## **Memory Solutions**

#### Industry Trends and Solution Overview



#### **Tektronix Innovation Forum**

Leading Solutions for Today, Tomorrow and Beyond



## Outline

- Industry Trends & Market Status
- Existing SDRAM Technologies
  - DDR3, DDR3L, DDR3U
    - DDR3 Signaling
  - LPDDR2/LPDDR3
    - LPDDR3 Signaling
  - DDR4
    - DDR4 Signaling
- "Emerging" SDRAM Technologies
  - LPDDR4
  - WidelO2
  - HBM (High Bandwidth Memory)
  - HMC (Hybrid Memory Cube)
  - Bandwidth and Pin Count
- Memory Validation Continuum Solution Overview





## Industry Trends & Market Status





### **DRAM Market Status**



- Three Sub segments all focused on single standard
- Computer segment disappearing and market bi-furcation into Server and Consumer



## **DRAM Industry Trends**





## Consumer DRAM Market status





# DRAM Applications Overview

| Handheld                      | LPDDR2, LPDDR3                | LPD      | DR4                          |
|-------------------------------|-------------------------------|----------|------------------------------|
| Mobile/Home/Office            | Solderdown/CS<br>UDIMM/SODIMM |          | WidelO2                      |
| Computing                     | x8/x16 DDR3, DDR3L (U)        |          | TSV                          |
| Infrastructure<br>Computing   | RDIMM/LRDIMM                  | x4/x8 DE | )R4 / 3DS                    |
| Infrastructure                | x4/x8 DDR3, DDR3L, (DDR       | 3U)      | HMC                          |
| Networking                    | RLDRAM<br>Solderdown          |          | TSV                          |
| Graphics                      | DDR3(x32), GDDR5              |          | WidelO2                      |
| High Performance<br>Computing |                               |          | HBM<br><sup>10/7/201</sup> 7 |



# **Existing SDRAM Technologies**

- DDR3, DDR3L, DDR3U
- LPDDR2/LPDDR3
- DDR4





## DDR3/DDR3L(/DDR3U)

Server and Desktop/Mobile Computing

#### **Protocol Layer**

- Command based interface
- Separate Command/Address and data bus
- Power state management via CKE
- No dedicated connectivity test mode
- Clock/Strobe calibration (write leveling)

#### **Physical Layer**

- DDR Signaling, Midlevel Referencing (VREFCA, VREFDQ)
- SDR CA-bus, differential clock
- Bidirectional single ended data bus (800 2133 Mbps/pin), differential strobe
- programmable Midlevel ODT, ZQ calibrated
- programmable Drive Strength, ZQ calibrated

#### **Packaging Technology**

- Typical DIMM with 8...36 single SDP's (or DDP, QDP, 3DS)
- x4/x8 (server) x8/x16 (mobile computing) x32 (low end graphics)
- E.g. x8 has 44 active signals, window BGA (CSP), 0.8 mm ball pitch
- UDIMM, RDIMM, LRDIMM socket 240-pins 1.0 mm pitch
- X64/x72 DIMM has 6.4 GBps ... 14.1 GBps per channel









## DDR3/DDR3L(/DDR3U): Signaling Details (1)

- VDD = VDDQ: 1.5V, L=1.35V, (U=1.25 V)
- AC-Input Levels: +/-175 mV...+/- 125 mV around VREF(dc)
- DC-Input levels:
   +/- 100 mV .... +/-90 mV around VREF(dc)
- Strobe crossing centered in data eye for Write; Rising strobe edge centered between two falling clock edges tDSS = +/- <sup>1</sup>/<sub>4</sub> tCK
- Strobe edge aligned with clock for Reads; tDQSCK = +/- 10% tCK
   Data aligned with strobe for Reads
- Slew rate dependent setup/hold (derating)
- ADD/CMD eye centered around rising clock edges (SDR)



#### DDR3/DDR3L(/DDR3U): Signaling Details (5) *Preamble/Postamble Read/Write*











## LPDDR2 and LPDDR3

Handheld

#### **Protocol Layer**

- DDR Command/Address (10xCA-)bus; 2-halfcycle commands
- Different Prefetch LPDDR2: S2, S4; LPDDR3 S8
- LPDDR2 also supports NVM, LPDDR3 does NOT
- No dedicated connectivity test mode
- Clock/Strobe calibration (write leveling); LPDDR3: Clock/CA training

#### **Physical Layer**

- DDR Signaling, Midlevel Referencing (VREFCA, VREFDQ)
- DDR CA-bus, differential clock, SDR CS#
- Bidirectional single ended data bus (400 1066 2133 Mbps/pin) differential strobe, unterminated HSUL, LPDDR3 adds VDD term option
- programmable Drive Strength, ZQ calibrated

#### **Packaging Technology**

- PoP or side-by-side CSP solder-down, 0.4, 0.5, 0.65x0.8 mm ball ptich
- MCP in with separate NVM (eMMC, UFS) channel(s)
- Edge-pad die with wire-bonded DDP/QDP, very thin
- Typ. one or two channels; x32 DQ per channel; 1.6 7.0 GBps per ch.
- ~60 active pins per (x32) channel









## LPDDR2/3: Signaling Details

- VDDQ: 1.2V
- AC-Input Levels: LPDDR2: +/-300 mV...+/- 220 mV around VREF LPDDR3: +/-150 mV...+/- 135 mV around VREF
- With VDDQ termination VREF may be off-centered!
- CA bus DDR, eye centered around clock crosspoint
- CS\_n is SDR, only latched with rising clock edges
- Strobe centered in data eye for Writes,
- Strobe aligned with clock for Writes tDQSS= +/- <sup>1</sup>/<sub>4</sub> tCK
- Strobe edge aligned with data for Reads;
- No DLL: strobe NOT aligned with clock for Reads; tDQSCK = 2.5...5.5 ns
- Slew rate dependent setup/hold (derating) referenced to clock/strobe crosspoint
- tQH (while defined the same way as in LPDDR2) has much larger value (in %UI) compared to LPDDR2



#### DDR4

Server (and Mobile Computing)

#### **Protocol Layer**

- Command based interface like DDR3
- CA parity, Data CRC (for higher data rate), DBI(dc)
- Dedicated connectivity test mode (mandatory for x16/x32)
- Clock/Strobe calibration (write leveling); 'internal VREFCA' training
- DQS/DQ training; 'internal VREFDQ' training;

#### **Physical Layer**

- DDR Signaling, Internally programmable VREFCA, VREFDQ/bytelane
- SDR CA-bus (~23x), differential clock
- Bidirectional single ended data bus (1600 3200 Mbps/pin), diff. strobe
- Databus VDDQ terminated, programmable ODT, ZQ calibrated
- programmable Drive Strength, ZQ calibrated

#### **Packaging Technology**

- Typical DIMM with 8...36 single SDP's (or DDP, QDP) or 2H, 4H, 8H 3DS
- x4/x8 (server) x8/x16 (mobile computing) x32 (low end graphics)
- E.g. x8 has xx active signals, window BGA (CSP), 0.8 mm ball pitch
- UDIMM, RDIMM, LRDIMM socket 288-pins 0.85 mm pitch
- X64/x72 DIMM has 12.8 GBps ... 25.6 GBps per channel









#### **DDR4: Signaling Details**

- VDD = VDDQ: 1.2V, (maybe  $\rightarrow$  1.1V  $\rightarrow$  1.0 V in the future)
- Generally like DDR3; except:
  - No external VREF. Replaced by internally trained VREF and virtual "VCENT"
  - Mask type data valid window mask height ~+/- 68 mV ... xxx mV (corresponds to DDR3 dc-levels) VIHL\_ac = +/- 93 mV (corresponds to DDR3 ac-levels)
  - VDDQ Termination



#### DDR4 Rx Data Eye Detail: ac/dc levels -- mask

- Redefinition from (*min*) ac/dc levels that *must be applied* externally (as system requirement)
   → (*max*) mask height (VdIVW) that receiver is *allowed to require* (as receiver property)
- VREF is internal and trained in DDR4 system  $\rightarrow$  only virtual Vcent externally
- AC-level has to be reached, but at no particular time







#### DDR4 Rx Data Eye Detail: Statistical Mask

- TdIVW (max) is centered around the strobe crossing (replaces min setup/hold)
- VdIVW (max) is centered around Vcent
- Vcent is the calculated to be the widest eye-opening
- Allow VdIVW and TdIVW to have bounded (deterministic) and gaussian (random) properties.









- Complete Solution for the Memory Application Space
- Best in class solutions for Electrical, Logic and Execution Validation plus correlation and time-to-data capabilities unique to Tektronix
  - iCapture and iView Capability
  - Socketed interposers
  - iCis
  - Shared Interposers
  - Common compliance software
  - Single probing multiple views
  - MSO Slot+MCI probing combination



## iCapture / iView











## Socketed Interposers





Socketed LA Interposer





#### Data Displays



**Tektronix**<sup>®</sup>

## **MSO Interposer Combination**



**MSO Interposers** 





## Shared Probing









## **Protocol Compliance**

| Name                                   |                                                                                   |                                                                                                                      | Occuren                                                                                                                                     | ces Violati                                                                    | ons Status                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Min.(ps)                                                 | Max.(ps)                                             | Average(ps)                                                | Marg                                | in(%)                                                                  | Spec. Value                                           | (ps)                |
|----------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------|---------------------|
| WR Bu                                  | urst                                                                              |                                                                                                                      | 13,386                                                                                                                                      | 00                                                                             | R7 R6 R5                                                         | N R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00                                                       | 00                                                   | 168,523                                                    | 12810                               | 2389400761000.0                                                        | 7,200                                                 |                     |
| RD to \                                | WR(A) Se                                                                          | eparation                                                                                                            | 13,386                                                                                                                                      | 00                                                                             | 673 653 653                                                      | R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                       | 00                                                   | 64,028                                                     | 70310                               | 809855578300.0                                                         | 13,118                                                |                     |
| PDX S                                  | low Exit                                                                          |                                                                                                                      |                                                                                                                                             |                                                                                |                                                                  | N R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                                                      |                                                            |                                     |                                                                        | 24,000                                                |                     |
| Rank D                                 | DLL Rese                                                                          | t to RD(A)                                                                                                           |                                                                                                                                             | 00                                                                             | 623 633 633                                                      | R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                       |                                                      | NA                                                         | NA                                  |                                                                        | 959,700                                               |                     |
| WR to                                  | RD(A) Se                                                                          | eparation                                                                                                            |                                                                                                                                             |                                                                                |                                                                  | - R5 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                                                      |                                                            | 35155                               | 404927789100.0                                                         |                                                       |                     |
| RD Bu                                  | irst                                                                              |                                                                                                                      |                                                                                                                                             |                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                      | 164,742                                                    |                                     | 2389400761000.0                                                        |                                                       |                     |
| sPD Ti                                 | îme Min.                                                                          |                                                                                                                      |                                                                                                                                             |                                                                                |                                                                  | N R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |                                                      |                                                            |                                     |                                                                        |                                                       |                     |
| sPD Ti                                 | ime Max.                                                                          |                                                                                                                      |                                                                                                                                             |                                                                                |                                                                  | R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                                      |                                                            |                                     |                                                                        | 70,200,000                                            |                     |
| PREIA                                  | ) Bank Se                                                                         | ettle                                                                                                                | 26,733                                                                                                                                      | 29                                                                             |                                                                  | R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                       | 00                                                   | 947.528                                                    | 70273                               | 310756988700.0                                                         | 13.125                                                |                     |
|                                        |                                                                                   |                                                                                                                      |                                                                                                                                             |                                                                                |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |                                                      |                                                            |                                     |                                                                        |                                                       |                     |
| SREF                                   | Time                                                                              |                                                                                                                      |                                                                                                                                             |                                                                                |                                                                  | R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          | 00                                                   | 5,297,689                                                  | 83848                               | 83669867880.0                                                          | 110,000                                               |                     |
| REF                                    | Time<br>Time Min                                                                  |                                                                                                                      | 1.527<br>19,499                                                                                                                             | 00<br>00                                                                       |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00                                                       |                                                      | 5.297.689<br>265.733                                       |                                     |                                                                        |                                                       |                     |
|                                        | Time Min<br>Time Max                                                              |                                                                                                                      | 19,499<br>19,499                                                                                                                            |                                                                                | R7 R6 R5                                                         | R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00<br>00<br>00                                           | 00<br>00<br>00                                       |                                                            | 24595<br>13138                      | 83669867880.0                                                          | 110,000                                               | ŀ                   |
| SREFT<br>SACT<br>SACT<br>Indivi        | Time Min<br>Time Max                                                              | cquisition                                                                                                           | 19,499<br>19,499                                                                                                                            | 00                                                                             | R7 R5 R5                                                         | 74 R3 R2 R1 R0<br>74 R3 R2 R1 R0<br>74 R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00<br>00<br>00<br>Per Ad                                 | 00<br>00<br>00<br>quisition                          | 265,733<br>265,733<br>Violation Deta                       | 24595<br>13138<br>ails              | 83669367880.0<br>658764946000.0<br>706605106.2                         | 110,000<br>37,500<br>70,200,000                       |                     |
| SREFT<br>SACT<br>SACT<br>Indivi        | Time Min<br>Time Max                                                              | cquisition<br>Time                                                                                                   | 19,499<br>19,499<br>Details                                                                                                                 | 00<br>00<br>Occurences                                                         | R7 R6 R5<br>R7 R6 R5                                             | N R3 R2 R1 R0<br>R1 R3 R2 R1 R0<br>R1 R3 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00<br>00<br>00<br>Per Ac                                 | 00<br>00<br>00<br>quisition '                        | 265.733<br>265.733<br>Violation Deta<br>stamp Rank         | 24595<br>13138<br>ails<br>Bank      | 83669367880.0<br>653764346000.0<br>706605106.2<br>Offending Cmd        | 110,000<br>37,500<br>70,200,000<br>Value(ps)          | Ma                  |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual A<br>Run #<br>1                                    | cquisition<br>Time<br>10/10/2011                                                                                     | 19,499<br>19,499<br>Details<br>1:38:00 PM                                                                                                   | 00<br>00<br>Occurences<br>2501                                                 | R7 R6 R5<br>R7 R6 R5<br>Violations<br>2                          | R4 R3 R2 R1 R0<br>R4 R3 R2 R1 R0<br>R4 R3 R2 R1 R0<br>R5 R2 R1 R0<br>R5 R2 R1 R0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00<br>00<br>00<br>Per Ac<br>Sampl<br>25344               | 00<br>00<br>00<br>quisition 1<br>e # Times<br>498608 | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank<br>3 | 83658867880.0<br>658764946000.0<br>706605106.2<br>Offending Cmd<br>PRE | 110,000<br>37,500<br>70,200,000<br>Value(ps)<br>3,731 | Ma<br>-71.          |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual A<br>Run #<br>1<br>2                               | cquisition<br>Time<br>10/10/2011<br>10/10/2011                                                                       | 19,499<br>19,499<br>Details<br>1:38:00 PM<br>1:38:05 PM                                                                                     | 00<br>00<br>Occurences<br>2501<br>2644                                         | R7 R6 R5<br>R7 [86 [85<br>Violations<br>2<br>3                   | R4 23 22 23 20<br>24 23 22 21 20<br>24 25 22 24 20<br>27 25 25 24 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00<br>00<br>00<br>Per Ac<br>Sampl<br>25344<br>114431     | 00<br>00<br>00<br>quisition '                        | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank      | 83669367880.0<br>653764346000.0<br>706605106.2<br>Offending Cmd        | 110,000<br>37,500<br>70,200,000<br>Value(ps)          | Ma<br>-71.          |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual Ar<br>Run #<br>1<br>2<br>3                         | cquisition<br>Time<br>10/10/2011<br>10/10/2011<br>10/10/2011                                                         | 19,499<br>19,499<br>Details<br>1:38:00 PM<br>1:38:05 PM<br>1:38:11 PM                                                                       | 00<br>00<br>Occurences<br>2501<br>2644<br>2545                                 | PT DO PS<br>DO TRE DE<br>Violations<br>2<br>3<br>3               | 54 53 52 53 50<br>54 53 52 53 50<br>54 53 52 53 50<br>54 53 52 53 50<br>54 55 55 54 5<br>57 55 55 54 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00<br>00<br>00<br>Per Ac<br>Sampl<br>25344<br>114431     | 00<br>00<br>00<br>quisition 1<br>e # Times<br>498608 | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank<br>3 | 83658867880.0<br>658764946000.0<br>706605106.2<br>Offending Cmd<br>PRE | 110,000<br>37,500<br>70,200,000<br>Value(ps)<br>3,731 | Ma<br>-71.          |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual A<br>Run #<br>1<br>2<br>3<br>4                     | cquisition<br>Time<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011                                           | 19,499<br>19,499<br>Details<br>1:38:00 PM<br>1:38:05 PM<br>1:38:11 PM<br>1:38:16 PM                                                         | 00<br>00<br>Occurences<br>2501<br>2644<br>2545<br>2722                         | R7 R6 R5<br>R7 R6 R5<br>Violations<br>2<br>3<br>3<br>3           | 24 23 22 23 20<br>24 23 23 23 24 24<br>27 26 25 24 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00<br>00<br>00<br>Per Ac<br>Sampl<br>25344<br>114431     | 00<br>00<br>00<br>quisition 1<br>e # Times<br>498608 | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank<br>3 | 83658867880.0<br>658764946000.0<br>706605106.2<br>Offending Cmd<br>PRE | 110,000<br>37,500<br>70,200,000<br>Value(ps)<br>3,731 | Ma<br>-71.          |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual Ar<br>Run #<br>1<br>2<br>3<br>4<br>5               | cquisition<br>Time<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011                             | 19,499<br>19,499<br>Details<br>1:38:00 PM<br>1:38:05 PM<br>1:38:11 PM<br>1:38:16 PM<br>1:38:22 PM                                           | 00<br>00<br>00<br>2501<br>2644<br>2545<br>2722<br>2670                         | PT DO PS<br>DO TRE DE<br>Violations<br>2<br>3<br>3               | 24 23 22 23 20<br>24 25 25 24 2<br>27 26 25 24 2<br>27 26 25 24 2<br>27 26 25 24 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00<br>00<br>00<br>Per Ac<br>Sampl<br>25344<br>114431     | 00<br>00<br>00<br>quisition 1<br>e # Times<br>498608 | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank<br>3 | 83658867880.0<br>658764946000.0<br>706605106.2<br>Offending Cmd<br>PRE | 110,000<br>37,500<br>70,200,000<br>Value(ps)<br>3,731 | Ma<br>-71.          |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual A<br>Run #<br>1<br>2<br>3<br>4                     | cquisition<br>Time<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011                             | 19,499<br>19,499<br>Details<br>1:38:00 PM<br>1:38:05 PM<br>1:38:11 PM<br>1:38:16 PM<br>1:38:22 PM<br>1:38:28 PM                             | 00<br>00<br>2501<br>2644<br>2545<br>2722<br>2670<br>2800                       | F7 R6 R5<br>F2 R0 FE<br>Violations<br>2<br>3<br>3<br>3<br>4<br>4 | 21 22 22 23 20<br>24 23 22 23 20<br>25 23 22 23 20<br>24 23 22 23 20<br>25 25 22 23 20<br>26 25 25 24 25<br>27 25 25 24 25<br>27 25 25 24 25<br>27 25 25 24 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00<br>00<br>00<br>9 Per Ac<br>5 Sampl<br>25344<br>114431 | 00<br>00<br>00<br>quisition 1<br>e # Times<br>498608 | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank<br>3 | 83658867880.0<br>658764946000.0<br>706605106.2<br>Offending Cmd<br>PRE | 110,000<br>37,500<br>70,200,000<br>Value(ps)<br>3,731 | Ma<br>-71.          |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual A<br>Run #<br>1<br>2<br>3<br>4<br>5<br>6           | cquisition<br>Time<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011                             | 19,499<br>19,499<br>Details<br>1:38:00 PM<br>1:38:05 PM<br>1:38:11 PM<br>1:38:16 PM<br>1:38:22 PM<br>1:38:28 PM<br>1:38:33 PM               | 00<br>00<br>00<br>2501<br>2644<br>2545<br>2722<br>2670                         | R7 R6 R5<br>R7 R6 R5<br>Violations<br>2<br>3<br>3<br>4           | 24 23 22 23 20<br>24 25 25 24 2<br>27 26 25 24 2<br>27 26 25 24 2<br>27 26 25 24 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00<br>00<br>00<br>Sampl<br>25344<br>114431               | 00<br>00<br>00<br>quisition 1<br>e # Times<br>498608 | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank<br>3 | 83658867880.0<br>658764946000.0<br>706605106.2<br>Offending Cmd<br>PRE | 110,000<br>37,500<br>70,200,000<br>Value(ps)<br>3,731 | Ma<br>-71.          |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual Ar<br>Run #<br>1<br>2<br>3<br>4<br>5<br>6<br>7     | cquisition<br>Time<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011               | 19,499<br>19,499<br>Details<br>1:38:00 PM<br>1:38:05 PM<br>1:38:05 PM<br>1:38:16 PM<br>1:38:22 PM<br>1:38:28 PM<br>1:38:33 PM<br>1:38:39 PM | 00<br>00<br>2501<br>2644<br>2545<br>2772<br>2670<br>2800<br>2543               | P7 R6 R5<br>P2 R6 R5<br>2<br>3<br>3<br>3<br>4<br>4<br>2          | 21         22         21         20           24         25         27         20         20           24         25         26         20         20           24         25         26         20         20         20           24         25         26         26         20         20         20           24         26         26         26         26         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00<br>00<br>00<br>Sampl<br>25344<br>114431               | 00<br>00<br>00<br>quisition 1<br>e # Times<br>498608 | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank<br>3 | 83658867880.0<br>658764946000.0<br>706605106.2<br>Offending Cmd<br>PRE | 110,000<br>37,500<br>70,200,000<br>Value(ps)<br>3,731 | Ma<br>-71.          |
| sREF<br>sACT<br>sACT<br>sACT<br>Indivi | Time Min<br>Time Max<br>ridual A<br>Run #<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | cquisition<br>Time<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011<br>10/10/2011 | 19,499<br>19,499<br>Details<br>1:38:00 PM<br>1:38:05 PM<br>1:38:16 PM<br>1:38:36 PM<br>1:38:38 PM<br>1:38:39 PM<br>1:38:39 PM<br>1:38:44 PM | 00<br>00<br>00<br>2501<br>2644<br>2545<br>2722<br>2670<br>2800<br>2543<br>2806 | F7 R0 R5<br>20 E2 E2<br>3<br>3<br>4<br>4<br>2<br>1               | 21 22 22 23 20<br>24 23 22 23 20<br>24 23 22 23 20<br>52 23 22 23 20<br>52 23 22 23 20<br>52 23 22 23 20<br>52 23 23 23 20<br>52 23 23 23 20<br>52 55 24 2<br>52 55 55 55 55 55 55 55 55 55 55 55 55 5 | 00<br>00<br>00<br>25344<br>114431                        | 00<br>00<br>00<br>quisition 1<br>e # Times<br>498608 | 265.733<br>265.733<br>Violation Deta<br>tamp Rank<br>201 1 | 24595<br>13138<br>ails<br>Bank<br>3 | 83658867880.0<br>658764946000.0<br>706605106.2<br>Offending Cmd<br>PRE | 110,000<br>37,500<br>70,200,000<br>Value(ps)<br>3,731 | Ma<br>-71.1<br>-9.4 |

Real-Time Protocol Compliance

#### Offline Protocol Compliance



## Single Probe Multiple Views





## Memory Interface Electrical Validation

Measure the analog signal characteristics; trtf, Vmin/max, jitter, eye size, crossover, strobe/clock alignment, etc.



#### **Tektronix Innovation Forum**

Leading Solutions for Today, Tomorrow and Beyond





# Signal Access Probing



#### **Tektronix Innovation Forum**

Leading Solutions for Today, Tomorrow and Beyond



## Probing



#### P7300 Probes





51W-29204-0 How To Guide P7500 Tip Selection Solder Guide.pdf



31

#### Interposer Types

#### **Socketed Interposers**

- Comes with a Custom BGA Socket that needs to be soldered to Target
- Allows snap-in/snap-out of components using micro socket
- Full BGA visibility
- No Special design or routing requirements needed
- Quickly swap TLA & oscilloscope interposers on the same target.
- Quickly Swap Memory Components on the Target

#### **PoP Interposers**

- Comes with a Custom BGA Socket that needs to be soldered to Application
- Allows snap-in/snap-out of components using micro socket
- Full BGA visibility
- No Special design or routing requirements needed
- Quickly swap TLA & oscilloscope interposers on the same target.
- Quickly Swap Memory Components on the Target

#### **Direct Attach Interposers**

- Interposer is soldered to Target
- Memory Component is soldered to Interposer
- Full BGA visibility
- No Special design or routing requirements needed









#### Interposer Types

#### **Direct Attach Perimeter Interposers**

- Interposer is soldered to the Target
- Memory component is soldered to Interposer
- Signals are brought to pads on edge of the Interposer
- KoV of the interposer is the same size as the BGA component
- Because of limited space around the edge not all signals can be probed
- Choose between wide / narrow Address or data

#### **MSO Interposers**

- Provides a quick and easy access of the Addr/CMD signals to MSO digit
- Allows the Addr/cmd triggers to correlate Analog Inputs
- Combine with Component Interposers for high fidelity analog analysis







## Interposer Availability



| Technology | Package / Form Factor                          |
|------------|------------------------------------------------|
| DDR2       | Socketed – 60 Ball/ 84 Ball                    |
|            | Solder-down – 60 Ball/ 84 Ball                 |
| DDR3       | Socketed – 78 Ball/ 96 Ball                    |
|            | Solder-down – 78 Ball/ 96 Ball                 |
|            | Edge Probe – 78 Ball/ 96 Ball – Coming soon!   |
|            | DIMM Interposer for MSO                        |
|            | SO-DIMM Interposer for MSO                     |
| DDR4       | Socketed – 78 Ball/ 96 Ball                    |
|            | Edge Probe – 78 Ball/ 96 Ball                  |
|            | Edge Probe – 144 Ball – Coming soon!           |
|            | DIMM Interposer for MSO                        |
| LPDDR      | Socketed – 60ball                              |
| LPDDR2     | Socketed – 136 ball/168 ball/216 ball/240 ball |
| LPDDR3     | Socketed – 216 ball                            |
|            | Solder-down – 178 ball                         |
| GDDR5      | Socketed – 170 ball                            |
|            | Solder – down – 170 ball                       |











## **Probe Modeling**



#### **Frequency Response**

- Models the insertion loss based on placement of Isolation resistor
- Resistor closer to Via has better response than the one further away





#### **De-embedding**

- In order to remove the effects on the Interposer, probe tips and probes de-embedding must be considered.
- De-embedding filters will available for the interposers upon request.
   These de-embedding filters are developed assuming nominal values
- For more accurate characterization for a particular setup SDLA visualizer for Real time scopes can be used





# Signal Acquisition and Analysis Triggering, ASM, DDRA and DPOJET



#### **Tektronix Innovation Forum**

Leading Solutions for Today, Tomorrow and Beyond



# Oscilloscope Bandwidth Requirement

| Memory Technology                         | DDR       | DDR2       | DDR2       | DDR3        | DDR3        | DDR3L       | LPDDR3      | DDR4        |
|-------------------------------------------|-----------|------------|------------|-------------|-------------|-------------|-------------|-------------|
| Speed                                     | all rates | to 400MT/s | to 800MT/s | to 1600MT/s | to 2400MT/s | to 1600MT/s | to 1600MT/s | to 3200MT/s |
| Max slew rate                             | 5         | 5          | 5          | 10          | 12          | 12          | 8           | 18          |
| Typical V swing                           | 1.8       | 1.25       | 1.25       | 1           | 1           | 0.9         | 0.6         | 0.8         |
| 20-80 risetime (ps)                       | 216       | 150        | 150        | 60          | 50          | 45          | 45          | 27          |
| Equivalent Edge BW                        | 1.9       | 2.7        | 2.7        | 6.7         | 8.0         | 8.9         | 8.9         | 15.0        |
| Recommended Scope BW<br>(Max Performance) | 2.5       | 3.5        | 4.0        | 12.5        | 12.5        | 12.5        | 12.5        | 16          |
| Recommended Scope BW<br>(Typ Performance) | 2.5       | 2.5        | 3.5        | 8.0         | 12.5        | 12.5        | 12.5        | 12.5        |

.

Highest Accuracy on Faster Slew rates Slew Rates are about 80% of the Max Spec •

DDR3L, DDR4 and LPDDR3 is supported only on DSA/MSO/DPO70000C/D models only •





Microsoft Excel Worksheet

### **Debug and Analysis Tools**

- Tektronix Oscilloscopes come with several tools that aid in debug of Memory Interfaces
  - DPOJET advanced Jitter analysis toolkit
  - PinPoint Triggering
  - Visual Trigger
  - Mask Testing
  - Advanced Search and Mark
  - DDRA





## Supported Standards

- Comprehensive coverage of multiple JEDEC memory standards in a single package
- Support for all the JEDEC defined speed grades in each standard as well custom settings

| Memory Type | JEDEC Specification |
|-------------|---------------------|
| DDR         | JESD79E             |
| DDR2        | JESD79-2F           |
| DDR3        | JESD79-3F           |
| DDR3L       | JESD79-3-1          |
| DDR4        | JESD79-4            |
| LPDDR       | JESD209A            |
| LPDDR2      | JESD209-2E          |
| LPDDR3      | JESD209-3           |
| GDDR5       | JESD212             |

| DDR Analys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | C        |         |           |   |          | Preferences 👤 |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|---------|-----------|---|----------|---------------|----------------|
| Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 Generation, Rate and Levels | DDR Gene | aration | Data Rate |   |          |               | Recalc         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ī                             | DDR      | •       | 1600 MT/s |   |          |               | ( <b>a</b>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Measurements and Sources    | DDR2     |         | 1866 MT/s |   |          |               | Single         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                             | DDR3     |         | 2133 MT/s |   | Vih, Vil |               |                |
| Results 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 Burst Detection Method      | DDR3L    |         | 2400 MT/s |   | View     |               | Run            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                             | DDR4     |         | 2666 MT/s |   |          |               | 0              |
| Plots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 Burst Detection Settings    | LPDDR    |         | 3200 MT/s |   |          |               |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                             | LPDDR2   | _       | Custom    |   |          |               |                |
| Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 Thresholds and Scaling      | LPDDR3   | _       | None      | 1 |          | Next          | Advanced Setup |
| ( and a set of the set | T                             | GDDR3    | _       |           |   |          |               | DPOJET         |



**DDRA Measurement Process** 

**DDRA Inputs** 

ID reference levels

Search and Mark relevant sections

**Perform Measurements** 

Generate Reports / Plots



#### **DPOJET Analysis Overview**



**Tektronix**<sup>®</sup>

# **Pinpoint Triggering**

- Fastest way to solve sophisticated Memory signaling issues
  - Superior real-time insight into the complex signaling
  - DPX (FastAcq) and Pinpoint Triggering gives you "the power to see what others can't"
  - FastAcq shows any disparities on signals, like infrequent glitch's



# Visual Trigger

- 8 customizable zones to quality HW trigger setup
- Option VET required
- Areas may be resized or moved after creation
- Four standard shapes supported (rectangle, triangle, hexagon, trapezoid)
- Custom shapes may be built from templates up to 48 verticies
- Areas are "keep in" or "keep out"
- Apply to either trigA or trigB, whichever is last
- Used to
  - Separate Read bursts from Write Bursts
  - Separate ranks
  - Look for pattern dependencies
  - Enable persistence eye diagrams



### Advanced Search and Mark

- Scans entire acquisition for multiple occurrences of an event and marks each occurrence
- Extends across live data, stored as well as math waveforms.
- Integrated with Trigger function and extends it
  - Marks all events in the current acquisition that match the trigger setup
- Integrated with DDRA
  - DDRA uses ASM to mark all the events of interest and the marked events are used as gates for analysis by DDRA







### Advanced Search and Mark

- Tabular Results and Navigation
  - Events by Type read/write or other events
  - Time stamps, delta-times between events
  - Intuitive navigation Zoom on the burst of interest
- 'Stop on Found' works as a pseudo-trigger mode



# Summary – World's Best Memory Test Solution

#### Complete

- Provides JEDEC validation, characterization and full measurement support
- Comprehensive coverage of multiple memory standards in one single package

#### Performance

- Based upon high performing oscilloscopes and software analysis tools
- TriMode probing that enables three measurements with a single probe connection
- Read/Write burst identification on <u>all</u> bursts
- Automated setup with JEDEC pass/fail limits





#### **Comprehensive Analog Verification and Debug Tools for Memory Interface**







