Keithley RF Switch** for multi-lane Automation

 Use-Case: Multi-lane Non-Live-Setup with Stand-alone DUTs, and DUT has Only SMA i/f.

Test Setup: "Termination Board"
Required. And, a Probing-Board
Required for SMA i/f. Optional: Keithley
RF Switch for multi-lane Automation

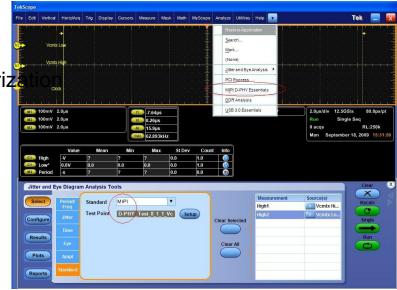

D-PHY Tx: Results Correlations Tek D-PHYTX, and UNH-IOL tool DPHYGUI

		Tek Result			UNH Result		Deviat		n in %
Test ID	M easurement name	Dp	Dn	Unit	Dp	On			Dn
1.1.1	Data Lane LP-TX Thevenin Output High Level Votage (VOH)	1.212	1.209	V	1.212	1.2	9	0.00	0.00
1.1.2	Data Lane LP-TX Thevenin Output Low Level Voltage (VOL)	0.024	0.021	V	0.204	0.2	3	-88.24	-90.14
1.1.3	Data Lane Rise Time	24.35	23.89		28.06	24.	9	-13.22	-0.83
1.1.4	Data Lane Fall Time	14	13.52	nS	13.97	13	4	0.21	0.90
1.2.1	Clock Lane LP-TX Thevenih Output High Level Votage (VOH)	1.191	1.209		1.191	1.2	9	0.00	0.00
1.2.2	Clock Lane LP-TX Thevenih Output Low Level Voltage (VDL)	0.009	0.045	V	0.219	0.4	5	-95.89	-88,89
1.2.3	Clock Lane Rise Time	22.92	22.2	nS	22.83	22	1	0.39	-0.49
1.2.4	Clock Lane Fall Time	14.2	10.68	nS	14.42 10.		1	-1.53	2.59
1.3.1	Data Lane HS Entry: Data Lane TLPX Value		70.08	nS		70	1	-0.03	-0.03
1.3.2	Data Lane HS Entry: THS-PREPARE Value		72.32	nS		72	4	-0.11	-0.11
1.3.3	Data Lane HS Entry: THS-PREPARE + THS-ZER O Value		178.88	nS		178.	7	0.01	0.01
1.3.4	Data Lane HS-TX Differential Voltages (V _{OQ(b)} V _{Op(t)})	-211.6	217.2	m/V	-214.8	218		-1.49	-0.50
1.3.5	Data Lane HS-TX Differential Voltage Mismatch (ΔV _∞)		5.6	m/V		3	5	37.50	37.50
1.3.6	Data Lane HS-TX Single Ended Output High Voltages (Vоннарм, Vоннарм))	456	453	m/V	417.5	4	7	8.44	7.99
1.3.7	Data Lane HS-TX Common-Mode Voltages (Voltage)	305.96	306.78	m/V	305.2	306	7	0.25	0.03
1.3.8	Data Lane HS-TX Common-Mode Voltage Mismatch (ΔV _{OLTX(I,C)})		0.408	m/V		0	7	-41.71	-41.71
1.3.9	Data Lane HS-TX Dynamic Common-Leve I Variations Between 50-450 MHz		13.59	m Vpk		14	3	-4.97	-4.97
1.3.10	Data Lane HS-TX Dynamic Common-Leve I Variations Above 450MHz (ΔV _C)		7	m/rms			7	0.00	0.00
1.3.11	Data Lane HS-TX 20%-80% Rise time (t _p)		223.6	pS		223	5	0.04	0.04
1.3.12	Data Lane HS-TX 80%-20% Fall time (t _R)		228.6	pS	225			-0.44	-0.44
1.3.13	Data Lane HS Exit: T _{KS-TRAL} Value		62.45	nS	62		4	0.18	0.18
1.3.14	Data Lane HS Exit: 30%-80% Post-EoT Rise Time(T _{REOT}) Value		17.04	nS	16.		3	2.47	2.47
1.3.15	Data Lane HS Exit: TEOT Value		79.49	nS	78.		7		-0.66
1.3.16	Data Lane HS Exit: THS-EXIT Value		10.98	nS	Not Available		П		
1.4.1	Clock Lane HS Entry: T _{LPX} Value		71.28	nS	71.		5	0.04	0.04
1.4.2	Clock Lane H.S. Brity: Touk.pggpung Value		51.9	nS	50.		6	3,26	3, 26
1.4.3	Clock Lane HS Entry: Tolk properties +Tzgno Value		294.6	nS		298.	1	-1.24	-1.24
1.4.4	Clock Lane HS-TX Differential Voltages (Voorg, Voorg)	-188.31	136.99	mV	-184.7	132	7	1.95	1.99
1.4.5	Clock Lane HS-TX Differential Voltage Mismatch (△V ₀₀)		51.33	m/V		58	2	-11.80	-11.80
1.4.6	Clock Lane HS-TX Single Ended Output High Voltages (Vollage), Vollages()	447	471	mV	378.6	404	1	15.30	14.20
1.4.7	Clock Lane HS-TX Common-Mode Voltages (V _{CMTX(1)} ,VCMTX ₍₂₎)	314.06	310.84	m/V	314.1 31		9	-0.01	-0.02
1.4.8	Clock Lane HS-TX Common-Mode Voltage Mismatch (ΔV _{OLTXH,D})		1.61	mV			6	0.63	0.63
1.4.9	Clock Lane HS-TX Dynamic Common-Level Variations Between 50-450MH;		17.3	m Vpk	1:		2	29.48	29.48
1.4.10	Clock Lane H.S-TX Dynamic Common-Level Variations Above 450MHz (ΔV/		7.46	mVrms			4	0.81	0.81
1.4.11	Clock Lane HS-TX 20%-80% Rise time (t _b)		277.3	pS	26		2	5.36	5.36
1.4.12	Clock Lane HS-TX 80%-20% Fall time (to)		275.39	pS	25		3	6.62	6.62
1.4.13	Clock Lane HS Bxt: Tour Table Value		53.32	nS	52		7	1.23	1.23
1.4.14	Clock Lane HS Exit: 30%-80% Post-EoT Rise Time(T _{REOT}) Value		17	nS	17.		1	-2.91	-2.91
1.4.15	Clock Lane HS Bxlt: TEO T Value		70.31	nS	70.		8		-0.19
1.4.16	Clock Lane HS Exit: THS-EXIT Value		178.24	nS	Not Available		П		
		Min	Max		Min	Max	П	Mih	Max
1.4.17	Clock Lane HS Clock Instantaneous (Ul _{INST})	1.134	1.38	pS	NA	1.3	6	NA	1.77
		Mean	1,265	1	Mean	1.		Mean	1,20
1.5.1	HS Britry Tourispe Value	87.28		nS	8			-2.26	-2.26
1.5.2	HS Bxt Toukpoor Value	10361.50			10297.		7	0.62	0.62
1.5.3	HS Clock Rising Edge Alignment to First Payload Bit						П		
	Data-to-Clock Skew (TSKEW(TX))				-		۲		
l	Clock UI		1.25	nS		1	3		0.00
1.5.4	Max Imum Data to clock skew			mUI		-2	2		-4.73
	Minimum Data to clock skew	l		mUI	l	- 1			5.09
l	Mean Data to dock skew	l		mUI	-35		ž		3.41
			-				ď		2.41

Setup: MSO 20GHz scope, 4x P6248 probes, Termination board and probing board from UNH.

* As LP HS waveform is used in this use-case, Tek algorithm finds the LP-00 region and computes VOL in that region, whereas the UNH algorithm considers to computing VOL. If LP storal is used, the same measurement has 100 % correlation.

Donatali.	- 1- 24
Deviati	OR IN %6
Dp	Dn
0.00	0.00
-88.24	-90.14
-13,22	-0.83
0.21	0.90
0.00	0.00
-95.89	-88.89
0.39	-0.45
0.39 -1.53 -0.03 -0.11 0.01	-90.14 -0.83 0.90 -0.00 -88.83 -0.43 -0.01 -0.01
-1.53 -0.03	2.55 -0.03
-0.11	-0.11
0.01	-0.11
0.01	0.0
-1.49 37.50	-0.50 37.50
37.50	37.50
8.44 0.25 -41.71	7.99 0.00 -41.71
0.25	0.03
-41.71	7.99 0.00 -41.71 -4.91 0.00
-4.97	-4.91
0.00	0.00
0.04	0.0
0.04 -0.44	0.04 -0.44
0.18	0.18
2.47	2.47
2.41	2.47 -0.66
	0.01
0.04	0.04
0.04 3.26	0.04 3.26 -1.24 1.98
-1.24	1.24
	1.24
	1.99
-11.80	-11.80 14.20
15.30	14.20
-0.01 0.63 29.48	-0.00 0.60 29.40
0.63	0.63
	29.4
0.81 5.36	0.8° 5.36
	5.38
6.62	29.44 0.8 5.3 6.6 1.2
1.23	1.2
-2.91	1.23 -2.91 -0.15
	-0.19
Mih	Max
NA	1.77
	1.20
Mean	1.20
-2.26 0.62	1.77 1.20 -2.26 0.60
0.62	0.63


D-PHY Tx: Opt.D-PHY Debug and Analysis Solution

Opt.D-PHY : D-PHY Essentials

- DPOJET option for Setup Library &MOI
- Provides <u>Debug Analysis and Characterization</u> Testing
- Based on Latest D-PHY Base Spec <u>v1.0</u> and UNH's Conformance Test Suite <u>v1.0</u>.
- Runs on 7K/C and 70K/B/C scopes
- Opt.DJA is Pre-Requisite

Differentiation

- Fully-Flexible for Debug Analysis &Characteriz
- Breadth of Tests Coverage
- Based on State-of-the-art DPOJET tool

Value proposition

- Tek 3.5GHz scope is the Minimal Configuration for accurate testing
- Single tool (DPOJET) for both MIPI Phy standards Opt.M-PHYTX &Opt.D-PHY
- Comprehensive DPOJET Reports.
- D-PHY extension spec (1.5G) ready

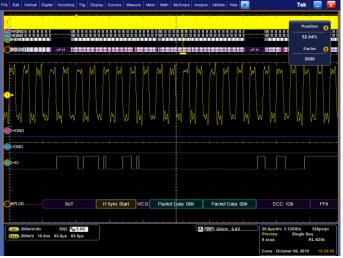
D-PHY Tx: 1.5G Data Rate Extension Spec v1.1 Spec Announced January, 2012

- Both Opt.D-PHYTX and Opt.D-PHY are Fully-Supported for 1.5G.
 - All Measurement Algorithms remain same
 - Only "Limits" vary for following Five parameters for 1.5G datarate.
 - 1. HS rise/fall time (tr, tf),
 - 2. VOD mismatch (dVOD),
 - 3. TX data to clock skew (TSKEW[TX]),
 - RX setup and hold times (TSETUP[RX], THOLD[RX]),
 - TX/RX return loss (SddTX, SddRX).
 - Both Opt.D-PHYTX and Opt.D-PHY support Limits Editing today.

Agenda

- MIPI Technologies &Tek Strategic Involvement
- D-Phy testing
 - Tx
 - Scopes-Decode: CSI, &DSI
 - Rx
- M-Phy testing
 - Tx
 - Scopes-Decodes: 8b-10b, DigRF, LLI, &UniPro
 - Rx
- Summary, Q&A

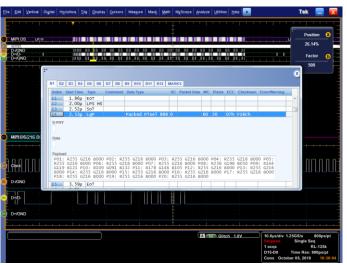
D-PHY Decode: Opt.SR-DPHY for DSI/ CSI-2 Decode


Simultaneous Acquisition

- Probe using Analog, Digital or Mixed Channels
- Simultaneous probing of DSI &CSI using MSO channels
- Working on multi-lane support, using high performance MSO digital channels
- Supported on all 7KC, 70KC and MSO70K scopes. (Win7-OS only)
 - Option key bit #25
- Software installed as part of TekScope firmware v6.1.2.4 or later.
 - Browse to TekScope Menu --> Vertical --> Bus Setup --> Select Bus Type as Serial-- > Select MIPI DSI or CSI from the drop down list.

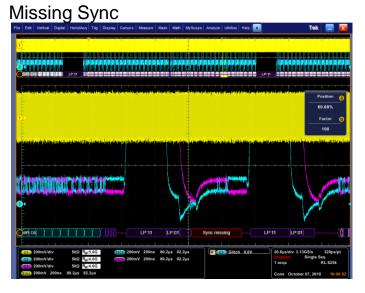
Probe using Mixed Channels

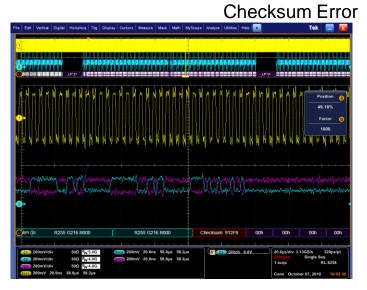
Analog Clock, Digital Data

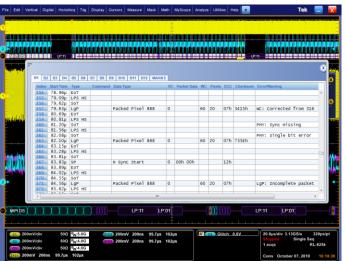

Digital Clock, Analog Data

D-PHY Decode: Opt.SR-DPHY for DSI/ CSI-2 Decode Timestamps

- Decodes LP &HS states, BTA, DCS, ECC, Checksum, Escape Mode, etc
- Decodes SoT, EoT, Data Type, Virtual Channel, Word Count, Short / Long packet, Number of pixels, Each pixel values shown in R-B-G format.
- Timestamps for each Event &Event Table
- Zoom on a row of pixels




D-PHY Decode: Opt.SR-DPHY for DSI/ CSI-2 Decode


Errors/ Warnings indicated in Decode waveform & Event Table

ECC error

Errors and Warnings indicated in event table

D-PHY Tx & Decode: Recommended Test Setup

www.Tek.com/MIPI

Scope

 DPO7354/C or DPO/DSA/MSO70404/B/C/D or higher for rise time accuracies

Probes

For 7Ks: 4x TAPxx/ P6245/ P6249, or 4x TDP3500/P73xx (clock is non-continuous), or 3x TDP3500/P73xx (clock is continuous).

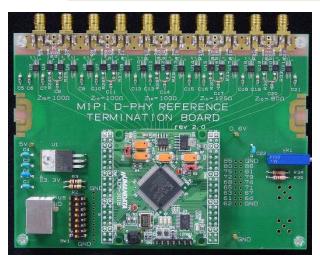
For 70Ks: 4xP7240, or 4xP73xx (clock is non-continuous), or 3xP73xx (clock is continuous).

Scope Software

- Opt.D-PHYTX on TEKEXP for Conformance Test
- Opt.D-PHY on DPOJET for Debug, Analysis & Characterization
- Opt.SR-DPHY for Decoding CSI-2 and DSI traffic

Fixtures

P7380 probe used with a probe-tip


- As MIPI is a chip-to-chip interface, most DUT setups are LIVE with Master-Slave/ Receiver-end connected.
- For live-setups: No Fixtures required.
- For non-live setups: We recommend following UNH-IOL Termination board
 - http://www.iol.unh.edu/services/testing/mipi/fixtures.php
 - www.iol.unh.edu/services/testing/mipi/MIPI_Test_Fixture_Order_Form.doc

D-PHY Tx: Optional Accessories

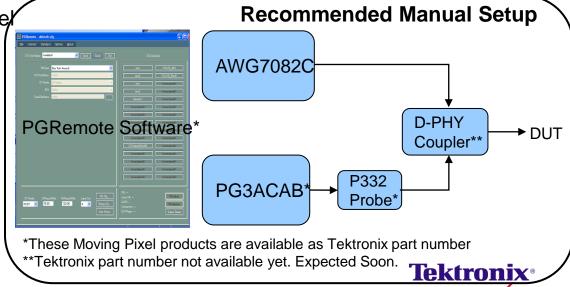
Optional Based on DUT Scenarios (i.e. SMA/ Non-live setup/ Multi-lane)

- UNH-IOL RTB Reference Termination Board (list price: \$2,895.),
 UNH-IOL Probing Board (list price: \$450.), and Capacitive Load Board for Clock and Data Lane LP-TX Signaling tests (list price: \$295.).
 - http://www.iol.unh.edu/services/testing/mipi/fixtures.php
 - www.iol.unh.edu/services/testing/mipi/MIPI_Test_Fixture_Order_Form.doc

- RF Switch,
 - Keithley S46-6666A, for multi-lane automation:
 - http://www.keithley.com/products/switch/rfmicrowave/?mn=S46

Agenda

- MIPI Technologies &Tek Strategic Involvement
- D-Phy testing
 - Tx
 - Scopes-Decode: CSI, &DSI
 - Rx
- M-Phy testing
 - Tx
 - Scopes-Decodes: 8b-10b, DigRF, LLI, &UniPro
 - Rx
- Summary, Q&A



D-PHY Rx: Test Solution Overview

Manual Setup based on PG with PGRemote Software

- 100% Coverage to Rx CTS
 - Meets all the requirements in UNH-IOL CTS document (v0.98)
- Quick and Easy setup
 - No complex VXI system, just stand alone instruments, and a probe.
- Cost effective solution
 - 70% Lower list price vs Competition
- Re-usable for Protocol tests
 - PG3A is the Only 4 channel solution for CSI &DSI test

- PG3A Pattern Generator
 - Controls clock and signaling to establish link with DUT
 - Adjusts voltage levels, packet type, etc to stress test receiver
- AWG7082C Generator
 - Adds jitter and interference to the D-PHY signals

D-PHY Rx: Test Solution Overview 100% Test Coverage to CTS v0.98

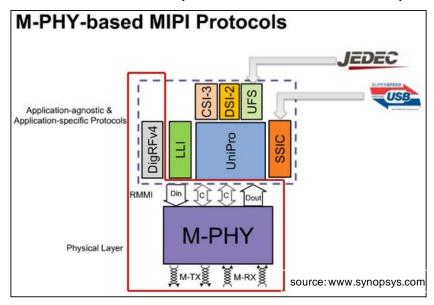
Group 1 LP - RX voltage and timing requirements					
Test	Title	Page	Equipment		
2.1.1	LP - RX Logic 1 input Voltage (V _{IN})	108	PG		
2.1.2	LP - RX Logic 0 input Voltage, non-ULP State (V _L)	110	PG		
2.1.3	LP - RX Logic 0 input Voltage, ULP State (VLCPs)	112	PG		
2.1.4	LP - RX Minimum Pulse Width Response (T _{NAX})	113	PG		
2.1.5	LP - RX Input Hysteresis (T _{exat})	114	PG		
2.1.6	LP - RX Input Pulse Rejection (e _{LPICE})	116	PG + AWG + DC Power Supply		
2.1.7	LP - RX Interference Tolerance (V _{NT} and f _{NT})	120	PG + AWG		
2.1.8	LP - CD Logic Contention Thresholds (V _{Mcc} ans V _{Lcc})	122	PG + AWG		
Group 2 LP - RX Behavioral Requirements					

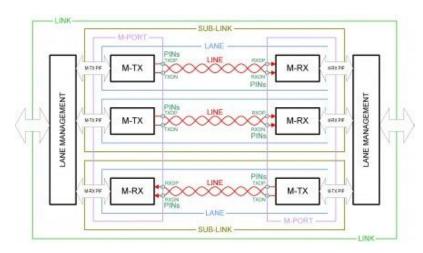
Test	Title	Page	Equip
2.2.1	LP - RX Initialization Period (T _{init})	125	PG
222	ULPS Exit: LP - RX T _{RACEUS} Timer Value	126	PG
2.2.3	Clock Lane LP - RX Invalid Aborted ULPS Entry	127	PG
2.2.4	Data Lane LP - RX Invalid Aborted Escape Mode Entry	128	PG
2.2.5	Data Lane LP - RX Invalid Aborted Escape Mode Command	130	PG
2.2.6	Data Lane LP - RX Escape Mode Invalid Exit (Informative)	132	PG
2.2.7	Data Lane LP - RX Escape Mode, ignoring Post Trigger-Command Extra Bis	134	PG
228	Data Lane LP - RX Escape Mode Unsopported/Unassigned Commands	136	PG

Group 3: HS - RX Voltage and Setup/Hold Requirements						
Test	Title	Page	Equipment			
2.3.1	HS - RX Common Mode Voltage Tolerance (V _{EVRV(DE)})	139	PG			
2.3.2	H8-DX Differential Input High Threshold (V _{DN})	141	PG			
2.3.3	H8-DX Differential input Low Threshold (V _{D1})	143	PG			
2.3.4	HS - RX Single-Ended input High Voltage (V _{Hrs})	144	PG			
2.3.5	HS - RX Single-Ended input Low Voltage (V _{L+2})	146	PG			
2.3.6	HB - RX Common Mode Interference SOMHz - 450MHz (delta VCMRX (LF))	148	PG + AWG			
2.3.7	HS - RX Common Mode Interference Beyond 450MHz (delfa \CMRX(HF))	150	PG + AWG			
2.3.8	HS - RX SetupHold and Jiter Tolerance	151	PG + AWG			

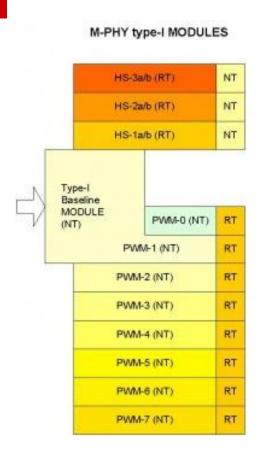
Group	4: HS -	RX Time	er Requi	irements

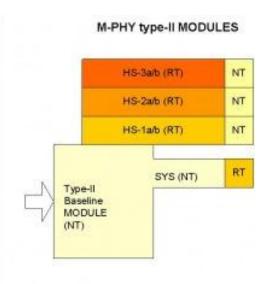
Test No.	Title	Page	Equipment
2.4.1	Data Lane H8 - RX T _{PRIMMEN} Value	156	PG
2.4.2	Data Lane H8 - RX T _{HS PREMIAN} + T _{HS GRAD} Tolerance	158	PG
2.4.3	Data Lane HS - RX T _{HI-SETUS} Value	160	PG
2.4.4	Data Lane HS - RX T _{HS/RKL} Tolerance	162	PG
2.4.5	Data Lane H3 - RX T _{H14KP} Value	164	PG
2.4.6	Clock Lane H8 - RX T _{CLKMBMAN} Value	166	PG
2.4.7	Clock Lane H8 - RX T _{CLOPRAPARA} + T _{CLOGARD} Tolerance	167	PG
2.4.8	Clock Lane HS - RX T _{CLK49TLB} Value	169	PG
2.4.9	Clock Lane H8 - RX T _{ELK*MAL} Tolerance	171	PG
2.4.10	Clock Lane H8 - RX T _{CLK4033} Value	173	PG
2.4.11	Clock Lane H8 - RX T _{CLOPES} + T _{CLOPEST} Tolerance	175	PG


Agenda


- MIPI Technologies &Tek Strategic Involvement
- D-Phy testing
 - Tx
 - Scopes-Decode: CSI, &DSI
 - Rx
- M-Phy testing
 - Tx
 - Scopes-Decodes: 8b-10b, DigRF, LLI, &UniPro
 - Rx
- Summary, Q&A

What is M-PHY?


- M-PHY is a high-speed serial interface to the DigRFv4, UniPro, LLI, CSI-3 and DSI-2 interconnect standards of the MIPI Alliance, and the UFS and SSIC protocol standards of JEDEC and USB-IF respectively.
- M-PHY is a flexible architecture that allows the implementer to support high data rates at minimal power, cost & I/O redesign, for applications such as High Definition Video
- A Fast, Scalable, Serial Communications Architecture
 - Link Connects M-PHY Transmitter to an M-PHY Receiver
 - Sub-link Manage one or more lanes
 - Lane Operation defined in the protocol (DSI, CSI, UniPro, DigRF)



What are M-PHY Type-I and Type-II?

NT = Not Terminated

RT = Resistively Terminated

LA = Large Amplitude

SA = Small Amplitude

Application	Туре	HS-GEAR
DigRF v4	Ш	1
CSI-3	ı	2
DSI-2	- 1	2
JC-64.1 UFS	- 1	2
LLI	1	3

M-PHY Transmitter Testing Challenges

M-PHY Signal Characteristics								
Signaling mode		Datarate	es	Amplitudes		Impedance		
	Gears	A (Gbps)	B (Gbps)	Large	Small	Resistive Terminated	Non Terminated	
	G1	1.25	1.45					
	G2	2.5	2.91			50 ohms	-	
High Speed (HS)	G3	5	5.83					
Gears Min (Mb/s) Max (Mb/s) G0 0.01 3 T 1.11	Gears	Min (Mb/s)	Max (Mb/s)					
	T 1 100							
	G1 3 9 Terminated:	Terminated: 100-						
	G2	6	18	160-240mV, Non-Terminated:	130mV, Non-Terminated:			
	G3	12	36	320-480mV	200-260mV	50 ohms	10k ohms	
	G4	24	72	320-460III V	200-200IIIV	200-200m v		
	G5	48	144					
	G6	96	288					
PWM (ie. TYPE-I)	G7	192	576					
SYS (ie. TYPE-II)			576 (Mb/s)			50 ohms	10k ohms	

- Higher data rate will increase importance of Signal Integrity of links
 - More emphasis on timing/jitter and noise (signal integrity)
 - Receiver testing will be needed to stress-test resulting BER
- 1000+ tests per lane, covering multiple Gears, Terminations, Amplitudes.
- Termination Restive or not Terminated.
 - LS mode can operate either of them
 - HS mode it is always terminated, so swings are halved.
- Type-I and Type-II are Low speed modes, and are NOT interoperable
 - Type-I operates on independent local clocks. Type-II requires a shared Ref-clock.
 - DUTs may support both

M-PHY Transmitter Testing Challenges Multiple instruments for Different tests (Electrical and PSD)

- M-PHY DiRF is an interface between base band and RF chip
 - Common mode (CM) signal component dominates EMI interferes with LNA
- Conformance Test Requirement:
 - Power Spectral Density (PSD) of CM signal shall be within the mask
 - CM Mask = -180 (14.3*In (f_MHz) 159) dBm/Hz over 500-3000 MHz
 - PSD is frequency domain test, and usually done using Spectrum
 Analyzer separately, in addition to an Oscilloscope for remaining tests.

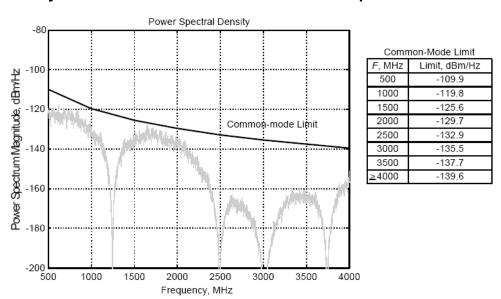


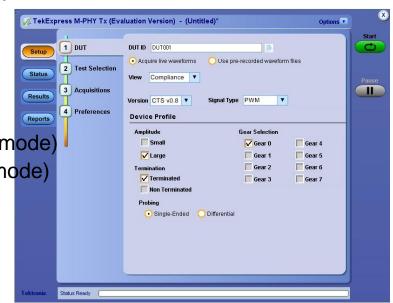
Figure 34 Common-mode Power Spectral Magnitude Limit

M-PHY Tx: Opt.M-PHYTX Automated Solution

Opt.M-PHYTX

- TekExpress (2.0) option for Single-button Automated transmitter testing
- Provides Conformance & Debug Testing to M-PHY Base Spec v1.0 & UNH's CTS.
- Runs on DPO/DSA70KB/C/D or MSO70K/C scopes (6GHz and above)
- TekExpress framework &license is included.
- Opt.DJA is pre-requisite. Opt.M-PHY not required.

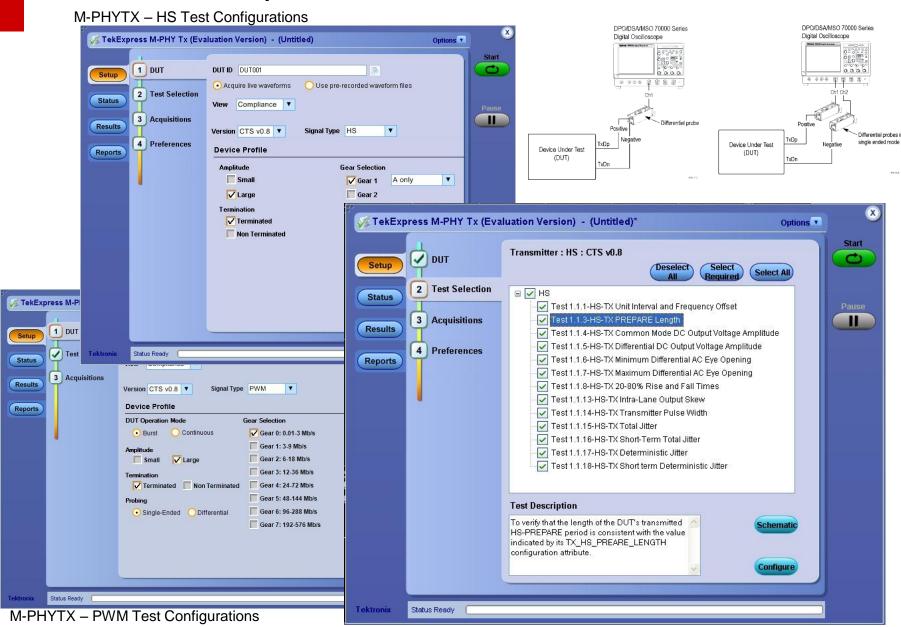
Differentiation


- All HS and PWM Gears
- Most Complete Test coverage
 - (95% HS, 74% PWM).
- Seamless Debug on failures (User-Defined mode)
- Multi-lane one-time Setup (Diff Acquisition mode)
- Scope-based Power-Spectral Density tests

US list price

Opt.M-PHYTX: \$5570

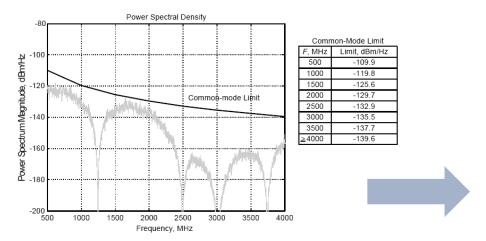
Value proposition


- For Gear2 M-PHY Tx testing, Tek 8GHz oscilloscope is sufficient. Where as, competition recommends a 12GHz or 13GHz oscilloscope.
- For Gear3 M-PHY Tx testing, Tek 20G oscilloscope is sufficient. Where as, competition recommends a 25GHz oscilloscope.

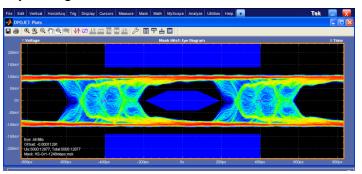
M-PHY Tx : Opt.M-PHYTX Automation Features

Key Feature	Benefit		
Automated Testing	 Significantly reduces testing time, and enables you to test devices faster Automates apprx 1000 tests in regression, in different combinations of Gears, Sub-Gears, Terminations, Amplitudes, etc 		
Most Complete Tests coverage	 All HS Gears including Gear3, and all PWM Gears HS Automates 95% of High Speed, and 75% of PWM tests 		
Highly Optimized Setup	 Performs Power Spectral Density (PSD) Tests using Oscilloscope-integrated Algorithms Uniquely, Does not require an External Spectral Analyzer or Extra Hardware to Perform PSD Measurements 		
Seamless Debug • User-Defined mode allows Pause on a Test while in Automation, and S to DPOJET Analysis Tool for Detailed Debug of failures			
Multi-lane one-time Setup • Connect upto 4-lanes of DUT to 4-channels on an oscilloscope, using differential mode of acquisition.			
Setup • Allows Selecting Different Gears and Sub-gears of HS and PWM Sig Large/Small Amplitudes, Impedance Termination/Un-termination, etc			
 Provides Single Printable Report, across Different Combinations Provides Pass/Fail Summary Table, along with Margin Details, Waveform Captures, and Eye Diagrams 			

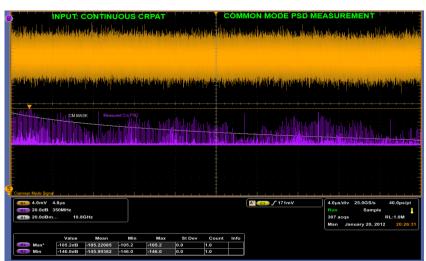
M-PHY Tx: Opt.M-PHYTX Automation Features


M-PHY Tx : Opt.M-PHYTX Automation Features User-Defined Mode – Few Configurable Parameters (HS &PWM)

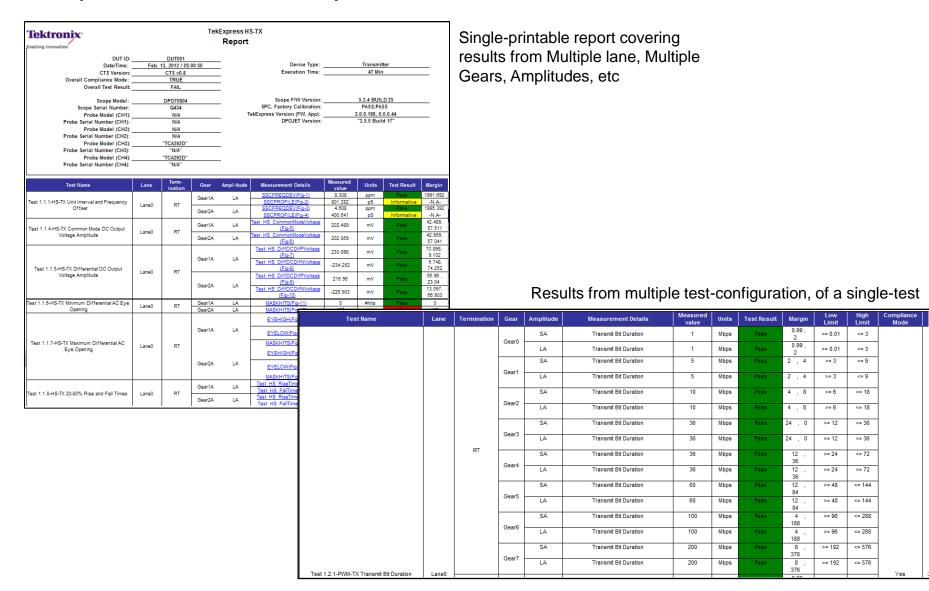
Parameter group	Parameter name	Range	Defa	ult	Unita						
HS: Ref Levels	Absolute/Percentage	Absolute, Percentage	Abso	olute	N/A						
	Autoset basetop method	AUTO, MINMAX, FULLHISTOGRAM, EYEHISTOGRAM	AUT	0	N/A						
	High level 8	51 to 90 (in %) -10 to 10 (in Absolute)	90 (i 0 (in	n %) Table 18: HS test	% or V parameters (User Defin	ned mode) (co	ont.)				
	Mid level ³	20 to 80 (in %) -10 to 10 (in Aksolute)	50 (ir 0 (in	Parameter group HS: Clock	Parameter name Clock Recovery	Range Constant Clos	Default		Jnita N/A		
	Low level ⁸	10 to 49 (in %) -10 to 10 (in Absolute)	10 (i 0 (in	Recovery	Method PLL Model Type	PLL Custom 8	BW				
	Hysteresis ⁸	2 to 20 (in %) -2 to 2(in Absolute)	5 (in 0.05		Damping	500-2000	Table 20: PWM t	test parameters (User D	efined mode)		
HS: Filters	Low pass filter (F1)	NONE, FIRST,	NON		Loop Bandwidth	0.1–10	group	Parameter name	Range	Default	Unita
	Spec	SECOND, THIRD 1–100 (1–10 for test	1	-	Nominal data rate Known data pattern	Enabled, Disa Enabled, Disa	PWM: Acquire	Horizontal scale	1000-10000	1	µs/div
	High pass filter	1–100 (1–10 for test 1.1.1 only)	1		Pattern file path	N/A		Resolution	2000-10000	10	ps/pt
	Low pass filter (F2)	NONE, FIRST,	SEC		i alieni ne paul	HID		Sampling Rate 1	0.10, 0.25, 0.50	0.25	GS/s
	spec	SECOND, THIRD						Trigger Level 1, 2	0-100	0	٧
	Low pass filter	620-630 (1-10 for test 1.1.1 only)	2	HS: Mask file path	Gear Type	Gear1A. Gea	_	Slope 1	RISE, FALL, EITHER	RISE	N/A
	Filter ramp time	0–10	0.25	115. Mask life paul	Gear Type	Gear2A, Gea Gear3A, Gea	rf.	Coupling ¹	DC, AC, HF REJECT, LF REJECT, NOISE REJ	DC	N/A
	Filter blanking time	0-10	0.25	-	NT LA Mask File path	Path to mask	1	Pulse width when 1	WITHIN, OUTSIDE	WITHIN	N/A
HS: Prepare Length	Gear1A-HS Prepare Length	0–15	10					Polarity	Positive, Negative	Positive	N/A
	Gear1B-HS Prepare Length	0–15	10					Lower limit 1	1–10	1	UI
	Gear2A-HS Prepare	0-15	10		NT SA Mask File path	Path to mask	1	Gear 0 Upper limit 1	1–20	15	UI
	Length							Gear 1 Upper limit 1	1-20	15	UI
	Gear2B-HS Prepare Length	0–15	10					Gear 2 Upper limit 1	1–20	15	UI
	Gear3A-HS Prepare	0-15	10					Gear 3 Upper limit 1	1–20	15	UI
	Length				RT LA Mask File path	Path to mask	1	Gear 4 Upper limit 1	1–20	15	UI
	Gear3B-HS Prepare	0-15	10					Gear 5 Upper limit 1	1–20	15	UI
	Length							Gear 6 Upper limit 1	1–20	15	UI
					RT SA Mask File path	Path to mask	-	Gear 7 Upper limit 1	1–20	15	UI
					IXT ON MUSK! HE pour	1 dar to mask	PWM: Prepare Length	G0 - LS Prepare Length	0-15	10	N/A
							Cengui	G1 - LS Prepare Length	0-15	9	N/A
								G2 - LS Prepare Length	0-15	8	N/A
				HS: Skew	From Edge	RISE, FALL, E	Ē	G3 - LS Prepare Length	0-15	7	N/A
					To Edge	SAMEAS,	1	G4 - LS Prepare Length	0-15	6	N/A
						OPPOSITEAS	S	G5 - LS Prepare Length	0–15	5	N/A
								G6 - LS Prepare Length	0-15	4	N/A


M-PHY Tx: Opt.M-PHYTX Automation Features

Power Spectral Density(PSD), Eye Diagram Examples



Eye Diagram



PSD Spectrum using Scope Math

M-PHY Tx : Opt.M-PHYTX Automation Features Comprehensive Test Reports

M-PHY Tx: Opt.M-PHY Essentials Testing Solution

- Opt.M-PHY: M-PHY Essentials
 - DPOJET option for Setup Library &MOI
 - Provides Debug Analysis and Characterization Testing
 - Based on Latest M-PHY Base Spec v1.0 and Conformance Test Suite v0.65.
 - Runs on 70K/B/C scopes (6 GHz and above)
 - Opt.DJA is Pre-Requisite
- Differentiation
 - Industry <u>1st</u> Testing Tool, since Sept'2010
 - Wider High-Speed Tests Coverage
 - Fully-Flexible for Debug Analysis & Characte
 - Based on State-of-the-art DPOJET tool

Value proposition

- Single tool (DPOJET) for both MIPI Phy standards Opt.M-PHY &Opt.D-PHY
- Comprehensive DPOJET Reports.

Agenda

- MIPI Technologies &Tek Strategic Involvement
- D-Phy testing
 - Tx
 - Scopes-Decode: CSI, &DSI
 - Rx
- M-Phy testing
 - Tx
 - Scopes-Decodes: 8b-10b, DigRF, LLI, &UniPro
 - Rx
- Summary, Q&A

M-PHY Decode: Opt.SR-810B for 8b-10b Decode

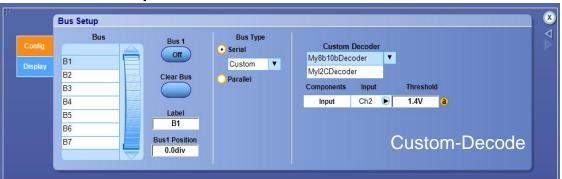
C1 100mV/div

Bus Setup

∯ ⁸W:4.0G

Off

B1


Bus1 Position

Decode into Symbols or 10-bit Characters

Decode upto 6.25Gb/s Datarate

Trigger & Search on

- Any Control Character
- Character/ Symbol
- Pattern
- Error (Character Error & Disparity E
- Custom-Decode upto 6.25Gb/s datarate
- Supported on all 70KC and MSO70K scopes.
- Software installed as part of TekScope firmware

Custom 1 25 Gb/s

.5 Gb/s .125 Gb/s

2.5 Gb/s 3.0 Gb/s

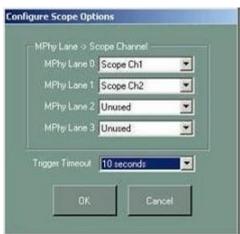
3.125 Gb/s 4.25 Gb/s

6 Gb/s

6.25 Gb/s 6.25 Gb/s ▼

1.4V

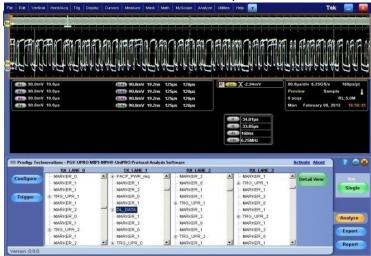
20.0mV


Bus Type

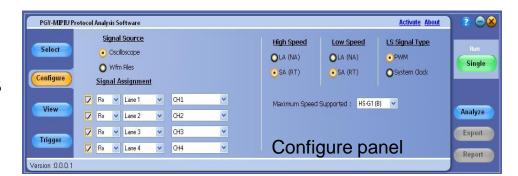
8B10B

M-PHY Decode: Opt.MPHYVIEW for DigRFv4 Decode

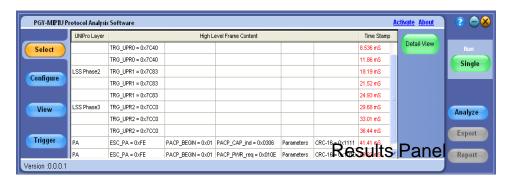
- Automated Decoding:
 - Automatically recognizes data speeds, disassembles, and displays the decoded data in different readable-data formats
- 4 Lanes Decoding:
 - Acquires up to 4 lanes of data traffic at a time.
- On-line, Offline and Remote Analysis:
 - Uses TekVisa to connect to a scope.
 - Remote execution through LAN network.
- Filter Tab, Search and Options Tab:
 - Fillter the records in the listing based on user criteria.
 - Searching & highlight records that satisfy given criteria
 - Set display, disassembly, and configuration options.



M-PHY Decodes: PGY-UPRO and PGY-LLI


UniPro and LLI Scope-Decodes


- PGY-UPRO and PGY-LLI are Decode Software re-sell from Prodigy Technovations.
 - Provides M-PHY UniPro and M-PHY LLI Protocol Decode and Analysis.
 - Runs on DPO/DSA/MSO70000/B/C/D models (6GHz and above), with P73xx or P75xx differential probing
 - License mechanism is same as scope options TEK-PGY-HDMI-PA-SW, or PDI-R.
 - Opt. ST6G Serial trigger is optionally required.
- Differentiation
 - SW Leverages ST6G serial trigger features
 - SW is First-to-Market
- Value proposition
 - SW Seamless Integration with all 70K scopes.
 - SW enables system level protocol debugging.
 - 4-Lane Automated Decoding, and Verifies CRC errors
- Datasheet &Trial Copy:
 - http://www.prodigytechno.com/PGY-MIPI-UPRO-LLI.htm (Click Downloads)



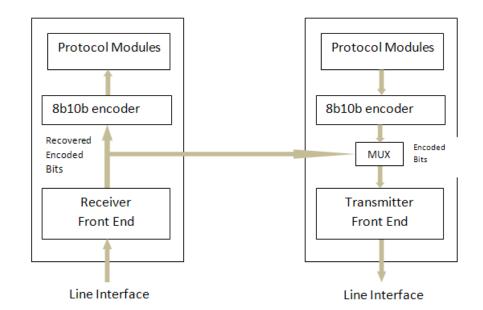
M-PHY Decodes: PGY-UPRO and PGY-LLI

- Decode Table with Messages &Time stamp
- Overlay of decoded messages on waveform
- Packet content details, with description
- Error packets
- State diagram shows Sequence of messages
 - → ACK frame/NACK frame with time stamp.
- Trigger on UniPRO message contents (Optional)
 - Trigger PA layer message
 - Trigger on Data link layer packet message

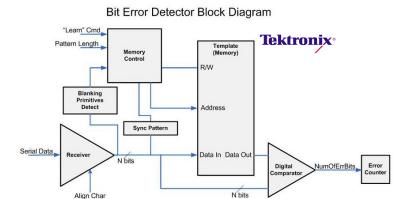
Agenda

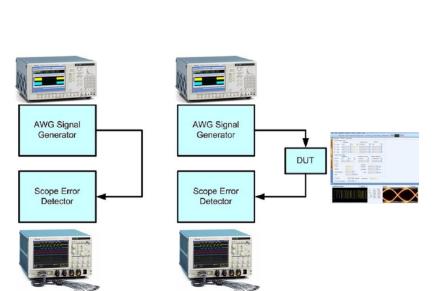
- MIPI Technologies &Tek Strategic Involvement
- D-Phy testing
 - Tx
 - Scopes-Decode: CSI, &DSI
 - Rx
- M-Phy testing
 - Tx
 - Scopes-Decodes: 8b-10b, DigRF, LLI, &UniPro
 - Rx
- Summary, Q&A

M-PHY Receiver Testing Challenges


- Different Signal Generation
 - PWM
 - NRZ
 - Reference clock
 - 8b/10b encoding
 - Differential & Common Mode DC

- Signal Impairments needs of Conformance Testing
 - Periodic Jitter
 - Random Jitter
 - ISI
 - S-parameter.


M-PHY Receiver Testing Challenges Loopback mode BER testing


- Loopback mode is used for BER testing.
- In loopback, the receiver routes/ retransmits the recovered MPHY signal via the transmitter. Receiver will not do decoding of 8b10b symbols.
- Loopback mode requires both transmitter and receiver to be configured to same TEST MODE and GEAR.

M-PHY Rx: Based on Scope built-in Error Detector Scope-Integrated M-PHY BER using Opt.ERRDT Shipping Today

8B/10B Data:

- Hardware Serial trigger: 1.25 Gb/s to 6.25 Gb/s
- BER covers PRBS 312Mbs and above data rates.

MIPI® M-PHY Receiver

Methods of Implementation (MOI)

MIPI M-PHY Receiver - TEKTRONIX MOI

RX ERROR DETECTOR

Overview:

This section of tests verifies the M-PHY receiver error detection mechanism as defined in the M-PHY Specification.

GROUP 1: M-RX Error Detection Requirements

Overview:

This group of tests verifies various requirements of error detection on MIPI M-PHY receiver. Scope error detector is used for this purpose. For M-PHY error detector, ERRDT and STU option should be enabled in scope and Tekscope firmware v6.1.1.32 or later is required.

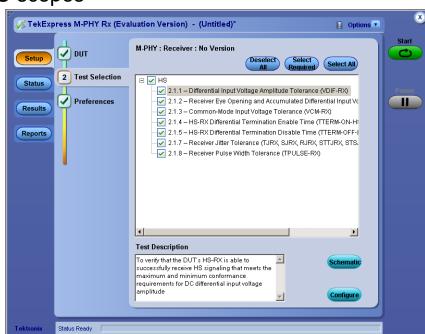
Status:

The test descriptions contained in this group are considered to be in initial draft form. Additional modifications to both the test descriptions and implementations are expected.

Pay Load:
Continuous PRBS 7/PRBS 9 Pattern with NRZ signaling (HS-Gear1, HS-Gear2 and DigRF data rates)
Custom burst pattern with 8b/10b encoded with NRZ/PWM/SYS signaling.

Note:
Please refer to the MPHY specification ver .90

MIPI M-PHY Rx MOI Measurements Version 0.5 Draft 38


M-PHY Rx: Opt.M-PHYRX Automated Solution

Opt.M-PHYRX

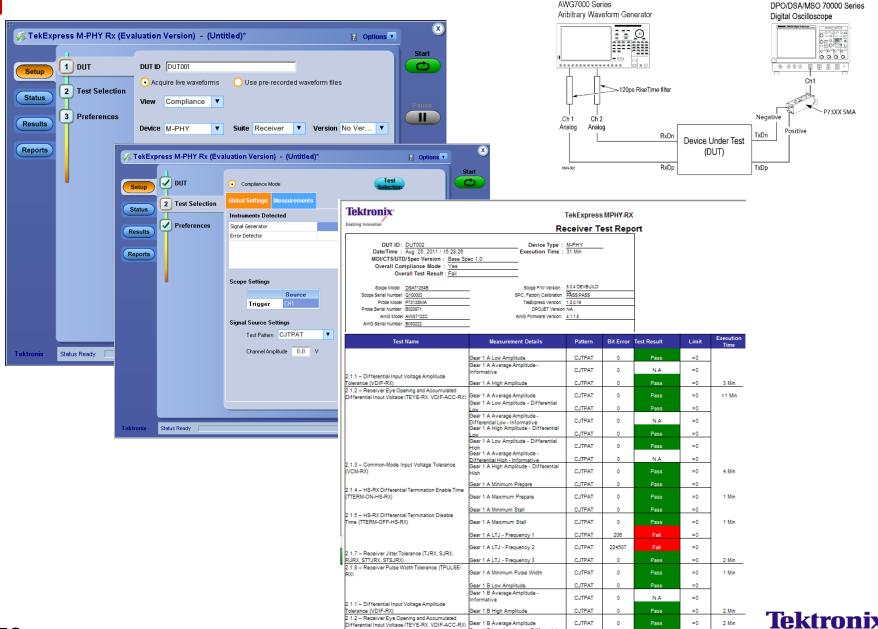
- TekExpress (2.0) option for Fully-Automated receiver testing
- Provides <u>Conformance</u> Testing
- Based on Latest M-PHY Base Spec v1.0 &UNH's Conformance Test Suite
- Runs on DPO/DSA70KB/C or MSO70K/C scopes
- TekExpress framework is included.

Differentiation

- Simply 2-box setup.
- Built upon Scope ErrorDetecror ERRDT.
- Wide HS test coverage

Value proposition

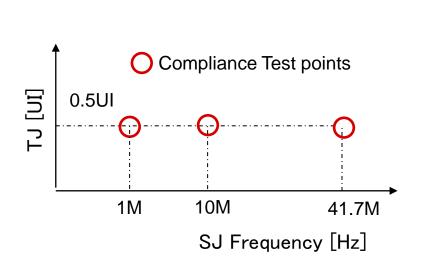
Test Reports with Pass/Fail summary, with Bit-Error counts

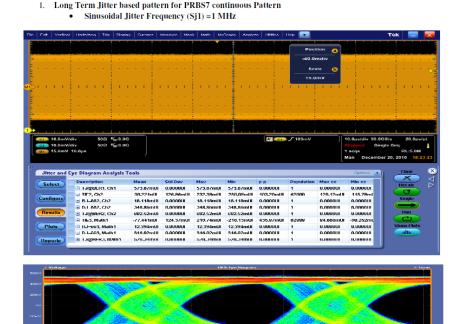


M-PHY Rx : Opt.M-PHYRX Features

Feature	Benefit
Automated Testing	 Reduces the complexity of executing receiver tests Reduces testing time Enables you to test devices faster
Tests coverage	Automated test setup has comprehensive coverage of high speed Rx tests, with Pre-created patterns.
Simple setup	 Simple Scope+AWG setup for a complete Receiver as well as Transmitter testing of M-PHY. No other instrument is needed.
Integrated BER	 Leverages Bit-Error-Rate or Error-Count testing using Scope-Integrated ERRDT software in the background. Scope Integrated ERRDT enables easy and quick setup, saves resource time and costs. Scope ERRDT testing supports PRBS 312Mbps &above for all Gears. No external/ extra hardware is required to perform BER testing
Signal Validation	Check the acquired signal for correct Data rate/ Unit-Interval, MARKER0 (both positive and negative disparity), or one complete CRPAT (LLI specific),
Test reports	Provides a Pass/Fail summary for all tests. Provides additional information such as test setup hardware and software details, Signal type selected, Bit Error, Execution time and User-comments.

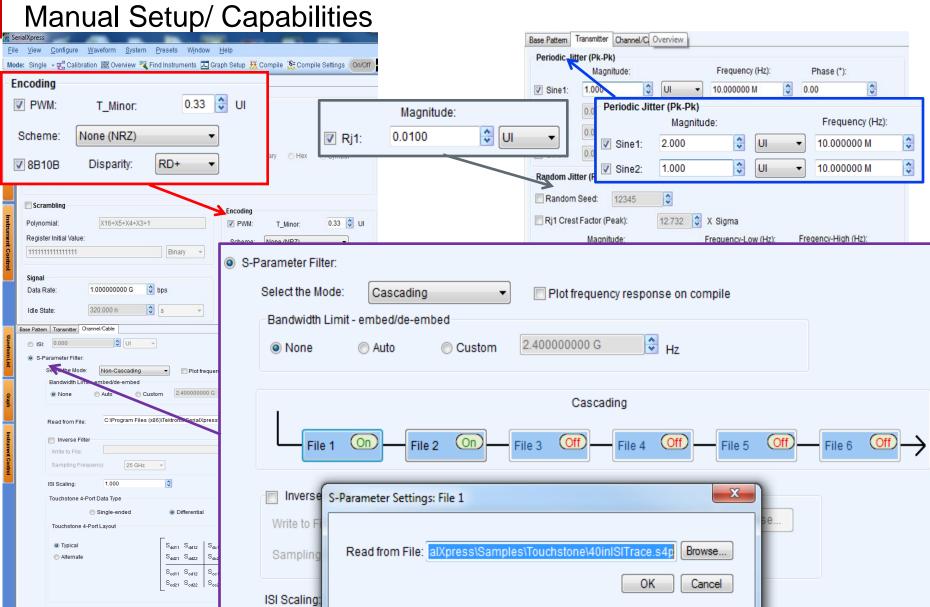
M-PHY Rx: Opt.M-PHYRX Features




Gear 1 B Low Amplitude - Differential

M-PHY Rx Test Setup: Test Impairments using AWG Manual Setup/ Capabilities

- Supports Flexible signal impairments using Serial Express (optionally) for Characterization.
- Supports Jitter insertion and Pulse Width Modulation (PWM) as per the base specification v1.0.
- Supports testing the DUT in both loopback and non-loopback mode.



Example Jitter generation using AWG &Cable impairments, as per the specs.

M-PHY Rx Test: Test Impairments using SerialXpress

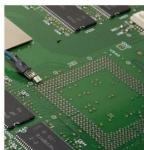
M-PHY Tx &Rx Recommended Test Setup (www.tek.com/MIPI)

Scopes

- DPO70604/B/C or above, for HS-Gear1 Only (Tx &Rx).
- DPO70804/B/C or above, for HS-Gear1&2 Only (Tx &Rx)
- DPO71254/B/C or above, for All HS-Gears (Rx Only)
- DPO72004/B/C or above, for All HS-Gears (Tx &Rx).

Probes

- 2x P73xxSMA/P73xx, for Tx HS upto Gears2, or 2x P75xx with P75LRST for Tx HS upto Gear3.
- 2x P73xxSMA/P73xx, for Tx PWM All Gears.
- 1x P73xxSMA, for Rx.


Signal Generators for Rx

- AWG7082C, AWG7102 or above, for HS-Gear1 Only.
- AWG7122C without Interleave, for HS-Gear1&2 Only.
- AWG7122C with Interleave (option 06), for All HS-Gears.

Software

- New Opt.M-PHYTX Transmitter Automated Solution (Opt.DJA is pre-requisite).
- New PGY-UPRO Protocol Decode (Opt.ST6G optionally required).
- New PGY-LLI Protocol Decode (Opt.ST6G optionally required).
- Opt.M-PHYRX Receiver Automation (Opt.ERRDT is pre-requisite).
- Opt.SR-810B, for 8b-10b Decode
- MPHYVIEW, for DigRFv4 Protocol Decode
- Optional: Opt.M-PHY Essentials based on DPOJET
- Optional: SerialXpress for custom-patterns using AWG

P7380 probe used with a probe-tip

Fixtures

As MIPI is chip-to-chip interface, most DUT setups are LIVE with Master-Slave/ Receiver-end connected. For live-setups:
 No Fixtures required. For non-live setups UNH-IOL Termination boards expected to be available soon

M-PHY Rx Recommended Test Setup - Continued

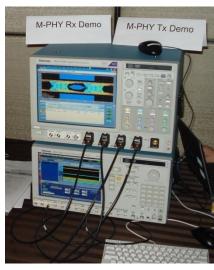
- Recommended Accessories, for opt.M-PHYRX Receiver Automation setup
 - 2x Matched pair of SMA cables
 - 1x GPIB Cable
 - 2x Rise Time Filter 120 ps (part number 5915-121-120PS from Picosecond) with barrel connectors
- Optional: Accessories for Rx "custom-patterns" using SerialXpress (manual setup)
 - 2x Matched pair of SMA cables, , for AWG custom patterns creation
 - 2x Rise Time Filter 120 ps (part number 5915-121-120PS from Picosecond) with barrel connectors
 - 2x BiasTee (part number 5542 from Pico Second), for AWG Interleave Option (for HS-Gear3)
 - 2x TCA-SMA Connectors, for AWG custom patterns creation
 - Option 01 –Memory expansion to 64 M enabled on AWG
 - Option 08 Fast Sequence Switching enabled on AWG
 - Option 09 Subsequence and Dynamic Jump enabled on AWG.

MODEL 5542 BIAS TEE

M-PHY Tx Setup Recommendation (Rationale)

M-PH	M-PHY Tx HS Mode Requirement										
		Highest		Minimum							
		frequency	5th Harmonic	transition							
GEAR	Data Rate(bps)	component(Hz)	frequency(Hz)	time(pS)							
1A	1248000000.00	624000000.00	3120000000.00	80.128							
1B	1457600000.00	728800000.00	3644000000.00	68.606							
2A	2496000000.00	1248000000.00	6240000000.00	40.064							
2B	2915200000.00	1457600000.00	7288000000.00	34.303							
3A	4992000000.00	2496000000.00	12480000000.00	20.032							
3B	5830400000.00	2915200000.00	14576000000.00	17.151							

M-PH	M-PHY Tx PWM Mode Requirement										
	Data Rate		10-bb	5th Harmonic of							
			Highest Frequency	highest frequency							
Gear	Lowest Data Rate	Highest Data Rate	Component	component	RT/FT(Sec)						
0	1.00E+04	3.00E+06	1.3500E+07	6.7500E+07	2.33E-08						
1	3.00E+06	9.00E+06	1.6071E+07	8.0357E+07	7.78E-09						
2	6.00E+06	1.80E+07	3.2143E+07	1.6071E+08	3.89E-09						
3	1.20E+07	3.60E+07	6.4286E+07	3.2143E+08	1.94E-09						
4	2.40E+07	7.20E+07	1.2857E+08	6.4286E+08	9.72E-10						
5	4.80E+07	1.44E+08	2.5714E+08	1.2857E+09	4.86E-10						
6	9.60E+07	2.88E+08	5.1429E+08	2.5714E+09	2.43E-10						
7	1.92E+08	5.76E+08	1.0286E+09	5.1429E+09	1.22E-10						


SCOPE	S Recommendation for	or M-PHY Tx - I	High-Speed Tes	ts				
		DPO/DSA/MSO	DPO/DSA/MSO	DPO/DSA/MSO	DPO/DSA/MSO	DPO/DSA/MSO	DPO/DSA	DPO/DSA
		70604, B and C	70804, B and	71254, B and	71604, B and	72004, B and	72504D	73304D
HS	Requirements from	BW = 6 GHz,	BW = 8 GHz,	BW = 12.5 GHz,	BW = 16 GHz,	BW = 20 GHz,	BW = 25 GHz,	BW = 33 GHz,
Gear	Specification	RT = 45 pS	RT = 34 pS	RT = 22 pS	RT = 17 pS	RT = 14 pS	RT = 12 pS	RT=9 pS
	DR = 1248 Mbps,							
G1A	RT=80.128 pS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	DR = 1457.6 Mbps,							
G1B	RT=68.606 pS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	DR = 2496 Mbps,							
G2A	RT= 40.064 pS	No	Yes	Yes	Yes	Yes	Yes	Yes
	DR = 2915.2 Mbps,							
G2B	RT=34.303 pS	No	Yes	Yes	Yes	Yes	Yes	Yes
	DR = 4992 Mbps,							
G3A	RT= 20.032 pS	No	No	No	No	Yes	Yes	Yes
	DR = 5830.4 Mbps,							
G3B	RT= 17.151 pS	No	No	No	No	Yes	Yes	Yes

PROB	PROBES Recommendation for M-PHY Tx - High-Speed Tests											
		P7360A	P7380A	P7313	P7506	P7508	P7513A	P7516	P7520			
		BW = 6 GHz,	BW = 8 GHz,	BW = 13 GHz,	BW = 6 GHz,	BW = 8 GHz,	BW = 13 GHz,	BW = 16 GHz,	BW = 20 GHz,			
HS		RT = 52.5	RT = 41.25	RT = 30	RT = 56.25	RT = 41.25	RT = 30	RT = 24	RT = 21.75			
Gear	Spec Requirement	pS(20/80)	pS(20/80)	pS(20/80)	pS(20/80)	pS(20/80)	pS(20/80)	pS(20/80)	pS(20/80)			
	DR = 1248 Mbps,											
G1A	RT=80.128 pS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
	DR = 1457.6 Mbps,											
G1B	RT= 68.606 pS	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
	DR = 2496 Mbps,											
G2A	RT= 40.064 pS	No	No	Yes	No	No	Yes	Yes	Yes			
	DR = 2915.2 Mbps,											
G2B	RT=34.303 pS	No	No	Yes	No	No	Yes	Yes	Yes			
	DR = 4992 Mbps,											
G3A	RT=20.032 pS	No	No	No	No	No	No	No	Yes			
	DR = 5830.4 Mbps,											
G3B	RT= 17.151 pS	No	No	No	No	No	No	No	Yes			

Tektronix M-PHY Testing Solution

- Industry 1st tools
 - Tektronix announced M-PHY Measurements & Decode tools, in September 2010, during MIPI Alliance Athens F2F.
- Simply "2-Box" Solution: Just a Scope + AWG needed for Tx &Rx.
- PSD (Power Spectral Density) measurements on Scope are IP-**Patented**

Industry 1st M-PHY Tools Demonstrated at MIPI-Alliance F2F, Athens, Sept'10 and Osaka, March'11 interfaces on mobile devices. Compared to the current D-PHY specification, M-PHY supports faster chip-to-chip

Press Release

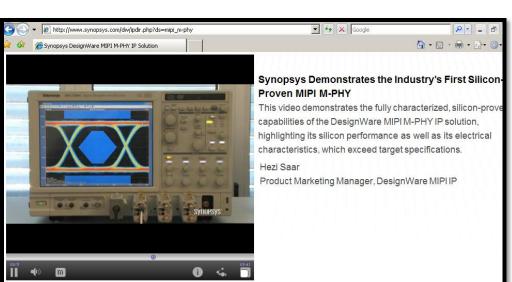
Source: Tektronix

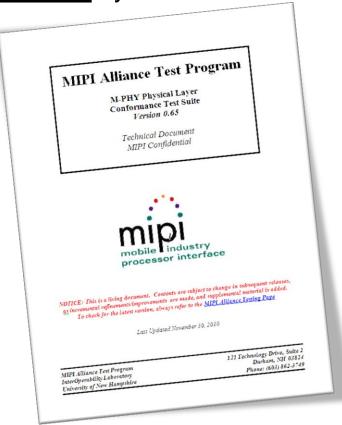
Tektronix Introduces Industry's First Test Tools for MIPI M-PHY Debug and Validation

Monday September 27, 9:00 am ET

Support for New High-Speed M-PHY Specification Includes DPOJET toolset, and M-PHY DigRFv4 Decode for Tektronix Oscilloscopes

BEAVERTON, OR--(Marketwire - 09/27/10) - Tektronix, Inc., the world's leading manufacturer of oscilloscopes, today introduced the industry's first testing tools for the MIPI® Alliance M-PHY standard, allowing customers to immediately get started with performance verification and debug for this important new specification using Tektronix DPO/DSA/MSO70000B Series oscilloscopes.


The announcement was made in conjunction with the MIPI Alliance All-Members meeting taking place this week in Athens, Greece. The M-PHY specification is an essential part of the MIPI Alliance's vision for more efficient high-speed


Tektronix M-PHY Testing Solution Customer-Proven & Highly-Reliable Solution

 Example customer video using Tektronix M-PHY solution:

http://www.synopsys.com/dw/ipd
ir.php?ds=mipi_m-phy.

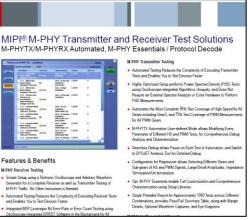
M-PHY CTS Test Spec "Co-Authored" by Tektronix

Agenda

- MIPI Technologies &Tek Strategic Involvement
- D-Phy testing
 - Tx
 - Scopes-Decode: CSI, &DSI
 - Rx
- M-Phy testing
 - Tx
 - Scopes-Decodes: 8b-10b, DigRF, LLI, &UniPro
 - Rx
- Summary, Q&A

Summary - Tektronix MIPI PHY Solutions

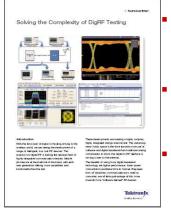
www.Tek.com/MIPI


- Tektronix is 1st to Market for M-PHY testing, announced in Sept, 2010.
- Tektronix is a Contributor Member of the MIPI Alliance
- Tektronix is actively-participating in MIPI PHY &other Working Groups
- Tektronix has a close working relationship with UNH-IOL

Tektronix MIPI Solutions Portfolio (www.Tek.com/MIPI)										
Standard	Physical Layer Trasmitter	Physical Layer Receiver	Protocol Layer Analysis	Stimulus						
	1x DPO 7354 or DPO 70404B Oscilloscope	1x PG3ACAB Pattern Generator	1x TL A7012 ot TL A7016 TLA Main frame	1x PG3ACAB or PG3AMOD						
١.	4x P7240, TAPxx, P6245 or P6249 probes, OR	1x P332 D-PHY Probe for PG	1x LA ModuleTL A7BBx	1x P331 D-PHY Probe for PG						
7. ∓	4x P73xx, or TDP 3500 probes (3x if Clock-Continuous)	1x PGRemote SW	1x P6980 LA Probe	1x PGRemote SW						
D-PHY DSI, CSI-2	1xTEKEXP Opt.D-PHYTX, or DPOJET Opt.D-PHY	1x AWG7082C or above	1x D-PHY to P6980 Adapter							
"	1x Opt.SR-DPHY for CSI/DSI Decode	1x D-PHY Coupler	1x CSI or DSI decode SW for TLA (Free)							
	No Fixtures for Live-Setups. UNH Fixtures for Non-Live.									
	1xDPO72004 for upto HS-Gear3	1x AWG7122C with opt#6 for Gear3								
~ ₹ %	2x P73xx, P73xxSMA, P75xx Probes per Lane	1x Opt.M-PHYRX Receiver SW								
£ 15 0	1x Opt.M-PHY for Tx Debug, Analysis &Validation	1x SerialXpress SW								
M-PHY, DigRFv4, DSI-2, CSI:	1x Opt.MPHYVIEW, Opt.SR-810B, LLI or UniPro Decode									
_ <u> </u>	No Fixtures for Live-Setups. UNH Fixtures for Non-Live.									

Additional References

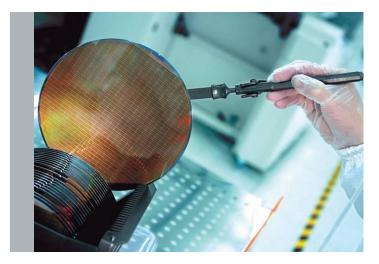
www.Tek.com/MIPI



www.Tek.com/MIPI:

- M-PHY Datasheet (61W-27714-2)
 - http://www.tek.com/datasheet/mipi%C2%AE-mphy-transmitter-and-receiver-test-solutions
- D-PHY Datasheet (61W-25621-4)
 - http://www2.tek.com/cmswpt/psdetails.lotr?ct=PS &cs=psu&ci=17415&lc=EN
- D-PHY/ CSI/ DSI Application Note
 - http://www2.tek.com/cmswpt/tidetails.lotr?ct=TI&c s=apn&ci=17638&lc=EN
- DigRF Application Note
 - http://www2.tek.com/cmswpt/tidetails.lotr?ct=TI&c s=tbr&ci=11854&lc=EN
- Opt.M-PHY MOI
 - http://www.tek.com/methodimplementation/mipi%C2%AE-m-phy-methodsimplementation
- Opt. D-PHY MOI
 - http://www.tek.com/method-implementation/mipid-phy-test-method-implementation-moi

PGY-UPRO and PGY-LLI Datasheet


- http://www.prodigytechno.com/PGY-MIPI-UPRO-LLI.htm
- MPHYVIEW DigRFv4 Decode Datasheet &Manual
 - http://www.movingpixel.com/MIPI_MPhy.html#MI PI MVu
- MIPI Alliance Video on Tek Solutions
 - http://www.youtube.com/watch?v=Mf9rv X2YG4&feature=channel
 Tektronix®

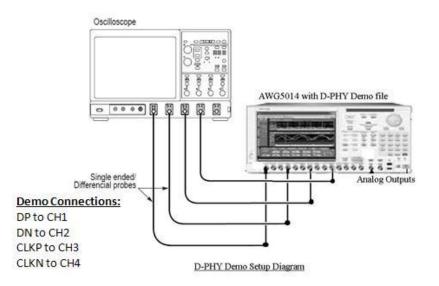
Additional References, at www.mipi.org Tektronix Contributed Literature at MIPI Alliance Official website

- MIPI Conference Presentations page
 - Tektronix Test Challenges and Strategies: http://www.mipi.org/learning-center/presentations,
 - http://www.mipi.org/sites/default/files/tutorials/Tektronix%20-%20Test%20Challenges%20and%20Strategies.pdf
- MIPI Member-to-member presentations:
 - Tektronix Algorithm for identifying D-PHY signal regions: http://www.mipi.org/allmembers
- Contributed Articles page:
 - Tektronix article on Physical Layer Test Strategies for MIPI Standards: http://www.mipi.org/news-events/contributed-articles
- MIPI Test Demos page
 - Tektronix Demos: http://www.mipi.org/content/test-forum-days-company-demos
- MIPI Test Forum Days page
 - Tektronix Presentations: http://www.mipi.org/content/mipi-alliance-test-forum-days
- Member press releases:
 - Mobile Asia Expo: http://www.mipi.org/news-events/mobile-asia-expo
 - Tektronix M-PHY TxRx most-cost-effective solution: http://www.mipi.org/news-events/member-press-releases
 - Tektronix D-PHY one-button automation: http://www.mipi.org/news-events/member-press-releases?page=1
- Member Product Spotlights:
 - Tektronix MIPI solutions: http://www.mipi.org/member-directory/tektronix-inc

Q &A Thank you

Backup

D-PHY Tx Field Demo Setup


For both Opt.D-PHYTX and Opt.D-PHY

Option#1:Using AWG:

- 1x DPO7354 or Higher BW Scope
- Scope Software:
 - Opt.D-PHYTX with TEKEXP, for Automation demo
 - 10 Free Trial Runs with no time bound
 - Demo Keys: www.cse.tek.com/CSBU/opt_key/opt_key_demo _upgrade/
 - Or, Opt.D-PHY with DPOJET, for Debug
- 1x AWG5014
- 4x BNC to BNC cables for 7K &70K
- 4x TCA to BNC Adapters for 70Ks.
- Demo Kits from Salesnet
 - MIPI D-PHY Measurements Demo Guide
 - D-PHYTX TekExpress Product Demo Demo Guide
- Optional: Keithley RF switch for Multi-lane demo

Option#2: Using Reference-Waveforms:

- 1x DPO7354 or Higher BW Scope
- Scope Software:
 - Opt.D-PHYTX with TEKEXP, for Automation
 - Opt.D-PHY with DPOJET, for Debug demo.
- Demo Kits from Salesnet
 - MIPI D-PHY Measurements Demo Guide
 - D-PHYTX TekExpress Product Demo Demo Guide

M-PHY TX and M-PHY Decodes Demo Kit

Opt.M-PHYTX, PGY-UPRO and PGY-LLI

TX Demo Setup Using AWG Only:

- 1x DPO70604B or Higher BW Scope
- 1x AWG7082C or AWG7122B/C
- 2x SMA-to-SMA cables for Tx Demo
- Scope Software:
 - Opt.M-PHYTX with Opt.DJA for Tx demo
- DemoKit M-PHYTX Automation Demo
 - M-PHY_TxRx Demo Kit on Salesnet MIPI page includes TxRx Demo Guide, and AWG waveform files.

Decode Demo Setup Using AWG Only:

- 1x DPO70604B or Higher BW Scope
- 1x AWG7082C or AWG7122B/C
- 2x SMA-to-SMA cables for Tx Demo
- Scope Software:
 - PGY-UPRO or PGY-LLI for **Decode** demo
- Demo Kit **Decodes Demo**
 - PGY_UPRO_LLI demo kit on Salesnet MIPI page includes AWG waveform files for use in PGY-UPRO and PGY-LLI Decode Demo.
 - PGYUPRO and PGY-LLI provides 10 free trial runs to be used within 7 days trial period. A trial copy of PGY-UPRO and PGY-LLI software is available from, http://www.prodigytechno.com/PGY-MIPI-UPRO-LLI.htm (Click Downloads). Permanent license keys will be provided for demo scopes. Also, the software downloader includes/installs a set of pre-recorded waveforms that can be used for offline demos.

M-PHY TxRx and D-PHY-Decode Field Demo Setup

For Opt.M-PHY, Opt.M-PHYRX and Opt.SR-DPHY.

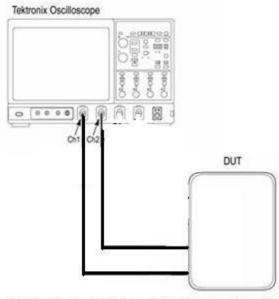
M-PHY TxRx Demo Using AWG Only:

- 1x DPO70604 or Higher BW Scope
- 1x AWG7082C or AWG7122B/C.
- 2x SMA-SMA cables for **Tx** Demo
- 1x P7313 SMA and matched pair SMA cable for Rx Demo
- Scope Software:
 - Opt.M-PHY with DPOJET, for Tx demo
 - Opt.M-PHYRX with ERRDT for Rx demo
 - MPHYVIEW, for **Decode** demo
- For Opt.M-PHYRX **Automation** demo
 - Use M-PHYRX AWG patterns from Tek.com directly with Opt.M-PHYRX.
- For MOI Signal impairments
 &Characterization demo,
 - Opt.M-PHY DPOJET Measurements, and Receiver ErrorDetector Demo Kit Demo Guide(M-PHY TxRx Demo Kit.zip) file on Salesnet MIPI page is needed. It includes,
 - M-PHY_TxRx_DemoGuide.doc.
 - ERRDT scripts
 - Rx Calibration setupfiles
 - Rx Measurement setupfiles

D-PHY Decode Demo Using DPO3 Demo Board:

- Demo Kit from Salesnet
 - Opt.SR-DPHY Demo Guide Demo Guide file from Salesnet MIPI page
 - Opt. SR-DPHY_MIPIdecode_Demo <u>Video Demo Guide</u> file from Salesnet MIPI page

M PHY Setup


- 2x SMA to SMA cables for Tx Demo
- 1x P7313 SMA and matched pair SMA cable for Rx Demo

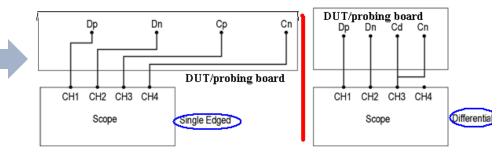
M-PHY Tx: Opt.M-PHY Additional Information

100% High-Speed Tests Coverage

Test Group	Test Name	Symbol
Spec/Limits Update	Migrate Limits for Latest Spec	All R1 &R2 tests
		V _{DIF PK L NT TX}
		VOIF PK L RT TX
	Differential Peak to Peak voltage	VOIF PK S NT TX
		VDF PK S RT TX
	Common Mode Voltage	V _{CM_S_TX}
	Per University of the Section	V _{OU_L_TX}
HS-LargeSwing	Slew rate in fastest slewrate state	SRDIF_TX[1]
in-conferming	Transmitter Pulse width	TPULSE_TX
	Eye Opening	TEYE TX
	deterministic jitter	DJTX
	total jeter	TJTX
	total jitter for short lane	TJTX
	short term jitter	STJTX
	Resolution of slew rate states	ASRDIF_TX
	Power Spectral Density/ Maginitude	PSD
		VOKE PK LINT TX
	DW	V _{DLF_PK_L_RT_TX}
	Differential Peak to Peak voltage	V _{DIF PK S NT TX}
		V _{DXF_PK_S_RT_TX}
	Common Mode Voltage	V _{OM_S-TX}
Total Comment		VOIL_LTX
HS-SmallSwing	Slew rate in fastest slewrate state	SRDIF_TX[1]
	Transmitter Pulse width	TPULSE_TX
	Eye Opening	TEYE TX
	deterministic jitter	DJTX
	total jeter	TJTX
	total jeter for short lane	TJTX
	short term jitter	STJTX
	Resolution of slew rate states	∆SRDIF_TX
	Power Spectral Density/ Magintude	PSD

Single-Ended/Differential (Two per Lane)
M-PHY Tx Test Setup

D-PHY Tx : Opt.D-PHYTX Test Solution Additional Features &Benefits


Feature	Benefit
Setup Customization	 Modify the test setup as per the DUT configuration. Unit Intervals are <u>automatically calculated</u> based on the DUT datarates.
Characterization/ Margin Testing	 Allows <u>custom-limits or limits-editing</u> to perform Margin testing. Performs characterization of your design.
	Provides Pass/Fail summary table
Detailed	Provides margin details on each test
Test-Reports	Provides "Zoon-In" screenshots of the cursors placement for each test.
	Provides "single-printable" consolidated report for all tests.
Error Handling	Test reports with Errors/ Exceptions information help identify Setup/ Acquisition issues quickly
Flexible probing	Probe using Differential, Trimode, or Single-ended probes.
Offline/ Remote Analysis	 Perform measurements using either <u>live or pre-acquired waveforms</u> Allows remote execution of tests.
Flexible probing • Probe using Differential, Trimode, or Single-ended probes.	

Opt.D-PHYTX and Opt.D-PHY

Testing Recommendations

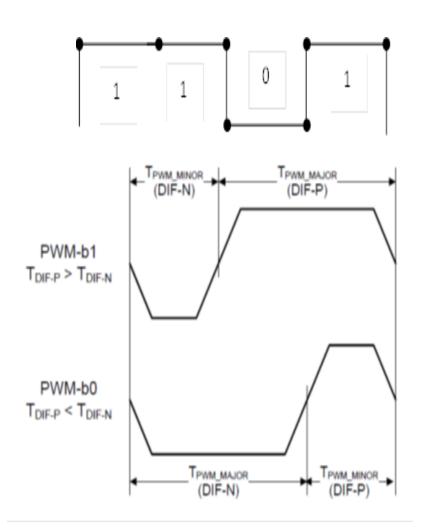
- D-PHY Tx Test Setup, Using 4xSE/ 4xDiff probes or 3x Diff probes.
 - Dp and Dn each connect to1xprobe (SE/Diff).
 - If clock is Non-Continuous, 2xDiff probe are needed for Cp &Cn.
 - If clock is Continuous, 1xDiff probe is sufficient for Cp &Cn.

Feature	Opt.D-PHY	Opt.D-PHYTX
Teature	(D-PHY Essentials)	(D-PHY Automated)
Pre-Requisite tools	DPOJET	TEKEXP
Automatic tests based on test group, and selected probes.		✓
Single button execution for all measurements		✓
Configurable setup and Editing of test limits	✓	✓
Detailed or Summary Reports	Detailed Only	Detailed &Summary
Automatically Save Test Reports and Waveforms		✓
D-PHY Specific User Interface		✓
Testing Recommendation	Debug, Analysis	Conformance, Verification,
Testing Recommendation	&Characterization	&Characterization

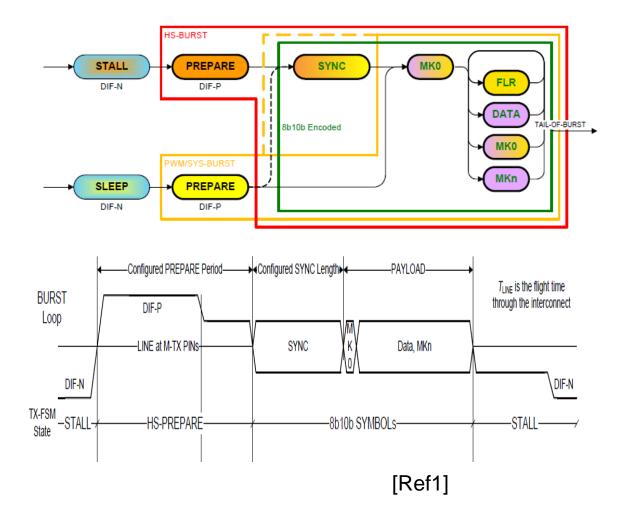
M-PHY Rx - ERRDT

Unique differentiators versus a BERT

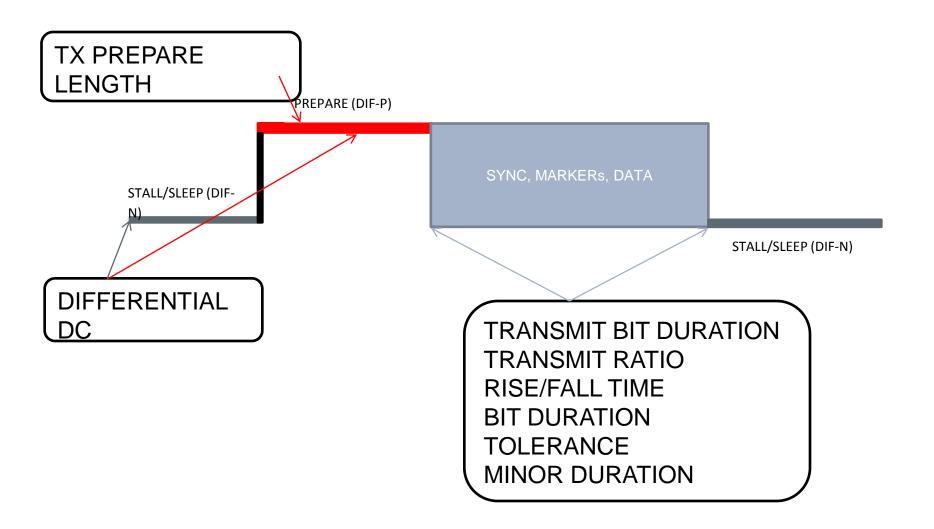
- Ability to Ignore/Reject AlignPrimitives/ SkipOrderSets
- Ability to Learn the Test Pattern from the signal (SATA Bit Error only)
- Ability to Trigger on Errors and Display the Signal Waveform
- Ability to Debug other channels when an error occurs
- Ability to provide Bit, Symbol, Illegal Character, and Disparity Error information
 The following table summarizes the effectiveness and limitiations of various types of Error Detection.


Error Type	pe Effectiveness Error Rate		Resolution	Limitations
Character	90-95%	Error Characters / Monitored Characters	Character	Can miss errors if a character is changed to a legal character.
Frame	100% (finds all errors)	Error Frames / Monitored Frames	Frame	Many bit errors can equal 1 frame error
Symbol	100% (finds all errors)	Error Symbols / Monitored Symbols	Symbol	Several bit errors can equal 1 symbol error
Bit	100% (finds all errors)	Error Bits / Monitored Bits	Bit	Pattern length limited by memory depth

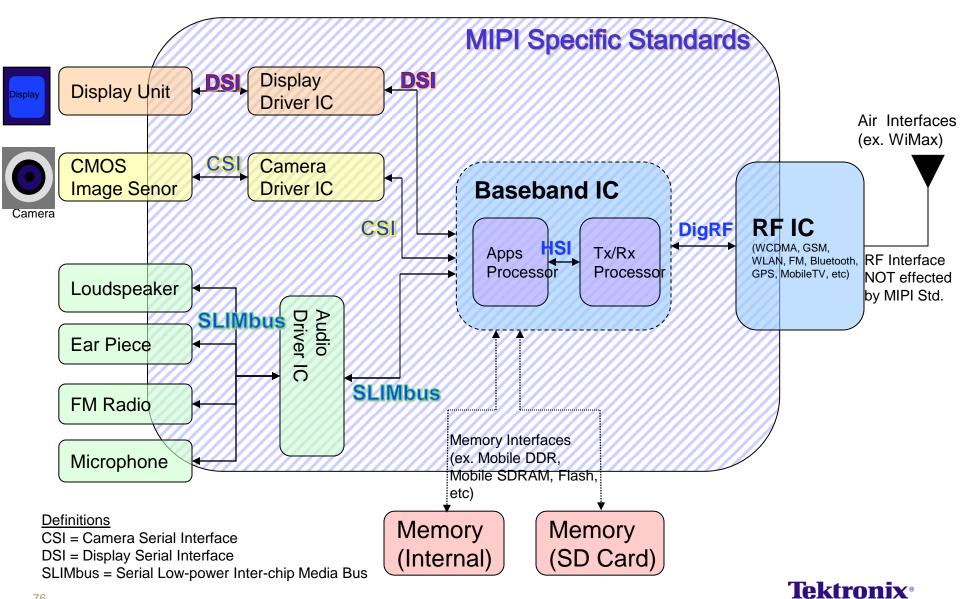
M-PHY Transmitter Test Challenges PWM Signal Analysis


NRZ - High Speed Mode (HS- Mode)

PWM - Low Speed Mode (LS-Mode)

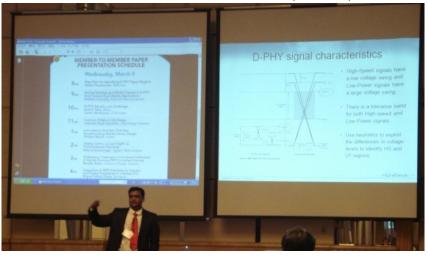


M-PHY Transmitter Test Challenges Identifying Burst States


M-PHY Transmitter Test Challenges Burst States & Conformance Tests

MIPI Standards Overview

Example Mobile Device Block Diagram



Tek Demonstrated Industry 1st Tools at MIPI F2F events

Industry 1st M-PHY Rx Jitter Tolerance, M-PHY Tx &D-PHY Demos at MIPI-Alliance F2F, Osaka, March'11, and Denmark, June'11:

Tek Technical-paper presentation at MIPI-Alliance F2F, Osaka, March'11

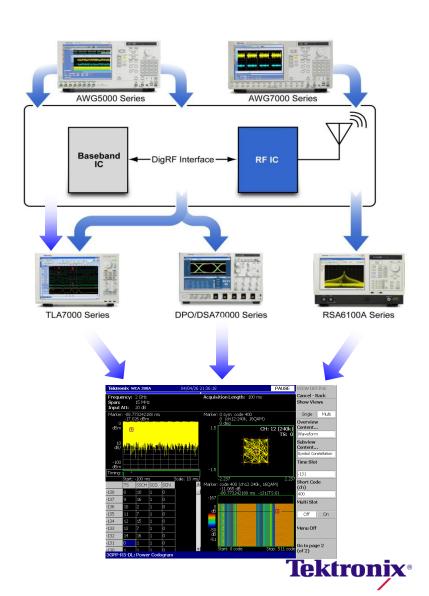
Industry 1st M-PHY Tx measurements Demo at MIPI-Alliance F2F, Athens, Sept'10

Tek D-PHY Tx measurements Demo at MIPI-Alliance F2F, San Diego, June'10

SLIMbus & H.S.I: Tektronix Solution

Test Setup & Adapters

Two Adapters: SLIMBus2TLA and HSI2TLA


- Serial to parallel Adapter to be used with Logic Analyzer
- The Adapter is protocol Aware and converts the data to parallel form.
- Parallel data allows the user to more easily setup a trigger and interpret the data.
- The adapter is USB powered (ships with a USB cable)

DigRF: Tektronix Solution (Manual Setups, no MOI/ Automation available) Complete solution from Baseband to RF

- Complete solution using industry leading test equipment
 - AWG5000 for Signal Generation
 - TLA7012 for DigRF & Digital Analysis
 - DPO7000 for Signal Integrity issues
 - RTSA for RF and Modulation Analysis
- DigRF Physical Layer & Protocol analysis on logic analyzer without using specialized external hardware
 - Standard probes acquire the signal
 - DigRF Application software processes the data
- Flexibility to generate and analysis ideal, non-ideal and propriety versions of DigRF
 - DigRF Application is customizable by the user

Tektronix MIPI Solutions

Single Scalable-setup for MIPI D-PHY/M-PHY to USB3 &HDMI -Example

MIPI &HSS Optimal Configuration:

Model	Description	Qty	D-I	РНҮ	M-	PHY	USI	B3.0	HDML	&HEAC
			Tx	Rx	Tx	Rx	Tx	Rx	Tx	Rx
DSA71254C	12.5 GHz Digital Serial Analyzer; 4 analog channels	1								
DSA71254C	Frame and Bit Error Rate Detector (requires ST6G option)									
DSA71254C STG6	Serial Pattern triggering up to 6.25Gb/s									
AWG 7122C	Signal Generator	1								2 qty
AWG 7122C 06	Interleaved high bandwidth output	1								
AWG7122C 01	Waveform length expansion (32M to 64M points)	1								
AWG7122C 08	Fast sequence switching (requires export control license)	1								
TEKEXP	TekExpress Automated Compliance Software	1								
MIPI Specific										
P7313	DIFFERENTIAL PROBE, 12.5 GHZ	3	3qty	,	2qty	1				
DSA71254C D-PHY	D-PHY Transmitter Debug & Characterization (requires DJA)	1								
TEKEXP D-PHYTX	D-PHY Automated Solution	1								
DSA71254C M-	M-PHY Transmitter Debug & Characterization (requires DJA)	1								
PG3ACAB	Moving Pixel Digital Pattern Generator Cabinet	1								
P331/ P332	Moving Pixel - 1Gbs Serial Probe for PG3A	1								
PGRemote-CSI/DSI	Moving Pixel - PG3A generation of CSI or DSI signals	1								
	AWG / PG3A Coupler Set (Not on Tek price list yet)	1								
SR-DPHY	D-PHY - CSI2/DSI Decode software	1								
MPHYVIEW	M-Phy - DigRFv4 Decode software	1								
HDMI Specific										
P7313SMA	DIFFERENTIAL SMA PROBE, 12.5 GHZ	2							2qty	2qty
AF3102		1								
DSA71254C HT3		1								
DSA71254C HT3 DS		1								
TEKEXP HEAC		1								
Opt. 2XL		1								
020-3018-00	HDMI Direct Synthesis Accessory Kit	1								
USB Specific		•		•	•	•	•			
TEKEXP USB-RMT	USB 3.0 Receiver Automation Software	1								
TEKEXP USB-TX	Tekexpress Automated USB 3.0 Tx Solution	1								
TF-USB3-AB-KIT										
Optional Software		•								
SDX100	JITTER GENERATION SOFTWARE for AWG7000	1								
SDX100 ISI	S-Parameter and ISI creation option (requires SDX 100)	1								
		_								

