Introduction to Jitter and Serial Data Link Analysis

Kalev Sepp Sr. Applications Design Engineer

Agenda

- What is jitter?
- Jitter Measurements and Decomposition
- Clock Recovery and Reference Levels
- Channel Effects on the Signal and Measurements
- De-embedding and Equalization
- PCI Express 3.0 Example
- Tips for Effective Channel Modeling and Measurements
- Conclusions

What is Jitter?

- Definitions
 - "The deviation of an edge from where it should be"

 ITU Definition of Jitter: "Short-term variations of the significant instants of a digital signal from their ideal positions in time"

Jitter is caused by many things...

- Causes of Random Jitter
 - Thermal noise Generally Gaussian
 - External radiation sources
 - Everything else that doesn't qualify into any other category
- Causes of Periodic Jitter
 - Injected noise (EMI/RFI) & Circuit instabilities
 - Power supply and oscillators
 - Will often have harmonic content
 - Transients on adjacent traces
 - Cabling or wiring (crosstalk)
 - PLL's problems
 - Internal noise (incl. quantization, effects of discrete implementation like DLL)
 - Loop bandwidth (tracking & overshoot)
 - Deadband (oscillation / hunting)
 - Intentional like SSC (spread spectrum clocking)
- Causes of Data Dependent Jitter
 - Transmission Losses
 - There is no such thing as a perfect conductor
 - Circuit Bandwidth
 - Skin Effect Losses
 - Dielectric Absorption
 - Dispersion *esp. Optical Fiber*
 - Reflections, Impedance mismatch
 - path discontinuities (connectors)

Jitter Propagation, Measurements and Budgets

- Jitter varies at different locations (test points) of a serial data link
 - Amplitude variations convert to jitter (ISI intersymbol interference)
 - Additional sources (crosstalk, EMI)
- Jitter is one of the primary performance indicator in a Serial Data Link
- Traditionally measured as TIE time interval error
 - Statistically presented by peak-to-peak (p-p) or root mean square (rms)
 - Equivalent to Eye Width, Eye Closure
- Budgeted between Transmitter, Channel and Receiver

5 10/7/2013

Motivation for Jitter Decomposition

- Problem: TIE or Eye width do not estimate circuit and link performance very well with respect to specified bit-error-rate (BER)
 - Different jitter components propagate differently
 - Some jitter components can be compensated, others not
- Speed: Directly measuring error performance at 1e-12 requires directly observing MANY bits (1e14 or more). This is time consuming! Extrapolation from a smaller population can be done in seconds instead of hours.
- Knowledge: Jitter decomposition gives great insight into the root causes of eye closure and bit errors, and is therefore invaluable for analysis and debug.
- Flexibility: Already have a scope on your bench? You can do Jitter@BER measurements without acquiring more, perhaps somewhat specialized equipment.

6 10/7/2013

Common Terms

- Random Jitter (RJ)
- Deterministic Jitter (DJ)
 - Periodic Jitter (PJ)
 - Sinusoidal Jitter (SJ)
 - Duty Cycle Distortion (DCD)
 - Data-Dependent Jitter (DDJ)
 - Inter-Symbol Interference (ISI)
- Bit Error Rate (BER)
- Total Jitter ~ (TJ or TJ@BER)
- Eye Width @BER
 - versus Actual or Observed Eye Width

Random Jitter (RJ)

- Jitter of a random nature is assumed to have a Gaussian distribution (Central Limit Theorem)
- Histogram (estimate) \leftrightarrow pdf (mathematical model)
- Peak-to-Peak = ... unbounded!

Deterministic Jitter (DJ)

- Deterministic jitter has a bounded distribution: the observed peak-to-peak value will not grow over time
- Histogram = pdf (close enough)

Periodic Jitter (PJ, SJ)

- TIE vs. time is a repetitive waveform
- Assumed to be uncorrelated with the data pattern (if any)
- Sinusoidal jitter is a subset of Periodic Jitter

Duty Cycle Distortion (DCD)

- DCD is the difference between the mean TIE for rising edges and the mean TIE for falling edges
- Causes
 - Asymmetrical rise-time vs. fall-time
 - Non-optimal choice of decision threshold

Data-Dependent Jitter

- DDJ or ISI used interchangeably
- ISI usually considered to be the physical effect that causes DDJ
- Characterizes how the jitter on each transition is correlated with specific patterns of prior bits
 - Due to the step response of the system
 - Due to transmission line effects (e.g. reflections)

Bounded Uncorrelated Jitter

- Problem: Bounded but uncorrelated jitted components are accounted in RJ and thus cause larger TJ than actually in the system, incorrectly reflecting system performance.
- The implications of complex channel interaction can be observed and identified by examining the type and amount of Bounded Uncorrelated Jitter or BUJ.
- There is a strong Cause—and-Effect relationship between Crosstalk and BUJ which often gets classified as Random if special steps are not observed.

Table 4-6. Stressed Receiver Conditions

Bounded Uncorrelated Jitter (BUJ)

- Definitions of Jitter Properties:
 - Bounded: Having a PDF (histogram) that does <u>not grow in width</u> as the observation interval increases

- Uncorrelated: Specifically, not correlated to the pattern of data bits
 - Note that PJ (Periodic Jitter) is both bounded and uncorrelated \rightarrow BUJ!
- Deterministic: Future behavior can be predicted based on observed past.
 - Deterministic jitter is always bounded
 - But... bounded jitter isn't necessarily deterministic
- RJ: By convention, random jitter with a Gaussian histogram
- NPJ or NP-BUJ: Non-Periodic (Bounded Uncorrelated) Jitter. This is basically random jitter with a bounded PDF

Jitter Visualization

Gaussian Random Noise

Sinusoidal Jitter

Agenda

- ✓ What is jitter?
- ✓ Jitter Measurements and Decomposition
- Clock Recovery and Reference Levels
- Channel Effects on the Signal and Measurements
- De-embedding and Equalization
- PCI Express 3.0 Example
- Tips for Effective Channel Modeling and Measurements
- Conclusions

TIE Jitter needs a Reference Clock

- The process of identifying the reference clock is called Clock Recovery.
- There are several ways to define the reference clock:
 - Constant Clock with Minimum Mean Squared Error
 - This is the mathematically "ideal" clock
 - But, only applicable when post-processing a finite-length waveform
 - Best for showing very-low-frequency effects
 - Also shows very-low-frequency effects of scope's timebase
 - Phase Locked Loop (e.g. Golden PLL)
 - Tracks low-frequency jitter (e.g. clock drift)
 - Models "real world" clock recovery circuits very well
 - Explicit Clock
 - The clock is not recovered, but is directly probed
 - Explicit Clock (Subrate)
 - The clock is directly probed, but must be multiplied up by some integral factor
 - Example: PCI Express motherboard CEM testing

17 10/7/2013

JTF vs PLL Loop Bandwidth

- Configuring the correct PLL settings is key to correct measurements
- Most standards have a reference/defined CR setup
 For example, USB 3.0 uses a Type II with JTF of 4.9Mhz
- Type I PLL
 - Type I PLL has 20dB of roll off per decade
 - JTF and PLL Loop Bandwidth are Equal
- Type 2 PLL
 - Type II PLL has 40dB of roll off per decade
 - JTF and PLL Loop Bandwidth are not Equal
 - For example, USB 3.0 uses a Type 2 PLL with a JTF of 4.9Mhz. The corresponding loop bandwidth is 10.126 Mhz
 - Setting the Loop Bandwidth as opposed to JTF will lead to incorrect jitter measurement results

PLL Loop Bandwidth vs. Jitter Transfer Function (JTF)

JTF Filtering Effects based on different PLL bandwidths

Tektronix[®]

Agenda

- ✓ What is jitter?
- ✓ Jitter Measurements and Decomposition
- ✓ Clock Recovery and Reference Levels
- <u>Channel Effects on the Signal and Measurements</u>
- De-embedding and Equalization
- PCI Express 3.0 Example
- Tips for Effective Channel Modeling and Measurements
- Conclusions

Channel Effects on the Signal and Measurements

- As signal propagates through the model
 - Eye closes both horizontally and vertically
 - Jitter increases
- Eye may be closed at the receiver pins (before equalization)
- Equalization is needed to open the eye at the slicer (comparator) of the receiver

Terminology

- Transmitter equalization
- De-emphasis, Preshoot, Boost
- De-embedding
- CTLE Continuous time linear equalizer
- FFE Feed-forward equalizer
- DFE Decision feedback equalizer

What is the difference?

Vs.

Channel loss

• Embedding

- **De-embed** measured circuit as needed, to remove the effects of the test fixture, cables and/or the channel to characterize the Transmitter
- *Embed* the simulation circuit: observe the waveform at the receiver pins
- Emulate the *Equalization* inside the Rx: observe the waveform at the comparator

SDLA Visualizer Tool for Channel Modeling

- Select Input Mode
 - Specifies operating mode of SDLA
- Configure Measurement Circuit (De-Embed)
 - The Measurement Circuit is used to define the TX output impedance and the physical test and measurement system used to acquire the signal
- Configure Simulation Circuit (Embed)
 - The Simulation Circuit is used to define the TX output impedance, embed a simulated channel and to specify a receiver load
- Configure RX Block (Equalization)
 - Rx Equalization can be specified as an IBIS-AMI model, OR CTLE and/or DFE/FFE.
- Select Test Points
 - Points of visibility within the link

Agenda

- ✓ What is jitter?
- ✓ Jitter Measurements and Decomposition
- ✓ Clock Recovery and Reference Levels
- Channel Effects on the Signal and Measurements
- ✓ De-embedding and Equalization
- PCI Express 3.0 Example
- Tips for Effective Channel Modeling and Measurements
- Conclusions

PCI Express 3.0 Example

- Base vs CEM Testing
- What test point each type of testing addresses?
- How do we get to see the signal at the point of interest?

Introduction to Jitter and Serial Data Link Analysis

System (Base Spec) Tx Testing

- Base Specification Measurements are defined at the pins of the transmitter
- Signal access at the pins is often not possible
- De-embedding is required to see how the signal looks like at the pins of the TX, without the added effects of the channel
- S-Parameters are acquired on the replica channel

Add-In Card (CEM Spec) Tx Testing

- CEM Specification Measurements are defined at the slicer of a receiver
- Signal access is not possible either
- Embedding of the compliance channel and package, as well as application of the behavioral equalizer is required
- SigTest or custom software like DPOJET will perform the embedding and calculate measurements

Tektronix option PCE3

- TekExpress Automation for Tx Compliance with unique features including:
 - Sets up the Scope and DUT for testing
 - ✓ Toggles thru and verifies the different Presets and Bit Rates (2.5, 5, 8 GT/s)
 - \checkmark Tests multiple slots and lanes
 - Processed with PCI-SIG
 SigTest
 - ✓ Provides custom reporting
 - Optionally removes test fixture effects by using deembedding

Option PCE3 for DPOJET

- SigTest.exe (Command-Line) integration
 - Supports PCI-SIG recommended SigTest.exe utility
 - User can switch between DLL and Command-Line (.exe) modes
 - All result are populated in Tektronix result/report format in command line mode
- Support the latest versions of SigTest
 - User can optionally choose a different version and run
- Uses AWG/AFG for automatic DUT toggle (Min 2ch & 100MHz Burst mode)
 - AFG3252/C
 - AWG5002B/C, AWG5012B/C, AWG5014B/C
 - AWG7082B/C, AWG7122B/C
 - AWG70001A/2A

Automated DUT Control

AFG or AWG

System Board / Mother Board with Multiple Slots

Add-In Card Test Fixture

- Compliance Base Board (CBB)
 - Used for Testing Add-In cards
 - All Tx / Rx Lanes are routed to SMP
 - Compliance Mode Toggle Switch
 - Low Jitter Clean Reference Clock
 - Separate CBB for Gen 1/2/3

Compliance Base Board (CBB)

Agenda

- ✓ What is jitter?
- ✓ Jitter Measurements and Decomposition
- ✓ Clock Recovery and Reference Levels
- Channel Effects on the Signal and Measurements
- ✓ De-embedding and Equalization
- ✓ PCI Express 3.0 Example
- Tips for Effective Channel Modeling and Measurements
- Conclusions

Hints for Successful Jitter Analysis

- Verify that signal integrity (i.e. probing) is reasonable
 - Reflections due to mid-bus probing can cause "duplicate" edges
- Check (and consider overriding) your autosets
 - Reference levels are appropriate to the signal
 - If the input signal is differential, consider locking the mid ref to 0 V.
 - A strongly bi-modal histogram often signals a reference level problem.
 - Is the signal noisy enough to require more hysteresis?
 - Explicitly set the signal type to Clock or Data
- Use only the bandwidth you need
 - If the scope BW exceeds the BW of the device being tested, you are adding some scope noise to the measurement results
- Check your RJ/DJ settings
 - Repeating-pattern vs arbitrary-pattern
 - Check that your pattern length is correct

More Hints for Successful Jitter Analysis

- Clock Recovery has a great deal of influence on jitter results. Think about what you're trying to accomplish.
 - Constant-Clock is the most "unbiased"
 - Often best if you're trying to see very-low-frequency effects
 - But it can also show wander in the scope's timebase
 - PLL recovery can model what a real data receiver will see
 - It can track and remove low-frequency effects, allowing you to "see through" to the jitter that really contributes to eye closure
 - Explicit-Clock is appropriate if your design uses a forwarded clock
 - Make sure your probes are deskewed

Hints for looking at Spread-Spectrum Clock

- If you <u>don't</u> want to see the SSC effects, use **TIE** and PLL clock recovery with a bandwidth of at least 1 MHz. A Type-II (2nd-order) PLL will track out the SSC more effectively than a Type-I PLL.
- If you <u>do</u> want to observe the SSC profile:
 - Use a Period measurement and turn on a 3rd-order low-pass filter (in DPOJET) with a bandwidth of 200 kHz
 - Because Period trends accentuate high frequency noise, the low-frequency SSC trend will be obscured if you don't use a filter
 - You can't use a Frequency measurement directly. The combination of filtering and the reciprocal operation (Freq = 1/Per) cause distortion in the resulting waveshape.
 - If you use a TIE measurement, you'll see modulation that looks like a sine wave. This is normal. It's because TIE measures phase modulation, which is the integral of frequency. It turns out that the integral of a triangle wave looks very much like a sine wave.

Additional Ideas for Resolving of Jitter Issues

- Deep memory capture
 - Long records needed for low frequency events (SSC, periodic jitter, low speed clocks)
 - Frequency window related to time capture
 - 1 SSC cycle (33kHz) => Need 30us time record
- Eye Diagram Analysis
 - Quick visual indicator of voltage and timing performance
 - Related to Bit Error Rate (BER)
- Debugging Jitter
 - Knowledge of jitter types and sources aids in debug
 - Common jitter sources
 - Power supply coupling
 - PLL (tracking or overshoot)
 - Limited channel bandwidth and reflections (ISI)
 - Driver imbalance (Rise/fall time asymmetry)
- Check Reference Levels and Clock Recovery parameters

38

Conclusions

- Jitter decomposition and measurements allow proper evaluation of system performance
- Use Serial Data Link Analysis (SDLA) to emulate or compensate for losses in the channel
- Use specific measurement solutions (DPOJET, TekExpress) to evaluate compliance with the specification
- Use tools that provide most flexibility and comprehensive analysis capability
- Thank you for attending!

Jitter Measurement in the Presence of Crosstalk: Problem Summary

- Crosstalk-caused jitter typically is Bounded Uncorrelated Jitter (BUJ); depending on the spectra this should be separated as either
 - PJ (Periodic BUJ)

or

- NPJ (Non-Periodic BUJ)
- In traditional oscilloscope-based jitter measurement methodology the more spectrally diffuse BUJ components (i.e. NPJ) are not distinguished from RJ.
 - The inflated RJ is multiplied by a factor, thereby grossly inflating TJ.

Example: $TJ = DJ + 14^*RJ$ (at BER = 1e-12)

 This is well known and was documented e.g. in "Method of BER Analysis of High Speed Serial Data Transmission in Presence of Jitter and Noise", Zivny at all, DesignCon 2007.

BUJ vs. Legacy Jitter Decomposition Results

Them-BUJ Dec	omposition	Legacy-Deco			
TJ@BER1, Math1	10.105ps	TJ@BER1, Math1	11.159ps	<u>c1</u> ∫ 42.0mV	4.0µs/div 50.0GS/s 20.0ps/pt
RJ1, Math1	506.04fs	RJ1, Math1	694.31fs		1 acqs RL:2.0M
PJ1, Math1	3.6968ps	PJ1, Math1	2.8264ps		Man September 02, 2011 17:51:00
DJ1, Math1	3.6968ps	DJ1, Math1	2.8264ps	11.2ps	
NPJ1, Math1	881.89fs	TIE2, Math1	-25.694fs	12 88.8ps	
TIE2, Math1	55.789fs	Rise Slew Rate1, Math1	9.2843V/ns	100ps 1/Δt 10.0GHz	
Rise Slew Rate1, Math1	9.2627V/ns		L L		
		a han han han han han han han han han h			
TJ@BER1, Math1	9.9087ps	TJ@BER1, Math1	10.315ps		4.0µs/div 50.0GS/s 20.0ps/pt
TJ@BER1, Math1 RJ1, Math1	9.9087ps 556.41fs	TJ@BER1, Math1 RJ1, Math1	10.315ps 680.95fs	1 42.0mV	4.0µs/div 50.0GS/s 20.0ps/pt Stopped Single Seq 1 acqs RL:2.0M
TJ@BER1, Math1 RJ1, Math1 PJ1, Math1	9.9087ps 556.41fs 2.6685ps	TJ@BER1, Math1 RJ1, Math1 PJ1, Math1	10.315ps 680.95fs 1.7365ps	1 √ 42.0mV	4.0µs/div 50.0GS/s 20.0ps/pt Stopped Single Seq 1 acqs RL:2.0M Man September 02, 2011 17:47:09
TJ@BER1, Math1 RJ1, Math1 PJ1, Math1 DJ1, Math1	9.9087ps 556.41fs 2.6685ps 2.6685ps	TJ@BER1, Math1 RJ1, Math1 PJ1, Math1 DJ1, Math1	10.315ps 680.95fs 1.7365ps 1.7365ps	1.2ps	4.0µs/div 50.0GS/s 20.0ps/pt Stopped Single Seq 1 acqs RL:2.0M Man September 02, 2011 17:47:09
TJ@BER1, Math1 RJ1, Math1 PJ1, Math1 DJ1, Math1 NPJ1, Math1	9.9087ps 556.41fs 2.6685ps 2.6685ps 592.92fs	TJ@BER1, Math1 RJ1, Math1 PJ1, Math1 DJ1, Math1 TIE2, Math1	10.315ps 680.95fs 1.7365ps 1.7365ps 44.029fs	1 _11.2ps 86.8ps 100mc	4.0µs/div 50.0GS/s 20.0ps/pt Stopped Single Seq 1 acqs RL:2.0M Man September 02, 2011 17:47:09
TJ@BER1, Math1 RJ1, Math1 PJ1, Math1 DJ1, Math1 NPJ1, Math1 TIE2, Math1	9.9087ps 556.41fs 2.6685ps 2.6685ps 592.92fs 89.108fs	TJ@BER1, Math1 RJ1, Math1 PJ1, Math1 DJ1, Math1 TIE2, Math1 Rise Slew Rate1, Math1	10.315ps 680.95fs 1.7365ps 1.7365ps 44.029fs 9.3228V/ns	1 −11.2ps 88.8ps 100ps 10.0GHz	4.0µs/div 50.0GS/s 20.0ps/pt Stopped Single Seq 1 acqs RL:2.0M Man September 02, 2011 17:47:09

DPOJET Setup for BUJ / NPJ Measurements

- **Enable** Spectral+BUJ either through the Preferences Setup or the Jitter Map
- Minimum # of UI control is only available via Preferences Setup
 - Default is 1M but it can be reduced as low as 10k.

Preferences S General Measurement	Setup Dual Dirac Model Jitter Separation Model	PCI/FB-DIMM V Spectral Only V	*	Defa	ult
Jitter Decomp		7			X
Path Defaults		Preferences Setup			
		General Dual I Measurement Jitter Jitter Decomp Minim Path Defaults	Dirac Model F Separation Model Separation Model	PCI/FB-DIMM Spectral + BUJ 1M	
					OK Cancel

DPOJET Results for BUJ / NPJ Measurements

- Until the population requirement has been met, dependent measurements say "< Min # of UI"
- Clock NPJ measurement shows actual progress toward the population requirement

Select								View De	tails 🔻	Expand	Recalc
	A	Description	Mean	Std Dev	Max	Min	p-p	Population	Max-cc	Min-cc	(7)
onfigure		TIE1, Ref1	1.8264fs	6.4070ps	21.080ps	-19.748ps	10.828ps	392399	23.295ps	-22.010ps	Single
onngure		🛨 TJ@BER1, Ref1	< Min #of UI		5% complete			0			Single
		🛨 RJ1, Ref1	< Min #of UI		5% complete			0			
Results		🛨 Clock NPJ1, Ref1	< Min #of UI		5% complete			88070			Run
		🛨 PJ1, Ref1	12.868ps	0.0000s	12.868ps	12.868ps	0.0000s	1	0.0000s	0.0000s	(C)
Plots		🕣 DDJ1, Ref1	18.375ps	0.0000s	18.375ps	18.375ps	0.0000s	1	0.0000s	0.0000s	Show Plots
		🛨 DCD1, Ref1	1.0108ps	0.0000s	1.0108ps	1.0108ps	0.0000s	1	0.0000s	0.0000s	alu

SDLA provides Complete Signal Visibility

- SDLA provides all functionality relating to Serial Data Link modeling in a single package (embed, de-embed, equalization)
- With Tektronix SDLA you can view the waveform and/or eye diagram at all stages in the link
- Supports S-parameters and other linear model descriptions of a system as well as IBIS-AMI models (industry standard for behavioral modeling of links)

