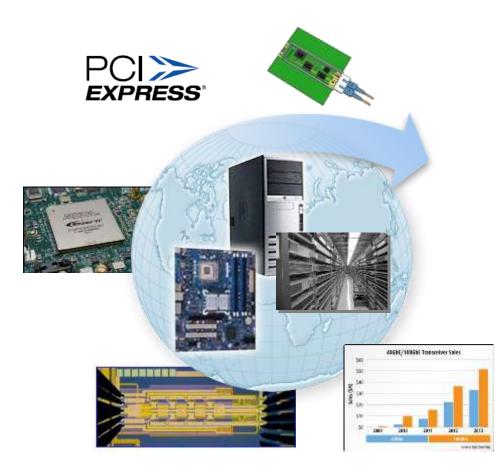


各种高速串行接口的最新规范以及测试方法 Yu Ocean 2014.5


Agenda

- Industry Trend
- PCIe Leading Data Rate in Industry
- HDMI Introducing new HDMI 2.0
- MIPI D-Phy to M-Phy, C-Phy is coming soon

High-Speed Serial Test Trends and Implications

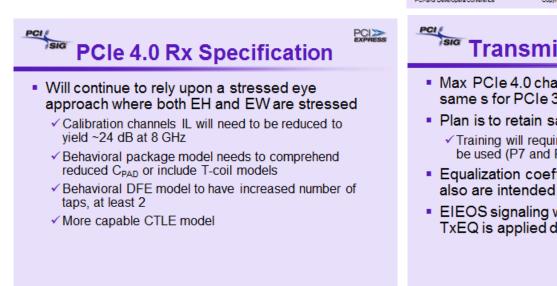
Industry/Technology Trends

- 100 GbE is becoming more relevant as data centers and communications networks ask for more bandwidth
- SAS 12G is needed by data centers for efficient transport of internet traffic (YouTube, Facebook, Smart Phone, etc)
- High-Speed FPGA's are increasing in complexity to support early designs above 28Gb/sec
- Proliferation of 10+ Gb/sec signaling in the communications network

Implications

- Closed data eyes requiring new techniques for transmitter and receiver equalization
- Higher data rate signals have less margin requires de-embedding
- Edge/Slew rate speeds are difficult to characterize
- New Jitter Separation Measurements are required
- Complex 8b/10b signaling difficult to verify in PHY

PCIe – Leading Data Rate in Industry


Gen4 Update

- Key attributes/requirements of PCIe 4.0
 - 16 GT/s, using scrambling, same as 8 GT/s, no encoding change
 - Maintains compatibility w/ PCIe installed base
 - Connector enhanced electrically (no mechanical changes)
 - Limited channel: ~12", 1 connector; repeater for longer reach
- Uniform measurement methodology applied across all data rates
- New 'SRIS' independent RefClk modes
 - SRIS Separate RefClk Independent SSC Architecture
- Rev 0.3 Base spec just introduced in PCI-SIG (June 2013)
 - Rev 0.9 no earlier than 1H/2015
 - Rev 1.0 no earlier than 2H/2015

Gen4 Update

- Tx Jitter Analysis solution available today with PCE3.
- Tx EQ CEM and Embedded will have limited change. Base might require Sampling solution.
- Rx Similar approach at 16Gb/s.

PCI SIG

Latest Gen4 Update @ PCIe DevCon on Tue/Wed, June 25-26

PCI **Transmitter Jitter Spec**

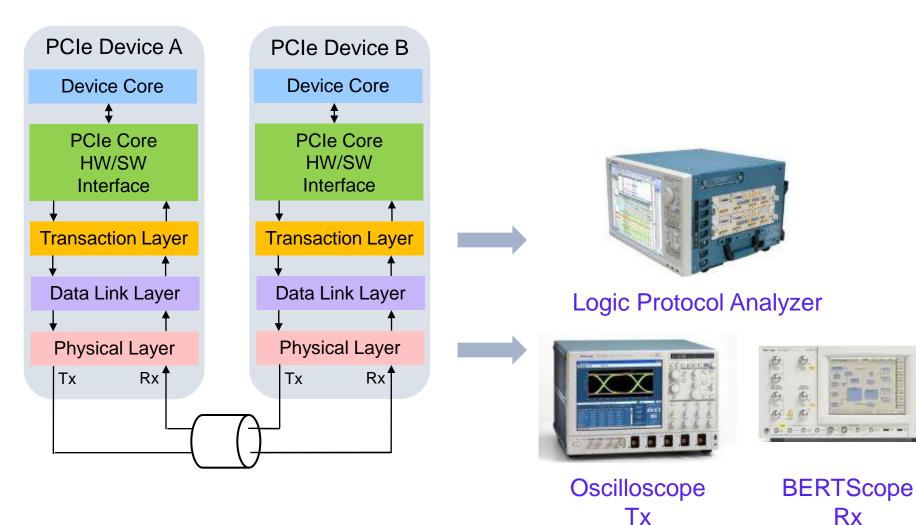
- PCIe 4.0 uses same jitter parameters as PCIe 3.0
 - ✓ T_{TX-UPW-TJ}, T_{TX-UPW-DJDD}, T_{TX-DDJ}, T_{TX-UTJ} and T_{TX-UDJDD}
 - ✓ Jitter will need to scale approximately with bitrate
 - De-embedding approach will likely remain the same
- PCIe 1.x and PCIe 2.x jitter parameters will be recast into the same form as the PCIe 3.0 parameters
 - Backward compatibility will be guaranteed
 - ✓ Some PCle 1.x/2.x parameters will be effectively tightened
 - ✓ Example: PCle 2.x T_{MIN-PULSE} parameter will be converted into TTX-UPW-TJ and TTX-UPW-DJDD Convight © 2012, PCASIG, All Rights Reserve

PCI-SIG Developers Conference

PCI>>

Transmitter Equalization

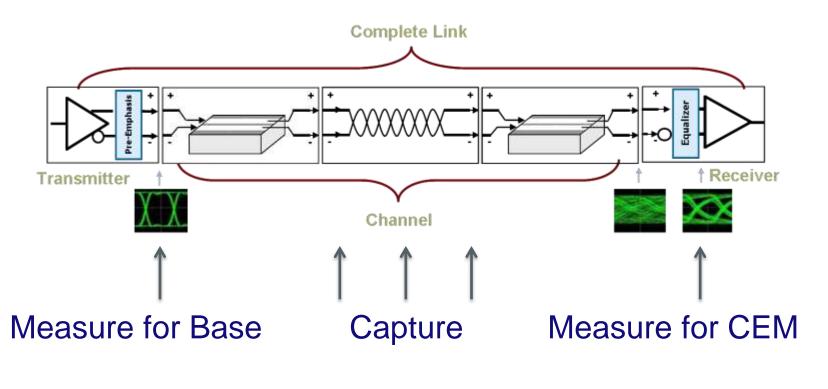
- Max PCIe 4.0 channel IL remains approx the same s for PCIe 3.0
- Plan is to retain same equalization presets
 - Training will require that only a subset of the presets be used (P7 and P8)
- Equalization coefficient range and resolution also are intended to remain unchanged
- EIEOS signaling will likely change such that no TxEQ is applied during the EIEOS interval


Copyright © 2012, PCFSIG, All Rights Reserved

PCI-SIG Developers Conference

Copyright @ 2012, PCHSIG, All Rights Reserve

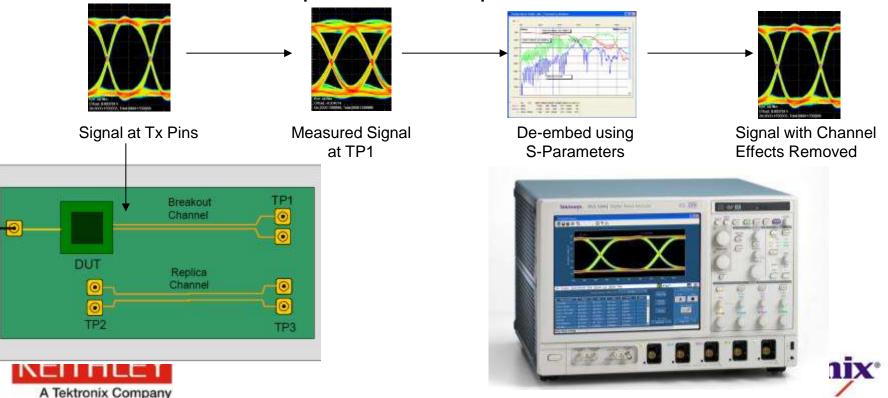
Testing Challenges with PCI Express 3.0


Rx

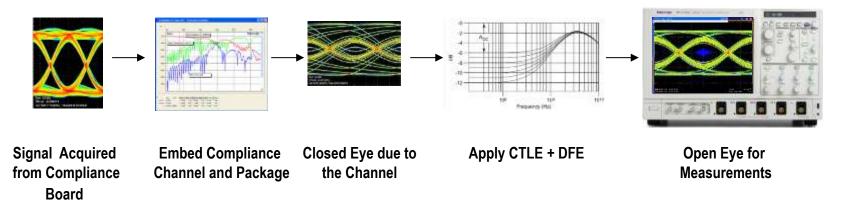
Tektronix[®]

PCIe Base vs CEM Testing

- What test point each type of testing addresses?
- How do we get to see the signal at the point of interest?



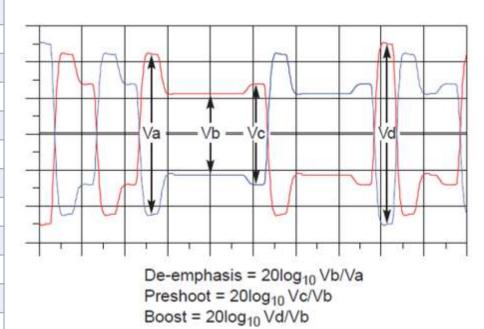
Tektronix[®]


System (Base Spec) Tx Testing

- Base Specification Measurements are defined at the pins of the transmitter
- Signal access at the pins is often not possible
- De-embedding is required to see what the signal looks like at the pins of the TX, without the added effects of the channel
- S-Parameters are acquired on the replica channel

Add-In Card (CEM Spec) Tx Testing

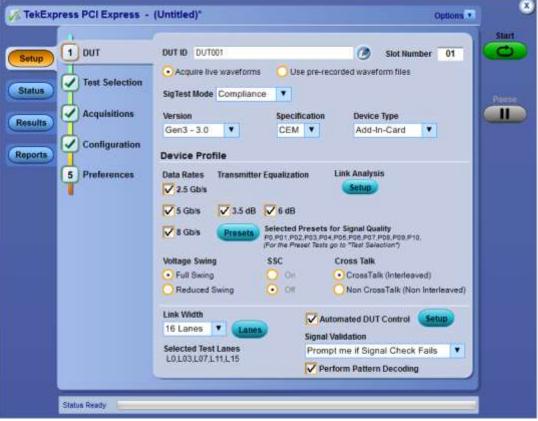
- CEM Specification Measurements are defined at the slicer of a receiver
- Signal access is not possible
- Embedding of the compliance channel and package, as well as application of the behavioral equalizer is required
- SigTest or custom software like DPOJET will perform the embedding and calculate measurements



Compliance Patterns

 Once in compliance mode, bursts of 100MHz clock can used to cycle through various settings of compliance patterns to perform, Jitter, voltage, timing measurements.

Data Rate	Preshoot	De-emphasis
2.5 GT/s,		-3.5 dB
5.0 GT/s,		-3.5 dB
5.0 GT/s,		-6.0 dB
8.0 GT/s,	P0 = 0.0	-6.0±1.5dB
8.0 GT/s,	P1 = 0.0	-3.5±1.5dB
8.0 GT/s,	P2 = 0.0	-4.4±1.5dB
8.0 GT/s,	P3 = 0.0	-2.5±1dB
8.0 GT/s,	P4 = 0.0	0.0dB
8.0 GT/s,	P5 = 1.9±1dB	0.0dB
8.0 GT/s,	P6 = 1.9±1dB	0.0dB
8.0 GT/s,	P7 = 1.9±1dB	-6.0±1.5dB
8.0 GT/s,	P8 = 1.9±1dB	-3.5±1dB
8.0 GT/s,	P9 = 1.9±1dB	0.0dB
8.0 GT/s,	P10 = 1.9±1dB	Test Max Boost Limit

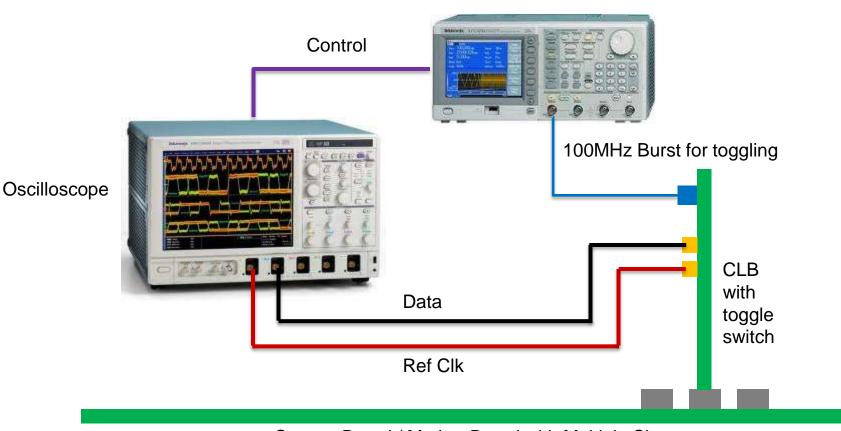


Introducing the NEW Opt PCE3

- TekExpress Automation for Tx Compliance with unique features including:
 - Sets up the Scope and DUT for testing
 - Toggles thru and verifies the different Presets and Bit Rates
 - Tests multiple slots and lanes
 - \checkmark Acquires the data
 - Processed with PCI-SIG
 SigTest
 - Provides custom reporting

What's New in Option PCE3 Release 2?

- Supports a faster, Python-based sequencer
 - Much faster program launch with the test time reduced by ~50%
 - 64-bit only application (requires 70K C/D oscilloscopes with Win7 64-bit)
 - Will maintain earlier 32-bit release for 70K A/B oscilloscopes with WinXP 32-bit on www.tek.com
 - Smaller installer
- SigTest.exe (Command-Line) integration
 - Supports PCI-SIG recommended SigTest.exe testing
 - User can switch between DLL and Command-Line (.exe) modes
 - All result are populated in Tektronix result/report format in command line mode
- Support multiple versions of SigTest
 - User option to select required version and run
- Broader AWG/AFG support for automatic DUT toggle (Min 2ch & 100MHz Burst mode)
 - AFG3252/C
 - AWG5002B/C, AWG5012B/C, AWG5014B/C
 - AWG7082B/C, AWG7122B/C
 - AWG70001A/2A
- Incorporates customer & field feedback
 - Crosstalk option is added
 - Gen2 System-Board limit issue fixed
 - Addresses 6 customer-reported issues & ~30 PCIe Workshop-reported issues

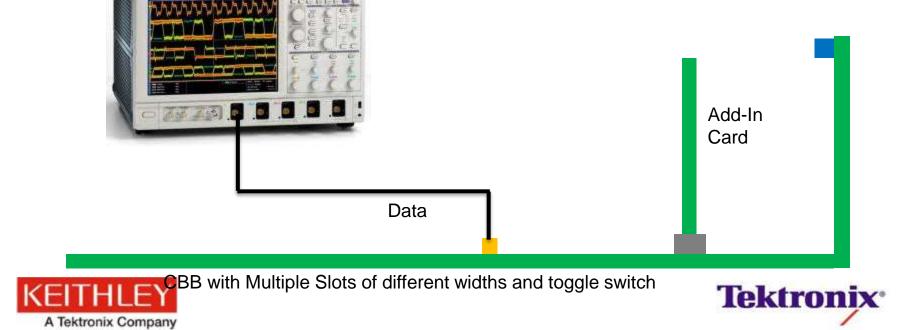

Automation Simplifies Tx Testing

- While convenient single capture capability is essential, automation makes the testing practical
- Iterate over multiple presets and lanes
- Gather results in a single report
- Provide means for quick switch to debugging and additional measurements
- Remove test fixture effects by using de-embedding

Automated DUT Control

AFG or AWG

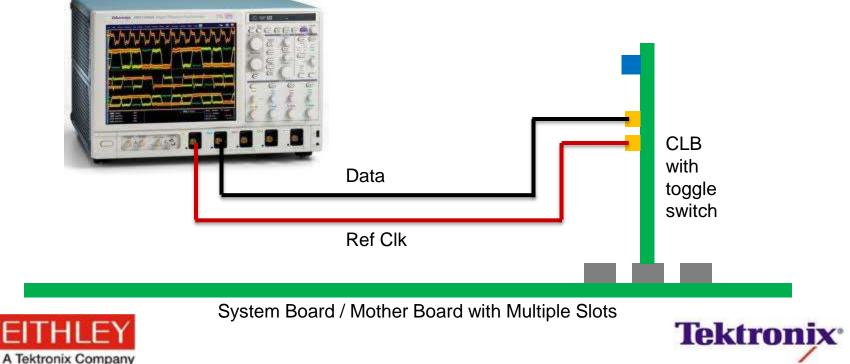
System Board / Mother Board with Multiple Slots



Add-In Card Test Fixture

- Compliance Base Board (CBB)
 - Used for Testing Add-In cards
 - All Tx / Rx Lanes are routed to SMP
 - Compliance Mode Toggle Switch
 - Low Jitter Clean Reference Clock
 - Separate CBB for Gen 1/2/3

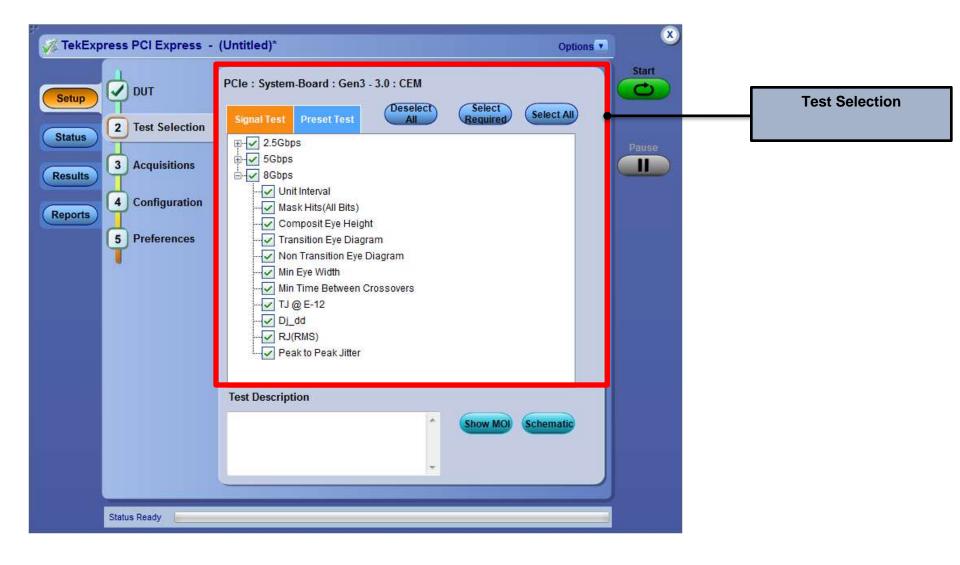
Compliance Base Board (CBB)



System Test Fixtures

- Compliance Load Board (CLB)
 - Used for testing System Boards
 - All Tx / Rx Lanes and Ref Clk routed to SMP
 - Compliance Mode Toggle Switch
 - Various types of Edge Connectors to support different types of Slots on System Boards
 - Separate CLB's for Gen1/2/3

Compliance Load Board (CLB)


TekExpress Automation for Tx Compliance - Setup

K TekExpress PCI Express -	(Untitled)* Options	
Setup Status	DUT ID DUT001 Image: Stot Number 01 O Acquire live waveforms O Use pre-recorded waveform files Sintest Mode Compliance Image: Sintest Mode	Run Analysis on Live or Pre-Recorded Data
Results Acquisitions	Version Specification Device Type Gen3 - 3.0 CEM Add-In-Card	Type of test / device selection
Reports 5 Preferences	Device Profile Data Rates Transmitter Equalization Link Analysis V 2.5 Gb/s Setup	Test selection
	✓ 2.5 Gb/s ✓ 3.5 dB ✓ 6 dB ✓ 5 Gb/s ✓ 3.5 dB ✓ 6 dB ✓ 8 Gb/s Presets Selected Presets for Signal Quality P0.P01.P02.P03.P04.P05.P08.P09.P10, (For the Preset Tests go to "Test Selection") Voltage Swing SSC Cross Talk • Full Swing On • CrossTalk (Interleaved) • Reduced Swing • Off Non CrossTalk (Non Interleaved)	
	Link Width 16 Lanes Selected Test Lanes L0,L03,L07,L11,L15 Automated DUT Control Setup Signal Validation Prompt me if Signal Check Fails Perform Pattern Decoding	Automate DUT control
Status Ready		

TekExpress Automation for Tx Compliance – Test

TekExpress Automation for Tx Compliance – Reports

(Overal	l Test Result 👩 Pass	;				Preferences	🔹 s
up	Signa	l Test Preset Test						
	De	escription	Details	Generation	Pass/Fail	Value	Margin	
us	• 🗆	Lane0			Pass			
us		Unit Interval	Mean Unit Interval	8Gbps P07	🥑 Pass	125.0090 ps	L: 0.0465 ps H: 0.0235 ps	Pa
ilts		High Limit			📀 Pass	125.0325		
		Low Limit			🔮 Pass	124.9625		C
orts		+ Mask Hits(All Bits)	Mask Hits	8Gbps P07	Pass	0.0000 hits	H: 0.0000 hits	
		⊕ Composit Eye Height	Composit Eye Height	8Gbps P07	Pass	105.7689 mV	L: 71.7689 mV	
		 Transition Eye Diagram 	Min Transition Eye Height	8Gbps P07	Informative	107.2269 mV	N.A	
		 Transition Eye Diagram 	Min Transition Voltage	8Gbps P07	🕑 Pass	-0.1264 mV	L: 599.8736 mV	
		 Transition Eye Diagram 	Max Transition	8Gbps P07	Pass	0.1289 mV	H: 599.8711 mV	
		 Transition Eye Diagram 	Min Transition Top Margin	8Gbps P07	Pass	0.0259 mV	L: 0.0259 mV	
		 Transition Eye Diagram 	Min Transition Bottom Margin	•	Pass	-0.0314 mV	H: 0.0314 mV	
		 Transition Eye Diagram 	Transition Eye Mask Hits	8Gbps P07	Pass	0.0000 hits	H: 0.0000 hits	
		Non Transition Eye Diagram	Min Non Transition Eye Height	8Gbps P07	Informative	112.3181 mV	N.A	
		Non Transition Eye Diagram	Min Non Transition	8Gbps P07	🐼 Pass	-0.1274 mV	L: 599.8726 mV	

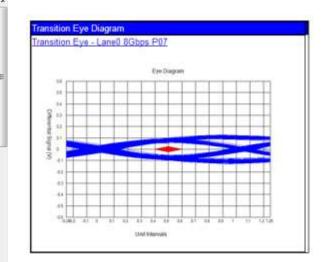
TekExpress Automation for Tx Compliance – Reports

Tektronix[.]

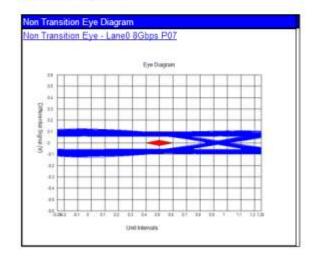
TekExpress PCI Express

Enabling Innovation

Add-In-Card Test Report


Setup Information	
	DPOJET Version : 6.0.1 Build 8
	Scope Model : DPO73304D
	Scope Serial Number : B241123
DUT ID : DUT001	SPC, FactoryCalibration : PASS;PASS
Date/Time : 2013-06-10 17:28:45	Scope F/W Version : 6.7.4 Build 3
Device Type : PCle	Probe1 Model : TCA292D
TekExpress Version : PCI Express:2.0.0.66 (Beta_Build) Framework:3.0.0.16_RevD	Probe1 Serial Number : N/A
Spec Version : Gen3 - 3.0	Probe2 Model : TCA292D
SigTest Version : 3_2_0	Probe2 Serial Number : N/A
Slot Number : 01	Probe3 Model : TCA292D
Overall Execution Time : 0:03:21	Probe3 Serial Number : N/A
Overall Test Result : Pass	Probe4 Model : TCA292D
	Probe4 Serial Number : N/A
	Signal Source Model : AFG3252
	Signal Source Serial Number : C010899
DUT Comment :DUT001	

Test Name:Summary Table	
Unit Interval	Pass
<u>Mask Hits(All Bits)</u>	Pass
Composit Eye Height	Pass
Transition Eye Diagram	Pass
Non Transition Eye Diagram	Pass
Min Eye Width	Informative
Min Time Between Crossovers	Informative
mhtml:file://X:\PCI Express\Reports\DUT081.mht#TJ @ E-12	Pass
<u>Dj_dd</u>	Informative
RJ(RMS)	Pass
Peak to Peak Jitter	Informative


Unit Interval									
Measurement Details	Lane Name	DataRate	Equalization	Measured Value	Test Result	Margin	Low Limit	High Limit	Comments
Mean Unit Interval	Lane0	8Gbps	P07	125.0090 ps	Pass	L: 0.0465 ps H: 0.0235 ps	124.9625	125.0325	

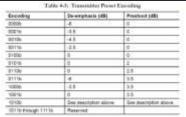
Back To Summary Table

Back To Summary Table

Back To Summary Table

PCIe Decoder (Opt SR-PCIe)

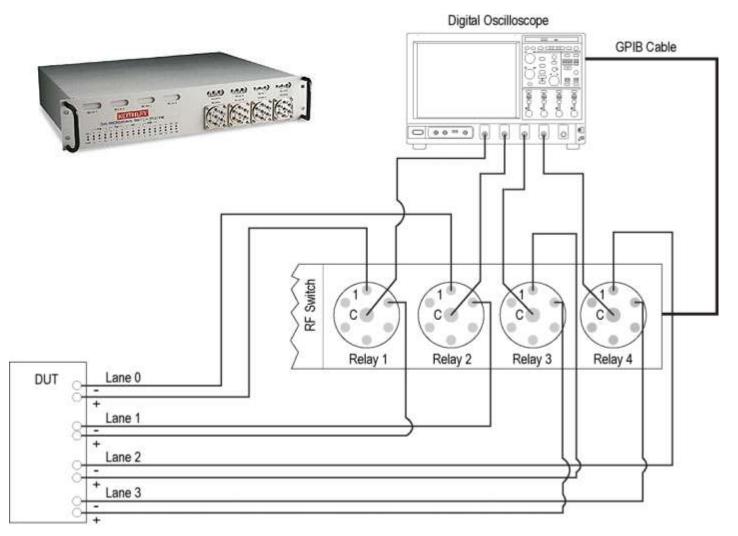
- Decodes and displays PCIe data using characters and names that are familiar from the standard, such as:
 - SKP
 - Electrical Idle
 - EIEOS
- Easily configured through "Bus Setup" under "Vertical" menu with a variety of user-adjustable settings
- Results table shows time-correlated listing of events time-correlated with waveform view
- Integrated search with marks
- Triggering up to 6.25Gbs (Gen1 & Gen2 only)



PCIe Decoder (Opt SR-PCIe) Decoding of PCIe Gen3 compliance pattern Tx preset encoding

Decode results show correct value of "87h" or "1000b" (as shown in Results Table) for Transmitter Preset **P8** (-3.5dB de-emphasis with +3.5dB preshoot) on Lane 0

				house	theoreman				1. 1 A A A			
_	What the Way of the	Mary Mary Survey and Town of Street	۵٬۰۰۰ می احمد احمد ا	~			MAMMAN	MANANAN	WIL	1 Millinon	annessand 1 1 100	phalasanas
					WWW		in him h			A MAN	A A	
-	inside Minister	and the second state of th		<u>-</u> 1000			energian and a second	and the second	M. Munreninsper	Mortheren	where h h ba	Manan
) - Bif												
					h 55h 55h 55h	55h 55h 87h 00h						
		00h,00h,00h,00h			ih 55h 55h 55h	55h <mark>(55h)87h</mark> (00h)	00h)00h)00h)0				00h,00h,87h,00	
					55h 55h 55h 55h							
C1		ν 50Ω β	₩:12.5G	Z1C2	44.2mV 4.0ns	-3.24ns 36.8n	IS A				v 50.0GS/s	20.0ps
C1 C2	 44.2mV/div 44.2mV/div 	ν 50Ω Β ν 50Ω Β		Z1C2	44.2mV 4.0ns	-3.24ns 36.8n	IS A			20.0µs/div Preview	v 50.0GS/s	20.0ps Seq
C1 C2 M1	44.2mV/div 44.2mV/div 44.2mV/div	ν 50Ω Β ν 50Ω Β ν.0μs	₩:12.5G ₩:12.5G	Z1C2	44.2mV 4.0ns	-3.24ns 36.8n	IS A			20.0µs/div Preview 0 acqs	v 50.0GS/s Single S	20.0ps Seq RL:10.01
C1 C2 M1	 44.2mV/div 44.2mV/div 	ν 50Ω Β ν 50Ω Β ν.0μs	₩:12.5G ₩:12.5G	Z1C2	44.2mV 4.0ns	-3.24ns 36.8n	IS A			20.0µs/div Preview 0 acqs	v 50.0GS/s	20.0ps Seq RL:10.01
C1 C2 M1 Z1C1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0	ν 50Ω Β ν 50Ω Β ν.0μs	₩:12.5G ₩:12.5G	Z1C2	44.2mV 4.0ns	-3.24ns 36.8n	IS A			20.0µs/div Preview 0 acqs	v 50.0GS/s Single S	20.0ps Seq RL:10.01
C1 C2 M1 Z1C1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0	ν 50Ω Β ν 50Ω Β ν.0μs	₩:12.5G ₩:12.5G	Z1C2	44.2mV 4.0ns	-3.24ns 36.8n	IS A			20.0µs/div Preview 0 acqs	v 50.0GS/s Single S	20.0ps Seq RL:10.01
C1 C2 M1 Z1C1 esults T B1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 1 44.2mV 4.0 Table	ν 50Ω Β ν 50Ω Β ν.0μs	₩:12.5G ₩:12.5G 36.8ns	Z1C2	44.2mV 4.0ns	-3.24ns 36.8n	IS A'	C1 Width		20.0µs/div Preview 0 acqs Man De	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.0f 013 16:2
C1 C2 M1 Z1Cr esults T B1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 1 44.2mV 4.0 Table	y 50Ω R y 50Ω R y 50Ω R 0.0µs 0.0ns -3.24ns	₩:12.5G ₩:12.5G 36.8ns	Z1C2 Z1M1 Type Contro	44.2mV 4.0ns 88.4mV 4.0ns Symbol 11 1010 1010	-3.24ns 36.8n -3.24ns 36.8n Character Symbol	IS A'	C1 Width	x) Data (binary) 01010101b	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.0M 013 16:2
C1 C2 M1 Z1C2 esults T B1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 44.2mV 4.0 Table Marks Marks 104009 10. 04010 11.	 50Ω B 50Ω B 50Ω B 0.0µs <li< td=""><td>₩:12.5G ₩:12.5G 36.8ns</td><td>Z1C2 Z1M1 Type Contro Contro</td><td>44.2mV 4.0ns 88.4mV 4.0ns 88.4mV 4.0ns</td><td>-3.24ns 36.8r -3.24ns 36.8r Character Symbo</td><td>IS A'</td><td>Code Data (hex) 55h 55h</td><td>x) Data (binary) 01010101b 01010101b</td><td>20.0µs/div Preview 0 acqs Man De Descramble</td><td>v 50.0GS/s Single S ecember 11, 20</td><td>20.0ps Seq RL:10.01 013 16:2</td></li<>	₩:12.5G ₩:12.5G 36.8ns	Z1C2 Z1M1 Type Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 88.4mV 4.0ns	-3.24ns 36.8r -3.24ns 36.8r Character Symbo	IS A'	Code Data (hex) 55h 55h	x) Data (binary) 01010101b 01010101b	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.01 013 16:2
C1 C2 M1 Z1C1 B1 I 1 1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 7able Marks 104009 10.1 104010 11.1	y 50Ω B 0ns -3.24ns Time Ordered S 26n 26n 26n 26n	₩:12.5G ₩:12.5G 36.8ns	Z1C2 Z1M1 Type Contro Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 88.4mV 4.0ns 1 1010 1010 1 1010 1010 1 1010 1010	-3.24ns 36.8r -3.24ns 36.8r Character Symbo	IS A'	Code Data (he) S5h S5h S5h	x) Data (binary) 01010101b 01010101b 01010101b	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.01 013 16:2
C1 C2 M1 Z1Cr B1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 Fable Marks Index Start 04009 10.1 04010 11.1 04011 12.1	ν 50Ω B 0ns -3.24ns Time Ordered S 26n 26n 26n 26n 26n 26n 26n 26n	₩:12.5G ₩:12.5G 36.8ns	Z1C2 Z1M1 Contro Contro Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010	-3.24ns 36.8r -3.24ns 36.8r Character Symbol	IS A'	Code Data (her) 55h 55h 55h 55h 55h	x) Data (binary) 01010101b 01010101b 01010101b 01010101b	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.01 013 16:2 Dock
C1 C2 M1 Z1Cr esults T B1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 7able Marks 10402 10.1 04010 11.1 04011 12.1 04012 13.1	γ 50Ω B γ 50Ω B γ 50Ω B 0.0µs 0 0 0ns -3.24ns Time Ordered S 26n 26n	₩:12.5G ₩:12.5G 36.8ns	Z1C2 Z1M1 Z1M1 Contro Contro Contro Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010	-3.24ns 36.8r -3.24ns 36.8r Character Symbol	IS A'	Code Data (here) 55h 55h 55h 55h 55h 55h 55h	x) Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.01 013 16;2 Dock Options
C1 C2 M1 Z1Cr esults T B1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 Fable Marks Index Start 04009 10.1 04010 11.1 04011 12.1	γ 50Ω B γ 50Ω B γ 50Ω B 0.0µs 0 0 0ns -3.24ns Time Ordered S 26n 26n	₩:12.5G ₩:12.5G 36.8ns	Z1C2 Z1M1 Z1M1 Contro Contro Contro Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010	-3.24ns 36.8r -3.24ns 36.8r Character Symbol	IS A'	Code Data (her) 55h 55h 55h 55h 55h	x) Data (binary) 01010101b 01010101b 01010101b 01010101b	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.0I 013 16;2 Dock Option: Expo
C1 C2 M1 Z1Cr esults T B1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV/div 88.4mV 20 44.2mV/div 88.4mV 20 44.2mV/div 88.4mV 20 14.2mV/div 14.2mV/div 14.2mV/div 10.1 10.1 104010 11.1 104011 12.1 104012 13.1 104013 14.1 104014	γ 50Ω B γ 50Ω B γ 50Ω B 0.0µs 0 0 0ns -3.24ns Time Ordered S 26n 26n	₩:12.5G ₩:12.5G 36.8ns	Z1C2 Z1M1 Z1M1 Contro Contro Contro Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010	-3.24ns 36.8r -3.24ns 36.8r Character Symbol	IS A'	Code Data (here) 55h 55h 55h 55h 55h 55h 55h	x) Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.0I 013 16;2 Dock Option: Expo
C1 C2 M1 Z1Cr B1 B1 I I I I I I I I I I I I I I I I I	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 Fable Marks Index Start (04009 10.1 (04009 10.1 (04010 11.1 (04011 12.1 (04012 13.1 (04013 14.1 (04014 15.1	γ 50Ω B γ 50Ω B γ 50Ω B 0.0µs 0 0 0ns -3.24ns Time Ordered S 26n 26n	₩:12.5G ₩:12.5G 36.8ns	Z1C2 Z1M1 Z1M1 Contro Contro Contro Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010	-3.24ns 36.8r -3.24ns 36.8r Character Symbol	IS A'	Code Data (here) 55h 55h 55h 55h 55h 55h 55h	x) Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.01 013 16:2 Dock Option Expo
C1 C2 M1 Z1C B1 I I I I I Preset I000	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 7able Marks 104009 10. 104010 11. 104011 12. 104012 13. 104013 14. 104013 14. 104013 14.	50Ω B , , 50Ω B , , , 50Ω B , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,	₩:12.5G ₩:12.5G 36.8ns	ZIC2 ZIM1 ZIM1 Contro Contro Contro Contro Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 88.4mV 4.0ns 5 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010	-3.24ns 36.8r -3.24ns 36.8r Character Symbo	IS A'	Code Data (her) 55h 55h 55h 55h 55h 55h 55h 87h	x) Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.01 013 16;2 Dock Options Expo Cop Settin
C1 C2 M1 Z1C B1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44.2mV/div 44.2mV/div 88.4mV 20 44.2mV 4.0 Fable Marks Index Start (04009 10.1 (04009 10.1 (04010 11.1 (04011 12.1 (04012 13.1 (04013 14.1 (04014 15.1	50Ω B , , 50Ω B , , , 50Ω B , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,	₩:12.5G ₩:12.5G 36.8ns	ZIC2 ZIM1 ZIM1 Contro Contro Contro Contro Contro Contro	44.2mV 4.0ns 88.4mV 4.0ns 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010 1 1010 1010	-3.24ns 36.8r -3.24ns 36.8r Character Symbo	IS A'	Code Data (here) 55h 55h 55h 55h 55h 55h 55h	x) Data (binary) 01010101b 01010101b 01010101b 01010101b 01010101	20.0µs/div Preview 0 acqs Man De Descramble	v 50.0GS/s Single S ecember 11, 20	20.0ps Seq RL:10.01 013 16;2 Dock Options Expo

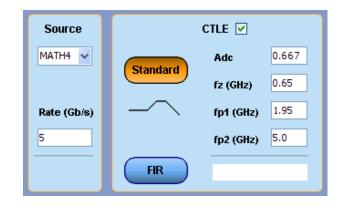

ektronix[®]

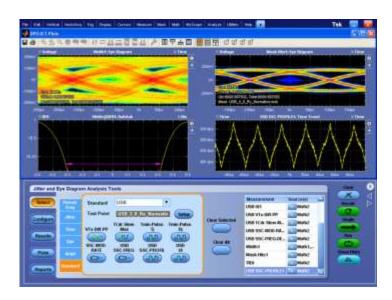
Reference: PCI Express Base Spec, Rev 3.0 (10-NOV-2010), Section 4.2.3.2 Encoding of Presets, p.225.

PCI Express Tx Test with RF Switch

Cable and RF Switch De-embed

Eile	Edit	Vertical	Horiz/Acc	Ing	<u>D</u> isplay	Oursors	Measure	Mas <u>k</u>	Math MyS	cope <u>A</u>	alyze <u>U</u> ti	lities <u>H</u> elp	•			Tek		X
			TekEx	oress i	PCI Exp	oress -	(PCIE_DU	T)^					0	ptions		× nou		
MI			Setup Status Results	I	DUT Test Sel Acquisit		DUTID D Acquire SigTest Me Version Gen3 - 3	e live wa ode Us	aveforms ter Defined	-	ation	Ø Sk ded waveform Device Typ System-B	18	01))		
			Reports	I	Configu Preferer		Device P Data Rater 2.5 Gb/s 5 Gb/s 8 Gb/s Voltage Sv	5 (L)	nk Analy 2.5 Gb/ 5 Gb/s	ls		Embed Embed					×	/pt 4 11:22
	Jitte Sele Confi Rese Plo	oct gur ults		Status	Ready		Full Sw Reduce Link Widtl 16 Lanes Selected L0,L03,L0		8 Gb/s			Cat	ed01_SigTes	SigTest		Browse		× \
	Rep		Slandarid				00			_		_		(Cancel	ок	J	



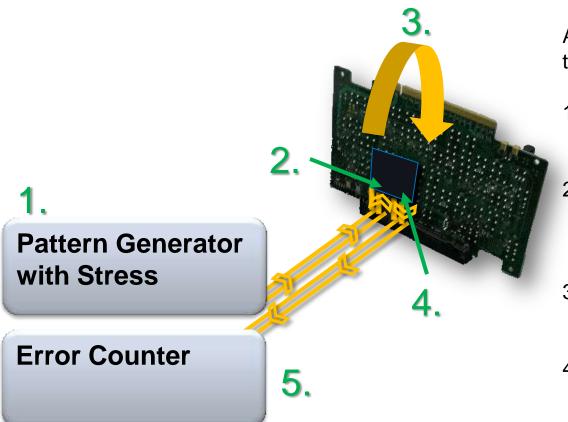


Testing Beyond Compliance

- What happens if a measurement fails Compliance ?
- Could it be the channel?
 - Measurements can be taken before the channel to evaluate results
 - Different channel models can be created using SDLA Visualizer
- How does the optimized RX setting compare to other settings?
 - Easily compare the results of multiple Equalization settings
- Does deeper analysis of the waveform need to be done?
 - PCIe specific measurements can be taken in Tektronix' measurement system DPOJET
 - Determine if data dependent, uncorrelated or pulse width jitter is in spec
 - Measurements filters and settings can be adjusted to get to root cause, but remember you must pass SigTest to be certified for compliance
- Is the TX compliant?
 - NEW PCIe 3.0 base spec measurements are available to verify Tx compliance

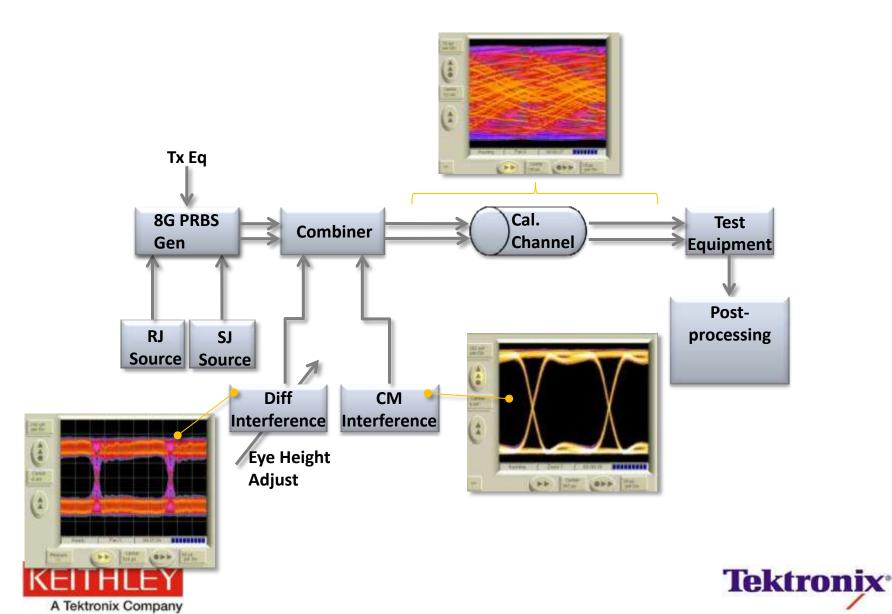
Essentials of Rx Testing

- PCIe 3.0 introduced formal Rx testing
- Based on stress testing of the DUT in loopback
 - Looped back data must be the same as stressed data
- DUT must support loopback initialization and **training**
- Impairments in stress must be controlled and repeatable
- DUT must receive stressed signals without errors (errors below specified ratio 10⁻¹²)

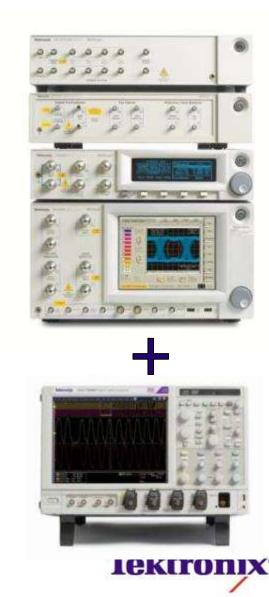

Testing Challenges in Rx

- Rx: Support of loopback
 - ✓ Loopback initialization
 - ✓ Proper training conditions
 - \checkmark Correct stress and signal impairment levels
- How to achieve required confidence level and beyond?
 - ✓ Length of test (Rx)

Basic Receiver Testing


At the simplest level, receiver testing is composed of:

- 1. Send impaired signal to the receiver under test
- 2. The receiver decides whether the incoming bits are a one or a zero
- 3. The chip loops back the bit stream to the transmitter
- 4. The transmitter sends out exactly the bits it received
- 5. An error counter compares the bits to the expected signal and looks for mistakes (errors)


Stress Composition

Components of a PCIe3 Receiver Test Solution

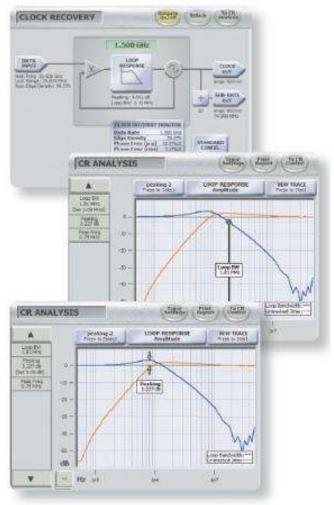
- BERTScope C Model
 - PG, stressed eye sources, ED
- New! DPP125C Option ECM
 - Eye opener, Clock doubler/Multiplier
- New! BSAITS125
 - CM/DM interference
 - ISI for Gen2 & Gen3
 - Option EXP for variable ISI
- New! CR125A Opt PCIE8G
 - PLL analysis for Gen1/2/3
- New! BSAPCI3 SW
 - Auto calibration, Link training, and test
- Cables, adapters, compliance boards
- DSA/DPO/MSO70K Series Oscilloscope
 - Stressed Eye Calibration

DPP125C with Option ECM

- Integrated reference clock multiplication to PCIe compliant 2.5 GHz, 5 GHz, and 8 GHz.
- Integrated eye opener functionality for testing DUTs with long channels.
- New microcontroller to provide more processing power.
- RS-232 interface enhancement to speed-up PCIe receiver equalization link training.
- SW to accommodate channel de-embedding and ISI fine adjustments.

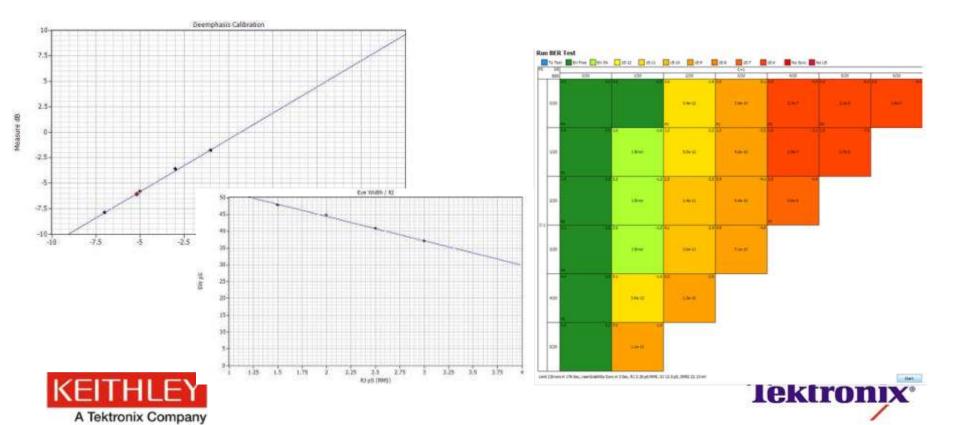
BSAITS125 Interference Test Set

- Programmable, variable ISI for automated testing and precision setting
- Built-in compliant PCIe2 and PCIe3 Medium and Long ISI channels
- Integrated PCIe3 CM and DM interference combiner
- Integrated PCIe3 Base Spec CM interference calibration
- Continuously Variable, Expanded ISI for automated testing of multiple standards with Option EXP



CR125A Opt PCIE8G

- PLL Loop BW Analysis for Gen1/2/3
- Uses CR125A and Test SW
 - Similar to Gen1/2 PLL Loop BW solution

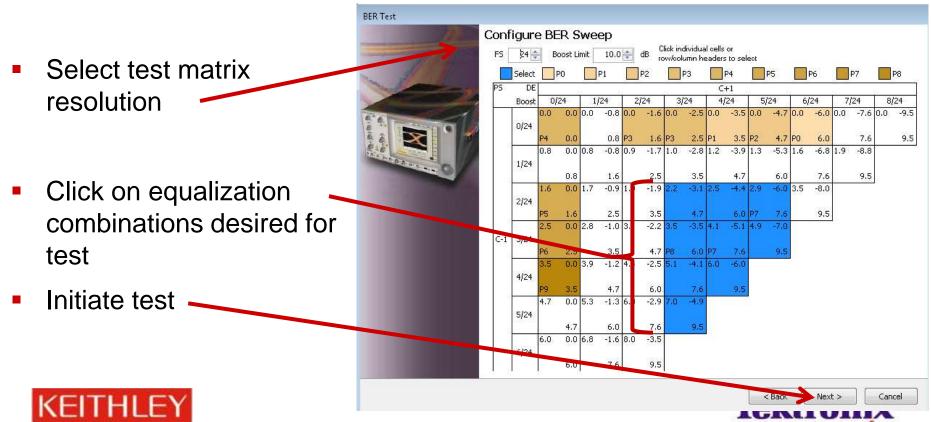


BSAPCI3 PCIe 3.0 Automation SW

- Automated calibration, link training, loopback initiation, and testing.
- BER Map feature for TxEQ optimization.
- Reduces the time and minimizes the skill-set required to perform the calibration and testing.
- Increases the reliability and accuracy by removing inconsistencies with manual calibration.

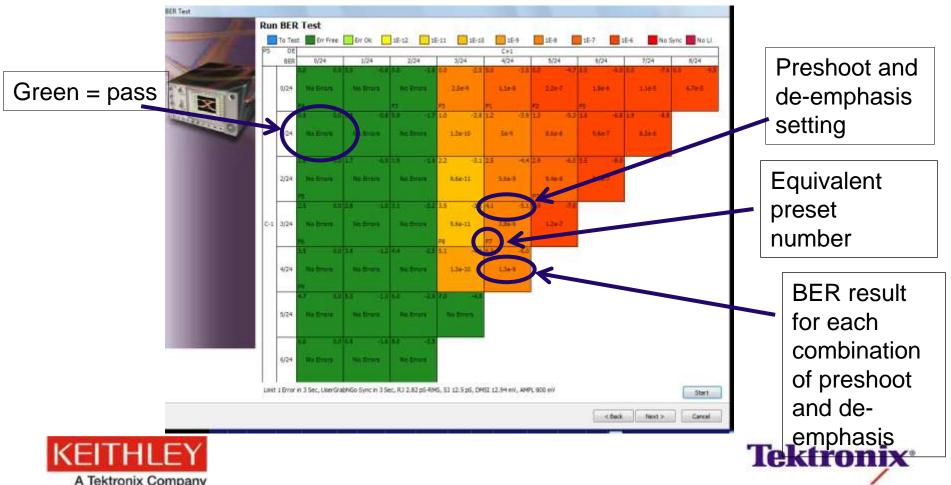
Automation test options

- Automation software provides two options for testing:
 - 1. "Preset test" uses either negotiated link equalization or user selected preset for test
 - 2. "BER test" provides the option to test a matrix of preshoot and deemphasis settings


ektro

🔚 PCIe 3.0 Receiver Testin	ıg, 1.0.1294	- • ×						
Construction of the second sec	Start Connect							
Start Connect	1. Connect to Devices							
	BERTScope Address 129,196.37.87	Disconnect						
() Help	Scope Address 129,196,37,19	Disconnect						
Calibrations	Sigtest Server Address 129.196.37.17	Disconnect						
DPP	Attempt connection to Sigtest Server on 129.196.37.	19:4006						
Amplitudes	Amplitudes Connected to: - Sigtest 3.2.3							
V Stressed Eye	Stressed Eye							
Execute Tests								
Preset Test	2. Download Pattern Files to BERTScope							
BER Test	Files 🔽 Loopback	Download						
View rescricesults	JTOL Testing Gen							
BER Test	Eye-height Cal RJ Calibration	Clear All						
BSC B010004 DPP B	010142 No CR Scope MSO72004C Sigtest	3.2.3						

Automated Tx equalization matrix testing

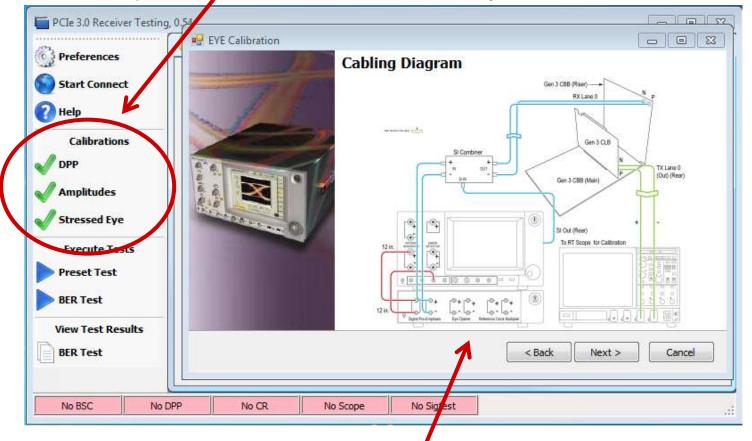

- Automation software "BER test" provides the option to sweep a matrix of pre-shoot and de-emphasis settings
 - Quickly find the range of values that work well with the DUT
 - Ideal for debugging purposes

A Tektronix Company

Automated Equalization Sweep testing

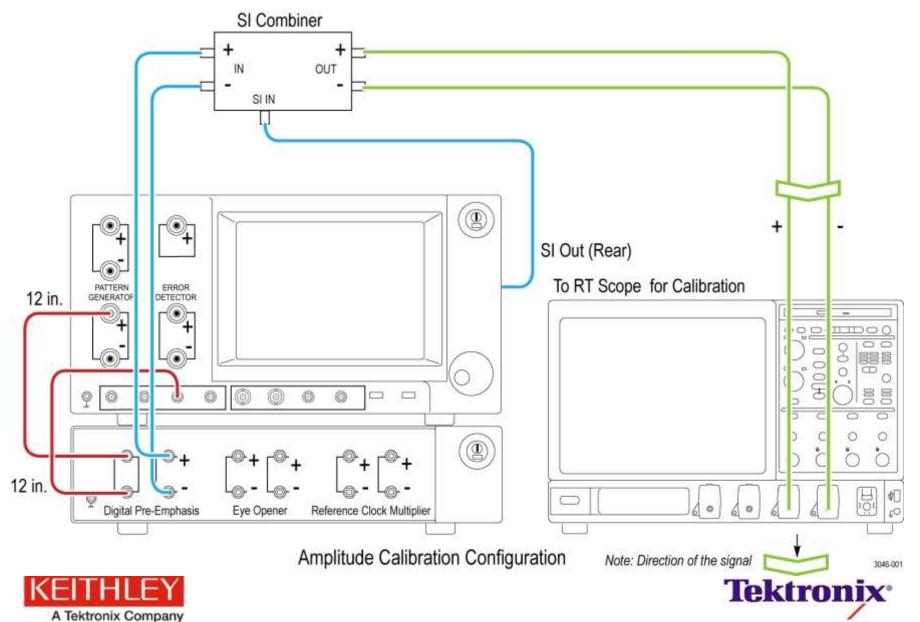
 BER results matrix for preshoot and de-emphasis settings provides an in-depth view of Rx sensitivity to Tx equalization

Automatic Calibration

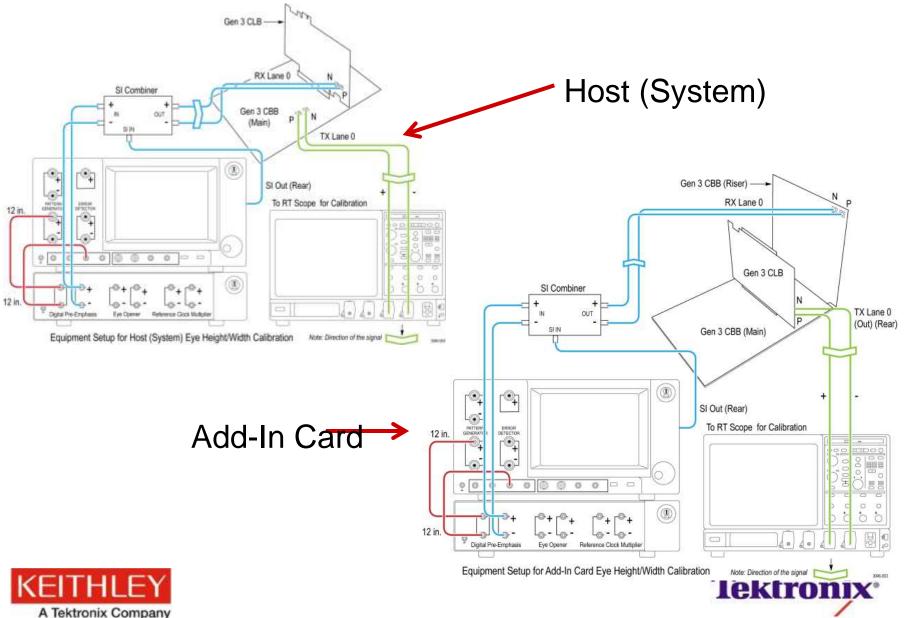

- Due to complex test setup and variations in DUTs and test equipment just dialing up the settings on the signal source is not sufficient
- Stress must be measured and adjusted
- Automatic calibration is used to achieve the right amount of stress
- Margin testing complements the compliance testing
 - Help understand your device's margins.
 - How much additional stress does it tolerate?

Stressed Eye Calibration Setup

• Three required calibrations are fully automated



• Detailed cabling diagrams are provided for each calibration step



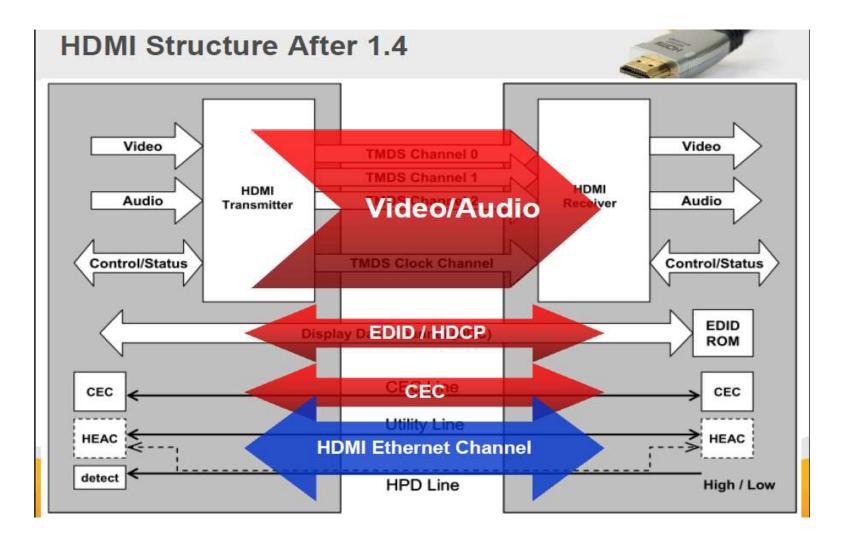
Amplitude Calibration Configuration

Eye Height/Width Calibration Connections

HDMI – Introducing new HDMI 2.0

Overview of HDMI

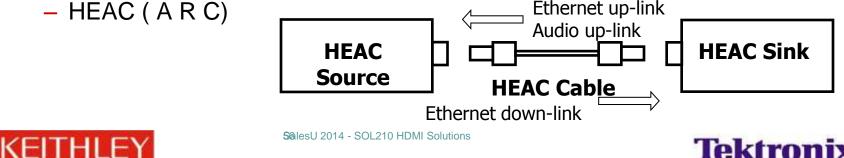
- From 2003 till date and looking ahead...
 - Tek only solution provide for HDMI from 2003 to 2007
 - Contributor of SoftCRU method to the Specification
 - Innovative Sink solution leveraging Direct Synthesis method of AWG
- Hdmi 1.0 ---- 1.65GBps
- Hdmi 1.4—3.4GBps
- Hdmi 2.0.... 6GBps



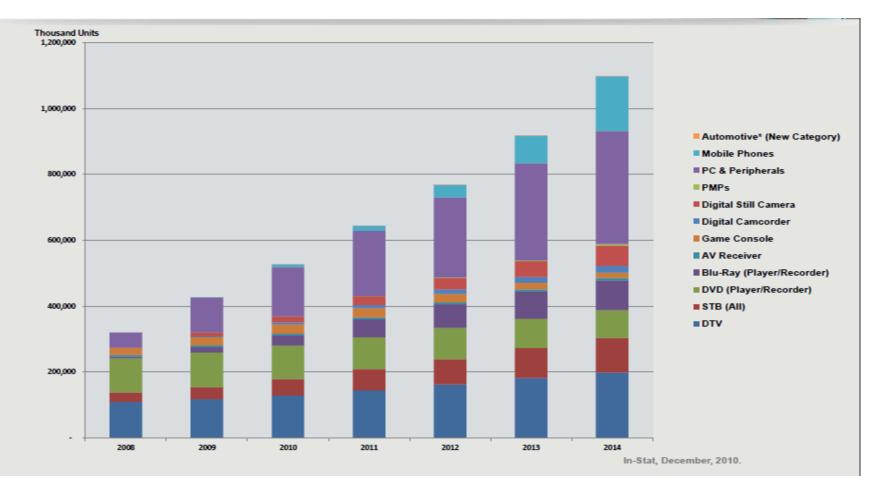
5alesU 2014 - SOL210 HDMI Solutions

Tektronix[•]

HDMI Basics


5alesU 2014 - SOL210 HDMI Solutions

HDMI Technology and solution status


Source: HDMI LLC

- Over 1000+ adopters till date
- HDMI Expands Footprint
 - HDMI has made inroads into PC industry
 - New computer platforms have HDMI interfaces
 - Hand held devices with miniature HDMI devices
 - New connectors Type C and Type D introduced
 - HDMI Forays into Automotive Type E
 - Year 2011 3D Year
 - Still camera
 - Advertising billboards
- HDMI NOW Truly Single Digital Interconnect for uncompressed Audio/Video

HDMI Market overview

Source: HDMI Forum

SalesU 2014 - SOL210 HDMI Solutions

Tektronix HDMI 1.4b solution- Approved in CTS 1.4b

DPO/DSA/MSO Real Time Oscilloscopes

AWG5K/B or AWG7K/B Arbitrary Waveform Generators

DSA8200 Sampling Scope with i-connect software

Common Set of test equipment for HDMI and HEAC

HDMI Fixtures:

- 1. Type A(TF-HDMI-TPA-S/-STX)
- 2. Type C(TF-HDMIC-TPA-S/-STX)
- 3. Type D(TF-HDMID-TPA-P/-R)
- 4. Type E(TF-HDMIE-TPA-KIT)
- 5. HEAC Fixtures(TF-HEAC-TPA-KIT)

Probes and accessories

HDMI Probes HEAC Probes HDMI Accessory Kit

GAME Changer - HDMI Protocol Analyser

SalesU 2014 - SOL210 HDMI Solutions

Tektronix and HDMI Forum

89 companies in the HDMI forum as of date. source HDMI Forum

Tektronix is member of this HDMI Forum. Actively participating in weekly/monthly calls and face-face meetings

Tektronix's U.N.Vasudev is co-chair for HDMI forum test sub-group

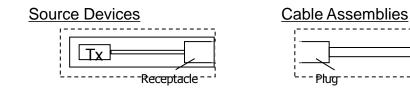
•HDMI Forum released HDMI 2.0 specifications on Sept 4th 2013

- Target

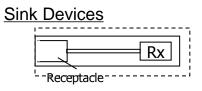
-CTS 2013 Q4 -MOI Q4 2013

HDMI 2.0 features

- Uses same Cat 2 Cable and HDMI 1.4b connector
- Support 4K 2K 4:4:4 60 Hz 594MCSC(Mega Characters per second per channel)
- Support 4K 2K 4:2:0 297Mcsc
- 3D, 21:9 ; Audio
- Low level Bit error rate testing
- Scrambling is MUST for rates >340Mcsc.
- Direct Attach Device support
- HDMI 2.0 products must pass HDMI 1.4 CTS testing



6alesU 2014 - SOL210 HDMI Solutions



Ecosystem update

Same HDMI customers for Source Devices, Sink Devices, Cable ,Repeater

- Set-top Boxes, DVDs, Repeaters, Gaming devices
- Cables

TVs, Monitors, Repeaters, etc.

- Direct Attach Devices New category devices
 - Roku
 - Apple TV

•

-Plua-

SalesU 2014 - SOL210 HDMI Solutions

Tektronix[•]

HDMI 2.0 Solutions Portfolio (Source setup, Sink Setup, Protocol Decode, Probes)

SalesU 2014 - SOL210 HDMI Solutions

Rise time Needs

lem	Value	Item	Value
Rise time / fall time (20%-80%)	if attached Sink supports < 340MHz 75psec ≤ Rise time / fall time if attached Sink supports ≥ 340MHz and transmitted TMDS Character Rate ≥ 340MHz 42.5psec ≤ Data Rise time / Data fall time 75psec ≤ Clock Rise time / Clock fall time	Rise time / fall time (20%-80%)	I attached Sink supports ≥ 340MHz and transmitter TMDS Character Rate ≥ 340MHz 42 Sosec ≤ Data Rise time / Data fall time 75psec ≤ Clock Rise time / Clock fall time

- HDMI 1.4b, should be capable of measuring 75 psec, but no word about the System Rise time.
- HDMI 2.0 should be capable of measuring 42.5 psec, but no word about System Rise time.
- The Error contribution of RT measurement due to System and DUT generally not accounted when we refer to specification

What is the system bandwidth needed to measure 42.5 (20-80%) psec or less DUT Rise time

- System bandwidth should be around (42.5/1.5) 28psec
- Scope bandwidth of 16 Ghz and 16 Ghz DSP enhanced probe has System Rise time of about 23 psec. It can measure the DUT Rise time of 42.5 psec with error of 1%. And can measure DUT Rise time of 37 psec with error of 7%.
- We can indicate Pass or fail confidently only when the System band. width is close to 16 Ghz scope.
- Is it fact for all scope vender ??
 - Spec says it should not be less than 42.5psec.
 - Max Rise time is limited by Eye diagram slope.
 - Both scope and Probe rise time cannot be less or equal to the DUT rise time because it can measure the signal rise time accurately only if DUT RT is slower than system rise time by 1.5 X times.
- How it is handled in HDMI 1.4b today???
 - We recommend 8Ghz scope and 13 Ghz probe, then system rise time is 38 psec which is close 2X faster than 75 psec

Conclusion

- 16GHz BW scope will give 1% error and hence is recommended for HDMI 2.0 testing.
- HDMI 2.0 RT/FT (20%-80%) data signals is 42.5ps

Note: We also support 12.5GHz BW scope for HDMI 2.0 but will have a 10% error in RT/FT measurements

Source Testing 1.4b Vs 2.0

Eye Diagram and Clock Jitter test is now performed at TP2

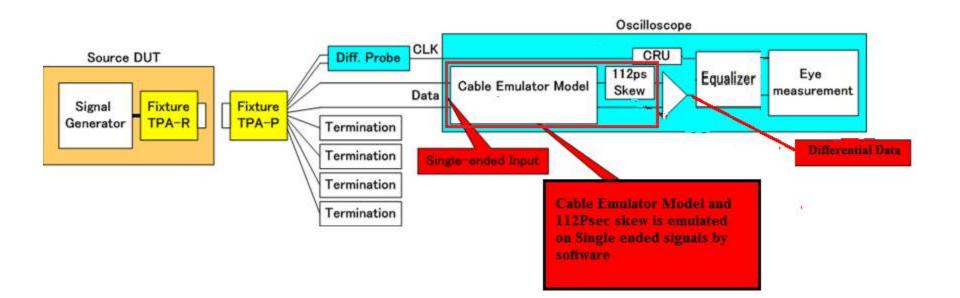
Rest of the tests is same as HDMI 1.4b

1.4b CTS test is a pre-requsite for HDMI 2.0

Min 8GHz scope to 16GHz scope

New Fixtures

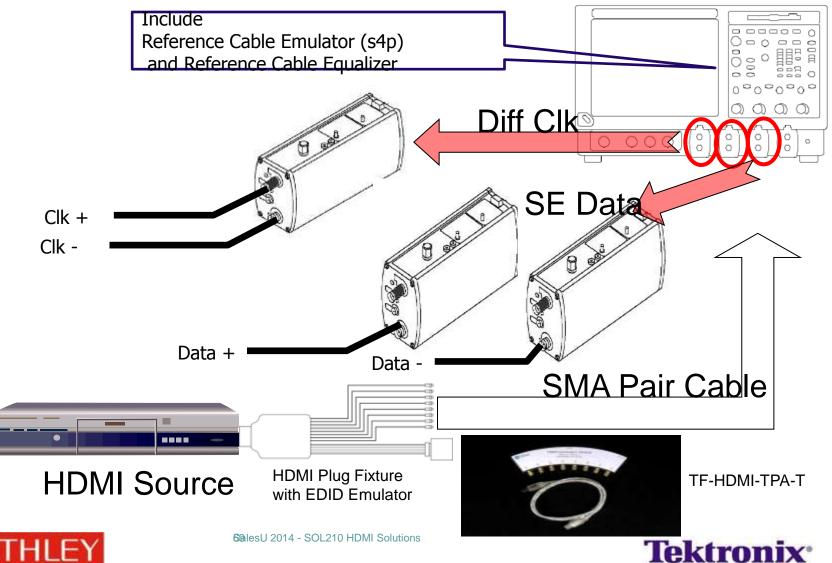
Same Probes

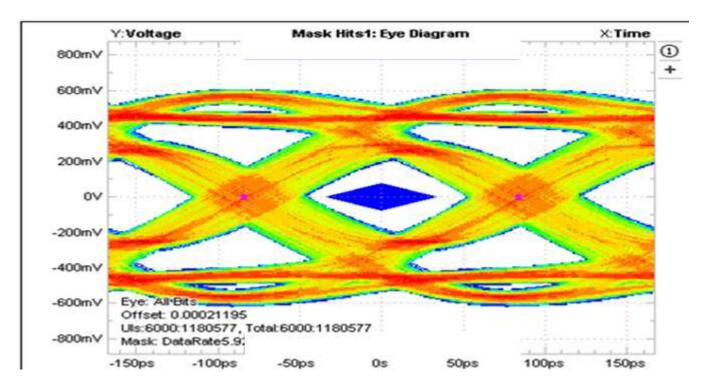

HDM and HDM-DS Software

Source Testing

- Source Eye Diagram test is measured at TP2_EQ.
- TP2 is the signal after passing along a worst cable.
 - Worst cable has worst attenuation and skew of 112ps.

Source Electrical tests


Test ID HF1-1: Source TMDS Electrical – 340-600Mcsc – V₁ Test ID HF1-2: Source TMDS Electrical – 340-600Mcsc – T_{RISE}, T_{FALL} Test ID HF1-3: Source TMDS Electrical – 340-600Mcsc – Inter-Pair Skew Test ID HF1-4: Source TMDS Electrical – 340-600Mcsc – Intra-Pair Skew Test ID HF1-5: Source TMDS Electrical – 340-600Mcsc – Differential Voltage Test ID HF1-6: Source TMDS Electrical – 340-600Mcsc – Clock Duty Cycle Test ID HF1-7: Source TMDS Electrical – 340-600Mcsc – Clock Jitter Test ID HF1-8: Source TMDS Electrical – 340-600Mcsc – Data Eye Diagram Test ID HF1-9: Source TMDS Electrical – 340-600Mcsc – Differential Impedance

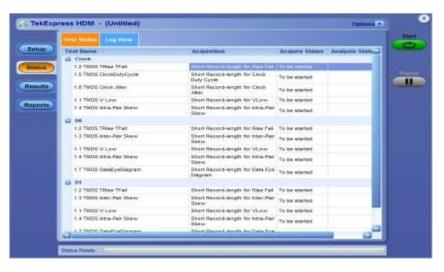

Source Eye Diagram Test

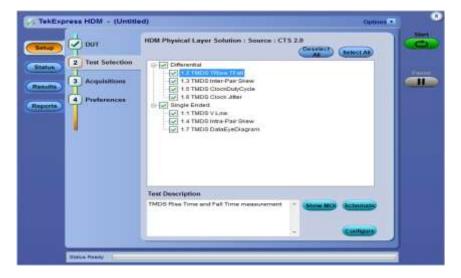
Tektronix Oscilloscope DPO/DSA/MSO70000 Series \geq 16GHz

A Tektronix Company

TP2 Source Eye for HDMI 2.0 6G signal

Single End Input eye rendered at Tek lab




SalesU 2014 - SOL210 HDMI Solutions

HDMI 2.0 Tx Compliance Software

	Protection Commission	hint
Belup 1 DUT	DUT ID DUTGEN	o 🖸
Status 2 Test Selection	Device HDM Physical Layer Solution •	Version CTS 2.0 •
Results)	Acquire live wavefamts Class pre-recorded	waveform files
Reports	View Compliance Device Profile Termination Internal Inte	
	Viterin (V) 33 Diff Probe Meruulatin (O) 12.5 • RE Probe Meruulatin (O) 2.8 •	TEN 0.0
	Number of Lanes to Test 3 Lanes T	
	Selected Text Lanes (Setup) ClockD0D1	

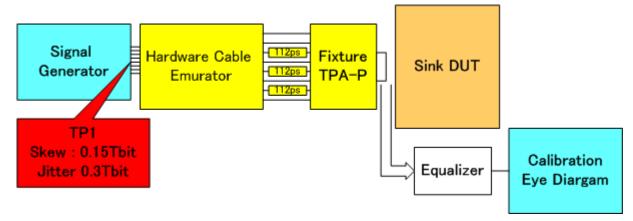
Overall York Herouth 😖 🖬						Peuterine an
List Name	Desame	1694	Value	349604	Passital	Marger
· E thick				and succession of		a House and the
III 1.2 TWOS TRIDE	Clock Rise Time	168.3498 ps	38.7099	pa.	O feit	-36,2911
TFAIL	Clock Fall Time	168.3498 ps	38.1015	849	Q fail	-36.8965
UU 1.5 TMDS ClockDutyCycle	Masamum Duty Cycle	168.3498 pt	50.01	*	C Paso	9.99
ElocaDutyCycle	Minimum Duty Cycle	168.3498 ps	40.90	1	C Pass	8.99
(II) 1.6 TMDS Clock Jamer	TMDS Clock Jitter	108.3498 ga	40.1239	pa	G Pass	.1.9835
E 1.6 TMDS Clock	TMDS VSwing	168.3498 p4	64.7812		@ fail	-335.22 & 1135.22
T.1 TMDS V Low	VLow for	168.3498 ps	1.2022	v	O Fail	0.8822 6
1.1 TMDS V Low	TIMDS VLow for	168.3498 ps	3.4738	v	Q Tel	0.6738 6
1.4 THOS istra Pair Skew	TIMOS Intra-Pair Siloray for Clock	168.3498 pa	9.7090	29	O Pass	-15.5429
HI 00					O fat	
1.2 TMDS Tillse TFoll	DO Ritser Terne	168.3498 05	60.6379	pra .	G Pass	10.5379
I 1.2 TMD 8 TRise	00 Fe8	108.3498	58.5778	89	C Paso	16.0778
E 1.1 TMDS V Low	TMDS VLow for	168.3498 ps	3.1720	v	O 108	0.8720 6

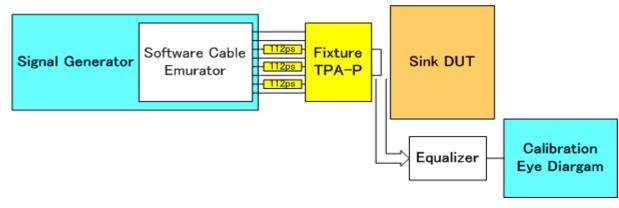
SalesU 2014 - SOL210 HDMI Solutions

HDMI 2.0 Sink testing Equipment needs

- 16GHz BW scope will give 1% error and hence is recommended for HDMI 2.0 Sink testing for Jitter Verification/Calibration/Controller.
- P7313SMA probes > 3
- Option HDM and HDM-DS
- HDMI 2.0 Fixture set
- 2# AWG7122C with Opt 01,02 or 06, 08 for <u>HDMI 2.0 Compliance only setup</u>.
 OR

2# AWG70002A with Opt 01,03 and 225 for HDMI 2.0 Compliance and Margin Test setup.(Margin test feature will be available later and is part of roadmap)


Note- We shall also support a 12.5GHz BW scope which would result in appx. 10% inaccuracy in RT/FT results .



Requirement for Signal generation

Cable Emulation and Skew by Hardware

Hardware Skew and Software Cable Emulation

SalesU 2014 - SOL210 HDMI Solutions

Sink Electrical tests

Test ID HF2-1: Sink TMDS Electrical – 340-600Mcsc – Min/Max Differential Swing Tolerance

Test ID HF2-2: Sink TMDS Electrical – 340-600Mcsc – Intra-Pair Skew

Test ID HF2-3: Sink TMDS Electrical – 340-600Mcsc – Jitter Tolerance

Test ID HF2-4: Sink TMDS Electrical – 340-600Mcsc – Differential Impedance (performed using sampling scope)

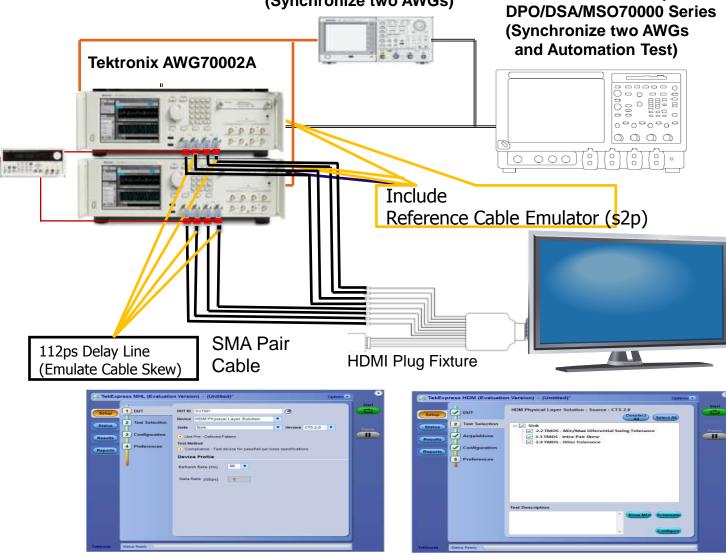
HDMI 2.0 Rx solution positioning statement

- Tektronix will support HDMI 2.0 Sink Electrical and protocol tests using either 2# AWG7122C (w/ Opt 01,02/06,08) OR 2# AWG70002A (W/ Opt 01,03 ,225)
- Solution Positioning:
 - Compliance solution for HDMI 2.0 Rx
 - 2# AWG7122C with opt 01, 02/06 and 08
 - 1# AFG3102/C

Customers can use common test setup for HDMI 1.4b and HDMI 2.0 giving value for their investment in Tektronix HDMI 1.4b Rx solution.

- Compliance and Margin solution for HDMI 2.0 Rx
 - 2# AWG70002A with Opt 01,03 and 225.
 - 1# AFG3102/C

Customers can use common test setup for HDMI 1.4b and HDMI 2.0 giving value for their investment in Tektronix HDMI 1.4b Rx solution



HDMI 2.0 Sink Test setup

Tektronix AFG3000 (Synchronize two AWGs)

Tektronix Oscilloscope

KEITHLEY A Tektronix Company

76

SalesU 2014 - SOL210 HDMI Solutions

Sink Testing 1.4b Vs 2.0

Jitter Tolerance test needs +ve and –ve lanes tested with 112ps delay line

Rest of the tests is similar to HDMI 1.4b tests

1.4b CTS test is a pre-requsite for HDMI 2.0

Need AWG 70002A for HDMI 2.0 Compliance and Margin needs while AWG7122C is suitable for HDMI 2.0 Compliance testing only..

Min 8GHz scope to 16GHz scope

Fixtures and Probes

HDM and HDM-DS Software

HDMI 2.0 Rx Compliance Software

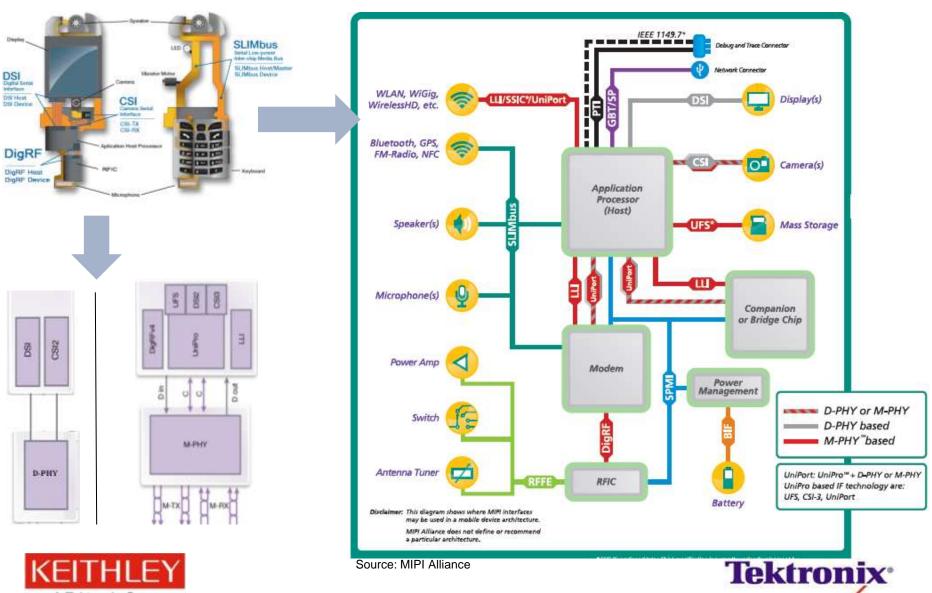
HDMI 2.0 Equipment List

- DPO/DSA /MSO 70004C/B/D/DX with 10XL-Minimum 16GHz BW(we also support 12.5GHz BW scope)- needs Opt DJA, Opt SR-EMBD and SR-CUST.
 - Option HDM
 - Option HDM-DS
- AWG70002A With Option 01, 03 and 225
 - Rack Mount Kit
 - AFG3102/C

OR

AWG7122C with Option 01,02/06 and 08

- AFG3102/C
- HDMI 2.0 Fixture set
- Termination Fixture (TF-HDMI-TPA-T)
- P7313SMA probes –Quantity 4
- HDMI DS accessory kit (Same 1.4b DS accessory kit is good enough)
- Programmable Dual Channel Power supply

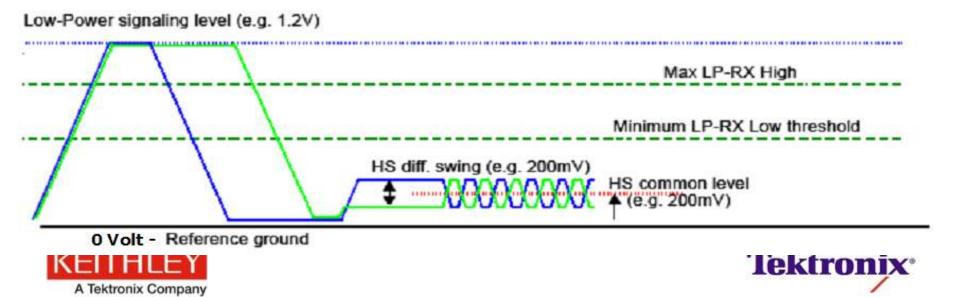

MIPI – D-Phy to M-Phy, C-Phy is coming soon

MIPI Technologies Overview Example of a Mobile Platform

A Tektronix Company

Tek Strategic Involvement With MIPI Alliance & UNH-IOL

- Tektronix is a *Contributor Member* of the MIPI Alliance
- M-PHY Tx/Rx CTS Test Document "Co-Authored" by Tektronix
- Tektronix has a close working relationship with UNH-IOL.
- Joint Press-Announcements of Tek with MIPI Alliance and UNH.
 - <u>http://www2.tek.com/cmswpt/prdetails.lotr?ct=PR&cs=News+Release&ci=19076&lc=EN</u>
 - "As an active MIPI contributor, Tektronix products speed the assessment of D-PHY and M-PHY performance and signal integrity. Tektronix is helping to simplify physical-layer test and validation."
 - Joel Huloux, Chairman of the MIPI Alliance, Sept'2011
 - <u>http://www2.tek.com/cmswpt/prdetails.lotr%3Fct%3DPR%26cs%3DNews%2BRelease%26ci%3D17639%26lc%3DEN&urlhash=HZu6</u>
 - "...Tektronix spurring the adoption of D-PHY and M-PHY specifications.."
 - Joel Huloux, Chairman of the MIPI Alliance, Sept'2010
 - "Tektronix has been supportive of UNH-IOL's collaborative efforts of physical layer measurement methodologies"
 - Andy Baldman, MIPI Interop R&D Technical Staff, UNH-IOL, Sept'2010



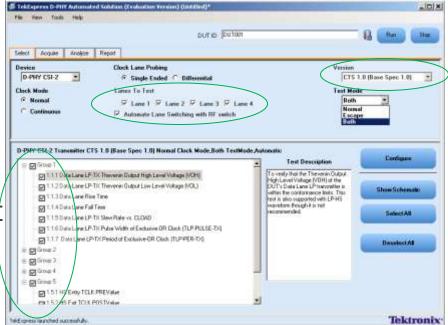
Tek Strategic Involvement Tek Tools listed on MIPI Official Webpage, UNH Webpage &CTS Spec

What is D-PHY ?

- It's a PHY standard for interfacing Camera (CSI) & Display (DSI)
- Two modes of transmission
 - High Speed (HS) and Low Power (LP)
- Modes are mixed during the operation
 - Transitions from LP to HS and back to LP on the fly
- Maximum Data Rate
 - High Speed mode: 80 Mbps 1 Gbps, Typically at ~500 Mbps.
 - Low Power mode: Up to 10 Mbps
- Bus termination
 - 50 ohms in HS
 - Hi-Z in LP

D-PHY Testing Challenges

- Logo testing is not required, but Optional.
 - MIPI is Chip-to-Chip/ Chip-to-Peripheral interface, similar to a DDR bus.
 - Mobile Phones do not need compliance logo, unlike USB/SATA devices
- No two MIPI devices are the same
 - Variable Data Rates
 - Up to 4 lanes of Data traffic,
 - Multiple different data formats
 - Specification enables custom limits.
- Characterization is significantly important
 - Mobile OEMs select the suppliers based on characterization reports.
- Several measurements (Total 49) to be performed.
 - Clock Lane
 - Data Lane
 - Clock-Data Timing


D-PHY Tx : Opt.D-PHYTX Conformance Test Solution

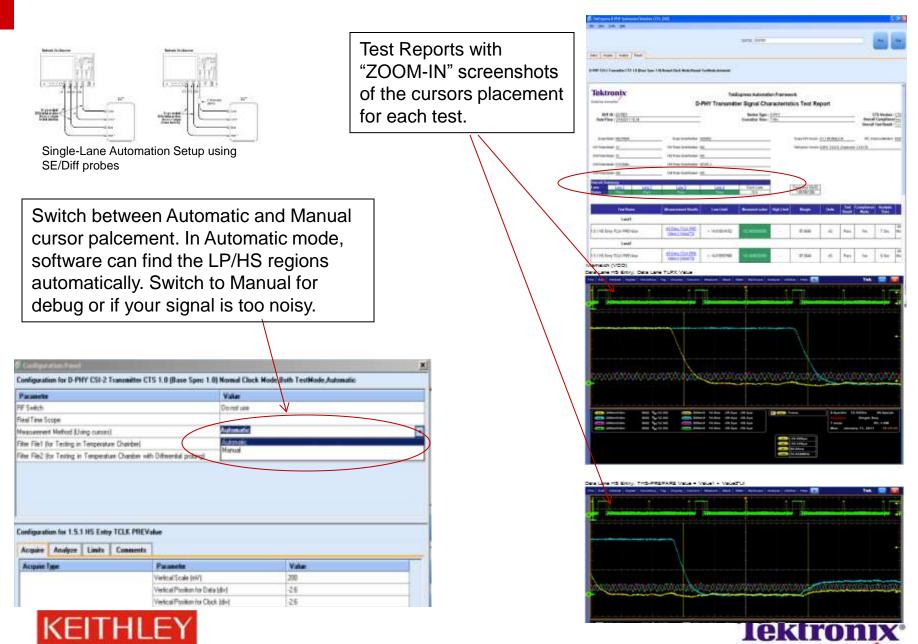
Opt.D-PHYTX : D-PHY Automated Solution

- TekExpress option for Fully-Automated testing
- Provides Conformance and Characterization Testing
- Runs on 7K/C and 70K/B/C/D scopes
- Opt.TEKEXP is Pre-Requisite
- Differentiation
 - <u>Un-parallel</u> Automation (Auto-Cursors)
 - 100% Widest Test Coverage
 - Fully-Automated for Multi-lane DUTs
 - Fully-Automated Temperature Chamber
 - Conformance to Latest CTS (v1.0)
 - Based on Latest Base spec (v1.0)
- Value proposition

A Tektronix Company

- Custom-limits/ Limits-Editing
- Test Reports with Pass/Fail summary, margins, & "Zoom-in" Waveform Captures
- Tek 3.5GHz scope is the minimal configuration for accurate testing
 - D-PHY extension spec (1.5G) ready

Tektronix[®]


D-PHY Tx : Opt.D-PHYTX Features

Chamber or Channel De-embedding Multi-lane Automation Setup using Det Drit Keitley S46-6666A/ any RF Switch DUT De2 Configuration for D-PHY CSI-J Transmitter CTS NJ (Base Spec 1.8) Namual Clock Hode, Joth TestMode, Automatic Parameter Value **RESultch** Do not use Real Trive Scope Restantion Heltod El lav to Hel (to Testing in Temperature Dranber) Re Fiel En Tering in Temperature Drander with Differential probing CH2 CHI CH3 CH4 **RF Switch** Look m 🗀 Fêri he Temperature Chantles + 0.7 Probing Differential@enfielforTetgendueOranber Rt Board 🗄 Singletraisd Wertlet of Singlet Specified 🗄 Configuration for 1.5.1 HS Entry TELK PREValue Acquire Analyze Linits Connects Only solution for Single-button C CH1 CH2 CH3 CH4 Acquire Taxe Pausete Single Edged 50004 automation of "multi-lane" DUTs. Vertical Scale Vertical Product Dátrosix Osoilloscosi lette al Poolier 10100 Data and Clock Lanes Acquisition with Data Av Tr Water and Other Took. Horizontal Scal Cancile Role II DUTID DUT 8 -Harris RecordLongh Select Acquire Arabos Report Longenstorn. **Compliance** Mode Device **Clock Later Probing** Version Delault Settings CTS 1.0 (Base Spec 1.0) D-PHY CSI-2 . **User Deliged Hude** DUT Clock Hode Test Mode ones In Les Ender G Harmal Namal P Lone 1 P Lone 2 P Lone 3 T Lone 4 C Continuous Automate Lane Switching with RF switch Chest 1 T SIC M E BE westelle beitagt Was the laws and aged types to builde on the D-PHY CSI-2 Transmitter CTS-1.0 (Rase Spec 1.0) Normal Clock Mod Socket Cable XL (020-2900-00 with High Temperature Tips (020-2958-00) or other on P73ax. 1.0 1.8 1 2 CG Ground 4 1.4.1 Clock Lane HS Enty: TLPS: Value 2 4 23 1.2 1.2 Ch 2 Ch I Ch 3 Ch 4 P142 Cock Law HS Enty TOLK-PREPARE Value 100 2.0 - -1.4.3 Clock Lave HS Entry TCLK PREPARE+TCLK-ZERO Value 1.2 4 + 4.0 12 12 E! Dioth Lave H5-TX Differential Voltages (VODID), VOD(13) 1 4 5 Clock Lane HS-TX Differential Voltage Minwatch (VOD) P1 4.6 Clock Lave HS-TH Single-Ended Output High Voltages (VDHHHS) 10 2 ----19 1 01.2 Clock Law HS-D1 Static Conson-Mode Voltages (VCM7)([1], VC ED1 most taxes to the page a diserval on the page Map See Cloick Law HS-TH Static Conscion Mode Volkage Misearch (VCM E11 31.4.9 Clock Lave HS-TH Dynamic Common Level Variations Between 5 Rate Savere Disk Scene Thu. 00 1.4.10 Cluck Lane HS-TX Dynamic Common-Level Variations Above 45 0R 124.0 (.... (.... (.... (..... 1.4.11 Clock Law HS-TH 203-BITL Rive Two (R) 1 4 12 Clock Lane HS-1N 005 205 Fall Time (#F) P 1.4.13 Clock Larre HS Eat: 10LK-TRAIL Value CA 14 14 Cleck Lane HS Eait 305 654 Post EaT Rise Tree (TREDT) **Tektronix**[®] **KEITHLF** + start & 10 Plant 1 and ME East TEXT Has S46-6666A Switch Table openess lacenetand accounted with

Provision to Load Filter-files for Temperature

A Tektronix Company

D-PHY Tx : Opt.D-PHYTX Features

A Tektronix Company

D-PHY Decode: Opt.SR-DPHY for DSI/ CSI-2 Decode

Simultaneous Acquisition

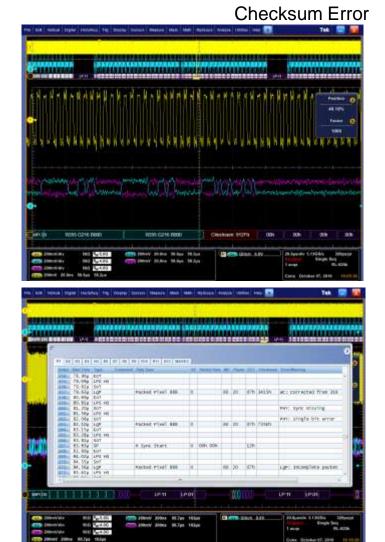
- Probe using Analog, Digital or Mixed Channels
- Simultaneous probing of DSI &CSI using MSO channels
- Working on multi-lane support, using high performance MSO digital channels
- Supported on all 7KC, 70KC and MSO70K scopes. (Win7-OS only)
 - Option key bit #25
- Software installed as part of TekScope firmware v6.1.2.4 or later.
 - Browse to TekScope Menu --> Vertical --> Bus Setup --> Select Bus Type as Serial-- > Select MIPI DSI or CSI from the drop down list.

Probe using Mixed Channels

Analog Clock, Digital Data

Digital Clock, Analog Data

Tektronix[®]


D-PHY Decode: Opt.SR-DPHY for DSI/ CSI-2 Decode Errors/ Warnings indicated in Decode waveform & Event Table

Missing Sync

	(1999) (1999)		ALL (10) (10)	746 📟 🔛
	N N N N			
		www.howerd	Jan March	
ing Color ing Color ing Color ing Color ing Color ing Color	ibiral tidan U.iye Dibiral tidan U.iye	11.x	Gan Liv 2	Aparative (L. 1922 Bins) Single Scale sept. Rol. 42100 mp. Rol. 42100 mp. 00100441 (U. 1990 - 1990 Bill

Errors and Warnings indicated in event table

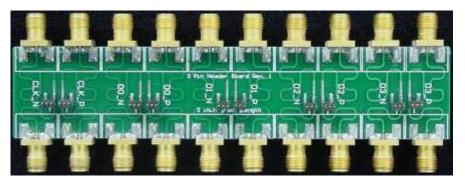
Tektronix[®]

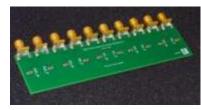
D-PHY Tx & Decode: Recommended Test Setup www.Tek.com/MIPI

- Scope
 - DPO7354/C or DPO/DSA/MSO70404/B/C/D or higher for rise time accuracies
- Probes
 - For 7Ks: 4x TAPxx/ P6245/ P6249, or 4x TDP3500/P73xx (clock is noncontinuous), or 3x TDP3500/P73xx (clock is continuous).
 - For 70Ks: 4xP7240, or 4xP73xx (clock is non-continuous), or 3xP73xx (clock is continuous).
- Scope Software
 - Opt.D-PHYTX on TEKEXP for Conformance Test
 - Opt.D-PHY on DPOJET for Debug, Analysis & Characterization
 - Opt.SR-DPHY for Decoding CSI-2 and DSI traffic
- Fixtures
 - As MIPI is a chip-to-chip interface, most DUT setups are LIVE with Master-Slave/ Receiver-end connected.
 - For live-setups: No Fixtures required.
 - For non-live setups: We recommend following UNH-IOL Termination board
 - http://www.iol.unh.edu/services/testing/mipi/fixtures.php

www.iol.unh.edu/services/testing/mipi/MIPI_Test_Fixture_Order_Form.doc

P7380 probe used with a probe-tip


A Tektronix Company


D-PHY Tx: Optional Accessories

Optional Based on DUT Scenarios (i.e. SMA/ Non-live setup/ Multi-lane)

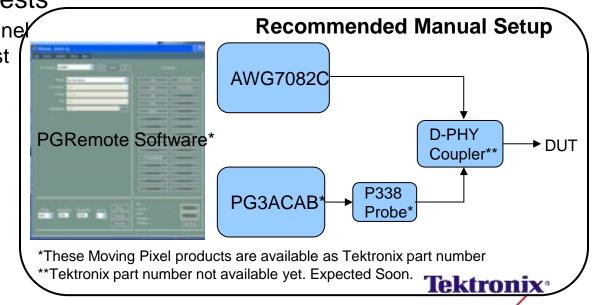
- UNH-IOL RTB Reference Termination Board (list price: \$2,895.), UNH-IOL Probing Board (list price: \$450.), and Capacitive Load Board for Clock and Data Lane LP-TX Signaling tests (list price: \$295.).
 - <u>http://www.iol.unh.edu/services/testing/mipi/fixtures.php</u>
 - www.iol.unh.edu/services/testing/mipi/MIPI_Test_Fixture_Order_Form.doc

- RF Switch,
 - Keithley S46-6666A, for multi-lane automation:
 - <u>http://www.keithley.com/products/switch/rfmicrowave/?mn=S46</u>

D-PHY Decoder Features Highlights

- Up to 4 data lanes and 1 clock lane. Data rate operation up to 1.5 Gb/s
- Connection to the DUT is via 5 active solder-down probes (supplied), one per lane
- Sophisticated real-time triggering
- real-time record filtering
- status monitoring
- activity statistics
- status LED indicators

- active probes, solder-down, for minimal loading of the device under test
- Configuration control
- Disassembly of the captured information in a logic analyzer-like format
- Reassembly and display of any video information captured
- Storage of captured video frame(s) to a file(s)



D-PHY Rx : Test Solution Overview Manual Setup based on PG with PGRemote Software

- 100% Coverage to Rx CTS
 - Meets all the requirements in UNH-IOL CTS document (v0.98)
- Quick and Easy setup
 - No complex VXI system, just stand alone instruments, and a probe.
- Cost effective solution
 - 70% Lower list price vs Competition
- Re-usable for Protocol tests
 - PG3A is the Only 4 channel solution for CSI &DSI test

- PG3A Pattern Generator
 - Controls clock and signaling to establish link with DUT
 - Adjusts voltage levels, packet type, etc to stress test receiver
- AWG7082C Generator
 - Adds jitter and interference to the D-PHY signals

D-PHY Rx : Test Solution Overview 100% Test Coverage to CTS v0.98

Group	I LP - RX voltage and timing requirements		
Test	Title	Page	Equipment
2.1.1	LP - RX Logic 1 input Votage (V _N)	108	PG
2.1.2	LP - RX Logic 0 input Votage, non-ULP State (VL)	110	PG
2.1.3	LP - RX Logic 0 Input Votage, ULP State (VLVLP1)	112	PG
2.1.4	LP - RX Minimum Pulse Width Response (T _{INFX})	113	PG
2.1.5	LP - RX Input Hysteresis (Tever)	114	PG
2.1.6	LP - RX Input Pulse Rejection (epse)	116	PG + AWG + DC Power Supply
2.1.7	LP - RX interference Tolerance $(V_{\rm NT} \mbox{ and } f_{\rm NT})$	120	PG + AWG
2.1.8	LP - CD Logic Contention Thresholds $(V_{\text{HCD}} \text{ ans } V_{\text{LCD}})$	122	PG + AWG

Group 2 LP - RX Behavioral Requirements

Test	Title	Page	Equip
2.2.1	LP - RX Initialization Period (T _{NR})	125	PG
222	ULPS Exit: LP - RX T _{INARUE} Timer Value	126	PG
2.2.3	Clock Lane LP - RX Invalid Aborted ULPS Entry	127	PG
2.2.4	Data Lane LP - RX Invalid/Aboted Escape Mode Entry	128	PG
2.2.5	Data Lane LP - RX Invalid/Aboted Escape Mode Command	130	PG
2.2.6	Data Lane LP - RX Escape Mode Invalid Exit (informative)	132	PG
2.2.7	Data Lane LP - RX Escape Mode, ignoring Post Trigger-Command Extra Bis	134	PG
2.2.8	Data Lane LP - RX Escape Mode Unsopported/Unassigned Commands	136	PG

Group	3: HS - RX Voltage and Setup/Hold Requirements		
Test	Title	Page	Equipment
2.3.1	HB - RX Common Mode Voltage Tolerance (V _{currente})	139	PG
2.3.2	H8-DX Differential Input High Threshold (Vark)	141	PG
2.3.3	H8-DX Differential Input Low Threshold (Vipt.)	143	PG
2.3.4	H8 - RX Single-Ended Input High Voltage (V HHa)	144	PG
2.3.5	HS - RX Single-Ended input Low Voltage (VL+3)	146	PG
2.3.6	H8 - RX Common Mode Interference S0MHz - 450MHz (deta VCMRX(LF))	148	PG + AWG
2.3.7	H8 - RX Common Mode Interference Beyond 450MHz (delts VCMRX(HF))	150	PG + AWG
2.3.8	H8 - RX SetupHold and Jiter Tolerance	151	PG + AWG
Group A:	HS . BY Timer Requirements		

Group 4: HS - RX Timer Requirements

Test No.	Title	Page	Equipment
2.4.1	Data Lane H8 - RX Torana Value	156	PG
2.4.2	Data Lane HS - RX T _{KS + REFERENCE} + T _{KS GRO} Tolerance	158	PG
2.4.3	Data Lane HB - RX T _{KAdama} Value	160	PG
2.4.4	Data Lane HS - RX T _{KE-WAL} Tolerance	162	PG
2.4.5	Data Lane HS - RX T _{KINK} Value	164	PG
2.4.6	Clock Lane H8 - RX T _{CLKREMAN} Value	166	PG
2.4.7	Clock Lane H8 - RX T _{CLK+RBALAB} + T _{CLKGMD} Tolerance	167	PG
2.4.8	Clock Lane H8 - RX T _{curranta} Value	169	PG
2.4.9	Clock Lane H8 - RX T _{ELKMAL} Tolerance	171	PG
2.4.10	Clock Lane H8 - RX T _{CLKMB3} Value	173	PG
2.4.11	Clock Lane H8 - RX T _{cukera} + T _{cukeran} Tolerance	175	PG

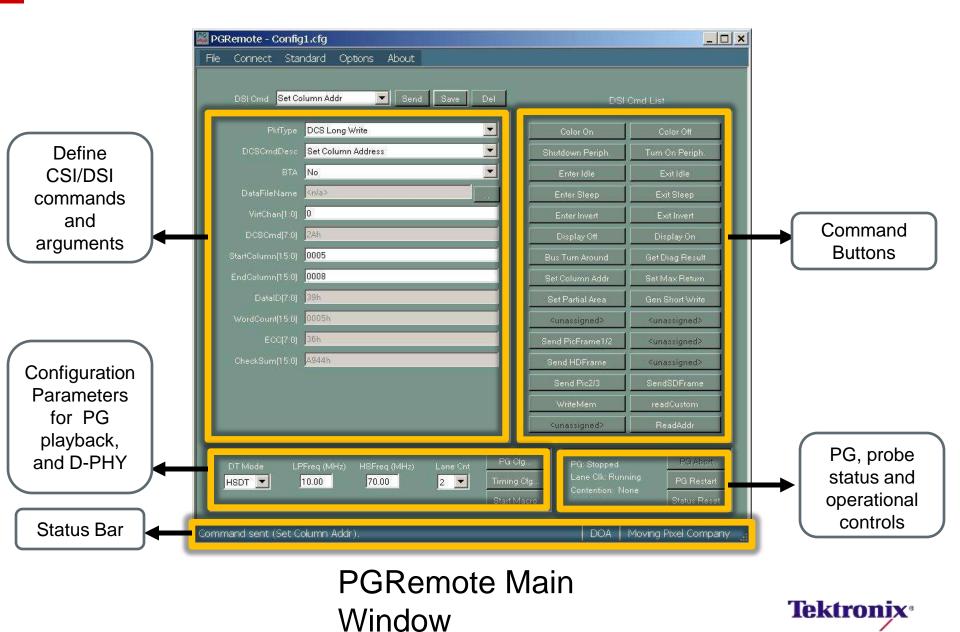
PG3A and P338 MIPI D-PHY Rx Solution

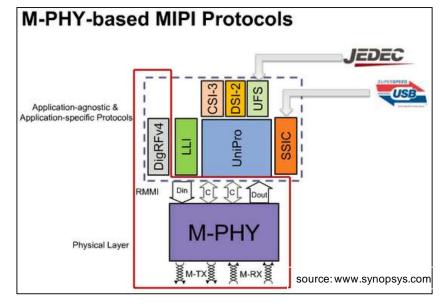
Key Features

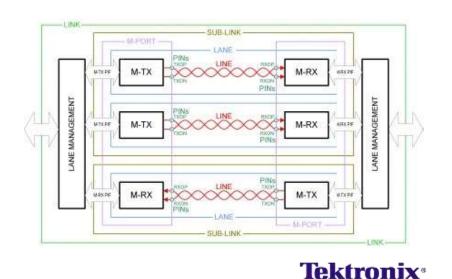
- MIPI D-PHY Probe for use with PG3AMOD and PG3ACAB
- Generate CSI2 and DSI data over D-PHY
- 4-Data Lanes and 1-Clock lane
- 1.5Gbps @ 4Lane and 800Mbps @ 8 lanes
- 1.5Gbps @ 8Lanes if using two PG3A
- SMA outputs for each lane
- LP and HS Voltage and Timing adjustable on a each lane separately

Preserve your investment with the ONLY >4 lane, 1.5Gbps stimulus solution in the market.

PG3A


Practice Connection

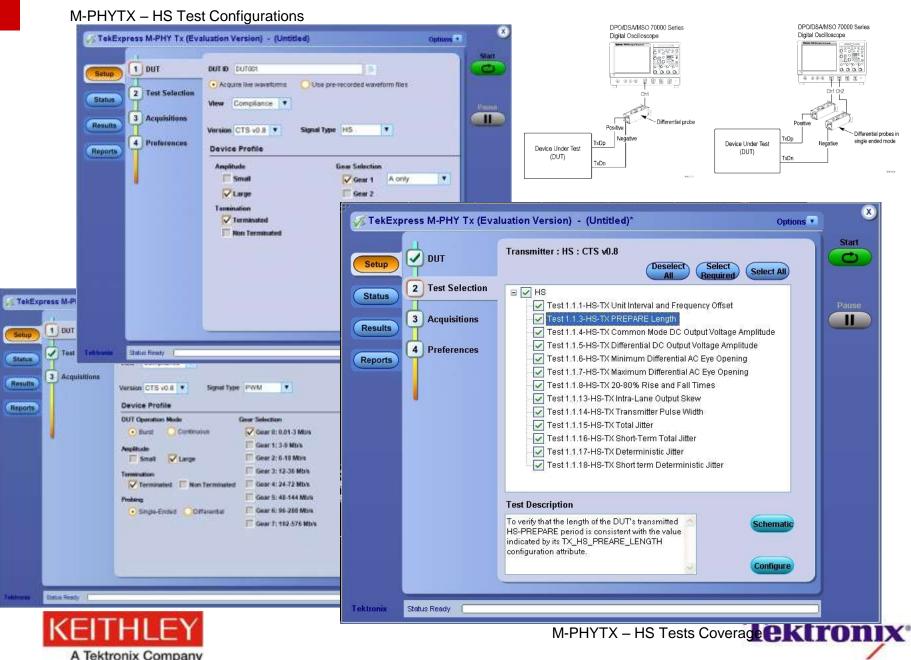

PGRemote


Push Button Interface to generate CSI2 / DSI Vectors

What is M-PHY ?

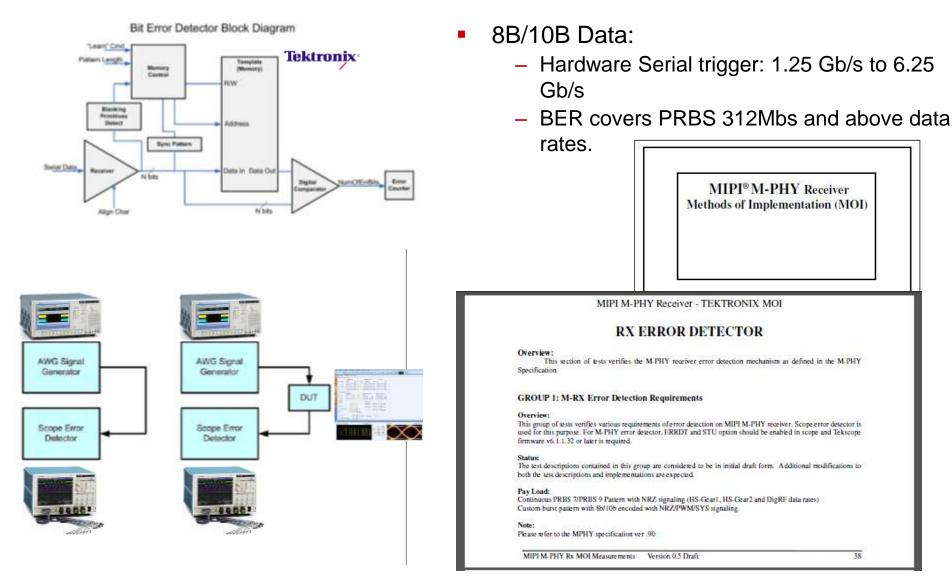
- M-PHY is a high-speed serial interface to the DigRFv4, UniPro, LLI, CSI-3 and DSI-2 interconnect standards of the MIPI Alliance, and the UFS and SSIC protocol standards of JEDEC and USB-IF respectively.
- M-PHY is a flexible architecture that allows the implementer to support high data rates at minimal power, cost & I/O redesign, for applications such as High Definition Video
- A Fast, Scalable, Serial Communications Architecture
 - Link Connects M-PHY Transmitter to an M-PHY Receiver
 - Sub-link Manage one or more lanes
 - Lane Operation defined in the protocol (DSI, CSI, UniPro, DigRF)

M-PHY Transmitter Testing Challenges


			M-PH	IY Signal Charac	teristics				
Signaling mode		Datarate	es	Amplit	udes	Impedance			
	Gears	A (Gbps)	B (Gbps)	Large	Small	Resistive Terminated	Non Terminated		
	G1	1.25	1.45						
	G2	2.5	2.91			50 ohms	-		
High Speed (HS)	G3	5	5.83						
	Gears	Min (Mb/s)	Max (Mb/s)						
	G0	0.01	3		T				
	G1	3	9	Terminated:	Terminated: 100-				
	G2	6	18	160-240mV, Non-Terminated:	130mV, Non-Terminated:				
	G3	12	36	320-480mV	200-260 mV	50 ohms	10k ohms		
	G4	24	72	520-480III V	200-200111				
	G5	48	144						
	G6	96	288						
PWM (ie. TYPE-I)	G7	192	576						
SYS (ie. TYPE-II)			576 (Mb/s)			50 ohms	10k ohms		

- Higher data rate will increase importance of Signal Integrity of links
 - More emphasis on timing/jitter and noise (signal integrity)
 - Receiver testing will be needed to stress-test resulting BER
- 1000+ tests per lane, covering multiple Gears, Terminations, Amplitudes.
- Termination Restive or not Terminated.
 - LS mode can operate either of them
 - HS mode it is always terminated, so swings are halved.
- Type-I and Type-II are Low speed modes, and are NOT interoperable
 - Type-I operates on independent local clocks. Type-II requires a shared Ref-clock.
 - DUTs may support both

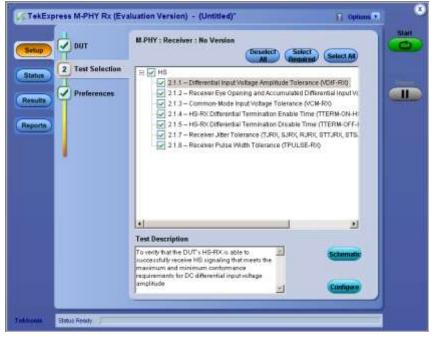
M-PHY Tx : Opt.M-PHYTX Automation Features



M-PHY Tx : Opt.M-PHYTX Automation Features **Comprehensive Test Reports**

Tektronix				xpress H Report								report coveri							
QUT ID DeteiTime: Complement Diversit Complement Biode Diversit Test Result	Pab.	DUT301 13, 2012 / 08 CT3 v6.3 TRUE FWL	然投		Den Enrich	ee Type: eo Tamé:	Daromillar 61 Me	_				ltiple lane, Mu des, etc	ltiple						
Scope North Handber, Prope Samer Handber, Probe Straft Namiter (CHI) Probe Straft Namiter (CHI)	5 6 6	DPCP3884 G404 NM NM NM TCASHOP TCASHOP TCASHOP TCASHOP		91 (24) 24 (24)	Scope PM BPC: Pastary Co IdeExpress Version (P DPOJET	ibrytton:	5.1.4 BMLD3 PA55 PA18 2.0.8 Mo. 0.0.0.44 3.3.0 Build VF												
Test Norm	Lan	firms.	Quar	Angi Rude	Beauperson De	urte Monta	enert Units Text Re	watte Margini											
Teat 1.1.1-HS-TE Unit Interval and Preparety	Level	87	GeartA.	LA.	SECRECTLER	-43	20 2011	1991.092 N.A.											
Dffaat			Gear2A	LA.	SECRECOLLER SECRECILER	400.5	20 ppm	1995.592 . A.A.											
Test 1.1.4-45/TX Continue Mode DO Dutput Yorkage Amattude	Lanat	RT	Ose1A	64	Test HE Commontitie	414		42 485 57 511 42 555											
samle vulnaria	261265	-	Gear2A	LA	Test SS DUDCON	Public 202.1		47.041 11.090											
Test 11 5-6-72 Minorum Otherendal AC Eye	.er	GeartA	64	Feet	200 Tel: 100		8 102 5.748, 14.252												
	10000	Gest2A	LA.	Taxi HS DHOCDA	216		50.00 23.04 13.097			Docu	Its from multip	lo toct	-con	figure	ation	ofa	sinal	a-tast	
					(Fig. 15)	428	ADI = IZA	00.903			resu	ilə moni mullir	יופ נפטנ	ະບບເ	nuurc	uuui.	u a	Siriar	
Test 5.1 /L-65-TX Minimum Differential AC Eye Doening	Lete)	NT.	GeartA Gear2A	LA LA	Entil Entil Machinera		ett mv te	65.923 1			Resu			-001	nyura	uion,		-	5 1031
	Lp(w)	RT	GeartA GeartA	LA LA	Fig.13				Termination	Gear	Amplitude	Measurement Details	Measured wake	units	Test Result	Margin	Low	ltigh Limit	Compliance Mode
Doening			Gearth	LA	Eighti Maciattaria Maciattaria Evitederia Evitederia		#16 P	1	Termination			10	Measured		-	Margin 0.99 2	Low	Itigh	Compliance
	Lana)	NT 81	GeartA GeartA	LA LA	Ex10 MGCHTREG MGCHTREG EX10 MFG		#16 P	1	Termination	Gent Georg	Ampituse SA LA	Measurement Details Transmit Bit Duration Transmit Bit Duration	Measured value 1	Mbps	Test Result	8 99 2 5 99 2 2	Low Limit → 0.81 → 0.91	High Limit 	Compliance
Denning Teet 117-46-72 Maximum Differential AC			GeartA GeartA	LA LA	Fault Macinte Fa Macinte Fa Evender Evender Evender Evender Evender		#16 P	1	Terminution	Qear0	Amptitude SA LA SA	Meanument Bebala Transmit Be Daration Transmit Be Daration Transmit Be Daration	Measured value 1 1 5	Maas Maas Maas Maas	Test Result	14 argin 2 (99), 2 2 (99), 2 2 (9), 4	Low Limit = 0.01 = 0.01 >= 3	High Limit 0-3 0-3 0-9	Compliance
Denning Teet 117-46-72 Maximum Differential AC		গ	GeartA GeartA	LA LA	Faulti Materia Fa Materia Fa Evelowina Evelowina Evelowina Evelowina Evelowina Evelowina Evelowina Evelowina Evelowina Evelowina Evelowina Evelowina		#16 P	1	Terminulian		Amphtude SA LA SA LA	Meanurement Details Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration	Maxas Lond value 1 1 5 5	Mbps Mbps Mbps Mbps Mbps	Test Benalt Street Test Test Test	14 argin 5.99 ; 2 2 ; 4 2 ; 4 7 ; 4	Low Linit == 0.81 == 0.91 == 3 == 3	High Limit 	Compliance
Denning Teet 117-46-72 Maximum Differential AC			GestA GestA GestA Gest24	14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1	Termination	Georia -	Amphaale SA LA SA LA SA LA SA	Meanurement Details Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration	Measured value 1 5 5 78	Units Mass Mass Mass Mass Mass Mass	Test Besuit State State State State State	Hargin 2.99, 2.89, 2. 4. 4.	Low Line 0.01 0.01 3 3 5 6	High Limit 	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural MARCHITE Fig- MARCHITE Fig EVENDMEN EVENDMEN EVENDMEN EVENDMEN EVENDMEN Total Stations Total Stations		#16 P	1	Tarminufion	Qear0	Amphuse SA LA SA LA SA LA SA LA	Measurement Details Transmit B& Duration Transmit B& Duration Transmit B& Duration Transmit B& Duration Transmit B& Duration Transmit B& Duration	Measured value 1 5 5 18 18	Mbps Mbps Mbps Mbps Mbps	Test Result Seat Seat Seat Seat Seat	Margin 5.99 , 2 5.99 , 2 2 , 4 2 , 4 4 , 6 4 , 5	Low Linit == 0.81 == 0.91 == 3 == 3	High Limit 	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1	Terminulius	Georg - Georg - Georg -	Amphaale SA LA SA LA SA LA SA	Meanurement Details Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration	Measured value 1 5 5 18 18 18 26	Units Stass Maps Maps Maps Maps Maps Maps	Test Hendl Pass Pass Pass Pass Pass Pass	Hargin 2.99, 2.89, 2. 4. 4.	Low Line 0.01 0.01 3 3 5 6	High Limit 	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1		Georia -	Amphuse SA LA SA LA SA LA SA LA	Measurement Details Transmit B& Duration Transmit B& Duration Transmit B& Duration Transmit B& Duration Transmit B& Duration Transmit B& Duration	Measured value 1 5 5 18 18	Unda Mapa Mapa Mapa Mapa Mapa Mapa	Test Result Seat Seat Seat Seat Seat	Margin 5.99 , 2 5.99 , 2 2 , 4 2 , 4 4 , 6 4 , 5	Low Linit = 0.81 = 0.91 = 3 = 3 = 3 = 5 = 5	High Limit 	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1	Terminultur 87	Georg - Georg - Georg -	Ampiluzin SA LA SA LA SA LA SA SA	Measurement Octable Transmit Bit Duration Transmit Bit Duration Transmit Bit Duration Transmit Bit Duration Transmit Bit Duration Transmit Bit Duration	Measured value 1 5 5 18 18 18 26	Units Stass Maps Maps Maps Maps Maps Maps	Test Hendl Pass Pass Pass Pass Pass Pass	Margin 2.99 2 2 4 4 4 2	Low Lmd = 0.01 = 0.01 = 0.01 = 3 = -3 = -5 = -5 = -5 = -12	High Limit 	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1		Georg - Georg - Georg -	Amphlude SA LA SA LA SA LA SA LA LA	Measurement Details Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration Transmit Be Duration	Messoning value 1 5 5 18 18 18 36 38	Librita Mbps Mbps Mbps Mbps Mbps Mbps Mbps Mbps	Test Result rest rest rest rest rest rest	Horgin 0.999, 2 2 4 4 4 24 24 24 24 12	Low Unit = 0.81 = 0.91 = 0.91 = -3 = -3 = -5 = -5 = -5 = -12 = -12	High Limit	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1		Georit - Georit - Georit - Georit - Georit -	Arruptuste Sa LA SA LA SA LA SA LA SA SA	Measurement Details Transmit Be Duration Transmit Be Duration	Messoning value 1 5 5 13 13 13 13 34 34 35	Unda Maps Maps Maps Maps Maps Maps Maps Map	Test Result - Post - Post - Post - Post - Post - Post - Post - Post	Morgin 0.99 2 0.99 2 2 4 2 4 4 8 4 8 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 25 12 36 12 36 12	Low Lina == 0.81 == 0.01 == 3 == 3 == 6 == 6 == 12 == 12 == 12 == 24	High Linit	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1		Georg - Georg - Georg -	Ampiluate SA LA SA LA SA LA SA LA SA LA	Meanuremein Detaile Transmit Be Duration Transmit Be Duration	Measuring value 1 1 5 5 18 18 18 18 38 38 38 38 38 38	Linda Mbps Mbps Mbps Mbps Mbps Mbps Mbps Mbps	Test Head Past Past Past Past Past Past Past Past	Morgin 299 2 699 2 2 4 2 4 4 6 4 6 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 25 36 12 84	Low Linal = 0.01 = 0.01 = 0.01 = 3 = -3 = -3 =	High Limit c=3 c=3 c=9 c=18 c=18 c=36 c=36 c=72	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1		Ocoriti - Daart - Daart - Daart - Daart -	Ampiluan Sa. LA SA LA SA LA SA LA SA LA SA	Meanuremeini Octable Transmit Bit Duration Transmit Bit Duration	Measured vsb/b 1 1 5 5 18 18 18 18 18 38 38 38 38 38 38 38 38	Ubrila Mitos Mitos Mitos Mitos Mitos Mitos Mitos Mitos Mitos Mitos	Test Head Past Past Past Past Past Past Past Past	Morgin 299 2 899 2 2 4 2 4 4 8 4 8 4 8 24 0 12 30 12 30 12 30 12 30 12 30 12 30 14 12 14 4	Low Lind == 0.81 == 0.91 == 0.91 = 0.91 == 0.91 == 0.91 == 0.91 = 0.91 == 0.91 = 0.91	High Linit cx 3 cx 3 cx 9 cx 10 cx 20 cx 10 cx 20 cx 72 cx 144	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#16 P	1		Georit - Georit - Georit - Georit - Georit -	Ampiluate SA LA SA LA SA LA SA LA SA LA SA LA	Measurement Details Transmit B& Duration Transmit B& Duration	Messoned velue 1 1 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12	Ubela Mbps Mbps Mbps Mbps Mbps Mbps Mbps Mbps	Test Head Pais Pais Pais Pais Pais Pais Pais Pais	Morgin 2999 2 899 2 2 4 2 4 4 8 4 8 4 8 24 9 24 9 12 - 36 12 12 - 38 12 84 12 12 - 14 -	Low Lind = 0.01 = 0.01 = 0.01 = -0.01 = -0.01	High Linit ch 3 ch 3 ch 3 ch 3 ch 9 ch 9 ch 10 ch 36 ch 72 ch 772 ch 144	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#14 Pa	1		Ocoriti - Daart - Daart - Daart - Daart -	Ampiluate SA LA SA LA SA LA SA LA SA LA SA	Measurement Rebuilds Transmit Be Duration Transmit Be Duration	Massories velate 1 1 5 5 13 13 13 14 36 36 36 36 36 36 36 36 36 36 36 36 36	Undia Mapa Mapa Mapa Mapa Mapa Mapa Mapa Ma	Test Bendl Past Past Past Past Past Past Past Past	Harryse 2 99 2 8 89 2 2 4 2 4 8 4 4 8 4 4 8 2 12 9 12 12 9 12 12 9 12 12 9 12 12 18 12 12 18 12 13 12 12 14 18 14 15 10 12	Low Linal == 0.01 == 0.01 = 0.01	High Linit	Compliance
Deenre Teet 113-46-73 Maximum Dirheense AC Eye Opening	LanaD	গ	GeartA GeartA GeartA GeartA OsartA	14 14 14 14	Figural Independent Series Independent Series Exclusion Series Exclusion Series Exclusion Series Exclusion Series Independent Series Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree Trac. vol. Faultree		#14 Pa	1		Ocoriti - Daart - Daart - Daart - Daart -	Ampiluate SA LA SA LA SA LA SA LA SA LA SA LA	Measurement Rebuilds Transmit Be Duration Transmit Be Duration	Marastoring value 1 1 5 5 18 18 18 36 36 36 38 38 38 38 38 38 38 38 38 38 38 38 38	Undia Mapa Mapa Mapa Mapa Mapa Mapa Mapa Ma	Test Bendl Pest Pest Pest Pest Pest Pest Pest Pest	Morgin 299 2 899 2 2 4 2 4 4 6 4 6 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 24 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 123 0 4 128	Low Lina == 0.61 == 0.61 = 0.	High Land	Compliance

M-PHY Rx : Based on Scope built-in Error Detector Scope-Integrated M-PHY BER using Opt.ERRDT Shipping Today



Tektronix[®]

M-PHY Rx : Opt.M-PHYRX Automated Solution

Opt.M-PHYRX

- TekExpress (2.0) option for Fully-Automated receiver testing
- Provides Conformance Testing
- Based on Latest M-PHY Base Spec v1.0 &UNH's Conformance Test Suite
- Runs on DPO/DSA70KB/C or MSO70K/C scopes
- TekExpress framework is included.
- Differentiation
 - Simply 2-box setup.
 - Built upon Scope ErrorDetecror ERRDT.
 - Wide HS test coverage

- Value proposition
 - Test Reports with Pass/Fail summary, with Bit-Error counts

M-PHY Tx &Rx Recommended Test Setup (www.tek.com/MIPI)

Scopes

- DPO70604/B/C or above, for HS-Gear1 Only (Tx &Rx).
- DPO70804/B/C or above, for HS-Gear1&2 Only (Tx &Rx)
- DPO71254/B/C or above, for All HS-Gears (Rx Only)
- DPO72004/B/C or above, for All HS-Gears (Tx &Rx).
- Probes
 - 2x P73xxSMA/P73xx, for Tx HS upto Gears2, or 2x P75xx with P75LRST for Tx HS upto Gear3.
 - 2x P73xxSMA/P73xx, for Tx PWM All Gears.
 - 1x P73xxSMA, for Rx.
- Signal Generators for Rx
 - AWG7082C, AWG7102 or above, for HS-Gear1 Only.
 - AWG7122C <u>without</u> Interleave, for HS-Gear1&2 Only.
 - AWG7122C with Interleave (option 06), for All HS-Gears.
- Software
 - New Opt.M-PHYTX Transmitter Automated Solution (Opt.DJA is pre-requisite).
 - New PGY-UPRO Protocol Decode (Opt.ST6G optionally required).
 - New PGY-LLI Protocol Decode (Opt.ST6G optionally required).
 - Opt.M-PHYRX Receiver Automation (Opt.ERRDT is pre-requisite).
 - Opt.SR-810B, for 8b-10b Decode
 - MPHYVIEW, for DigRFv4 Protocol Decode
 - Optional: Opt.M-PHY Essentials based on DPOJET
 - Optional: SerialXpress for custom-patterns using AWG

1111

P7380 probe used with a probe-tip

Fixtures

As MIPI is chip-to-chip interface, most DUT setups are LIVE with Master-Slave/ Receiver-end connected. For live-setups:
 No Fixtures required. For non-live setups UNH-IOL Termination boards expected to be available soon

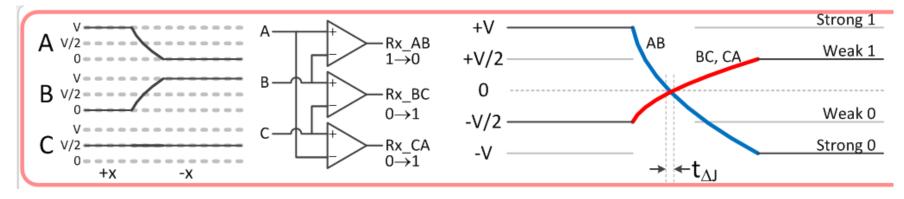
M-PHY Rx Recommended Test Setup – Continued

- Recommended Accessories, for opt.M-PHYRX Receiver Automation setup
 - 2x Matched pair of SMA cables
 - 1x GPIB Cable
 - 2x Rise Time Filter 120 ps (part number 5915-121-120PS from Picosecond) with barrel connectors
- Optional: Accessories for Rx "custom-patterns" using SerialXpress (manual setup)
 - 2x Matched pair of SMA cables, , for AWG custom patterns creation
 - 2x Rise Time Filter 120 ps (part number 5915-121-120PS from Picosecond) with barrel connectors
 - 2x BiasTee (part number 5542 from Pico Second), for AWG Interleave Option (for HS-Gear3)
 - 2x TCA-SMA Connectors, for AWG custom patterns creation
 - Option 01 Memory expansion to 64 M enabled on AWG
 - Option 08 Fast Sequence Switching enabled on AWG
 - Option 09 Subsequence and Dynamic Jump enabled on AWG.

MODEL 5542 BIAS TEE Picosecond

CPHY Solution Offering in 2014-15 - Details

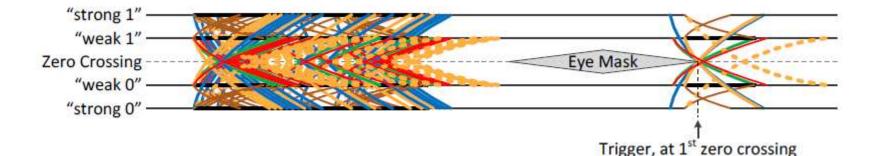
- Scope analysis software
- 4-lane probing & termination board
- New solder-in scope probe tips
- AWG pattern and stress software C-PHYXpress
- Python automation conformance software
 - Source TX
 - Sink RX
 - RF switch control
- 4-lane pattern generator
- 1-lane scope-based packet decoder
- 4-lane protocol analyzer



CPHY Signal Levels

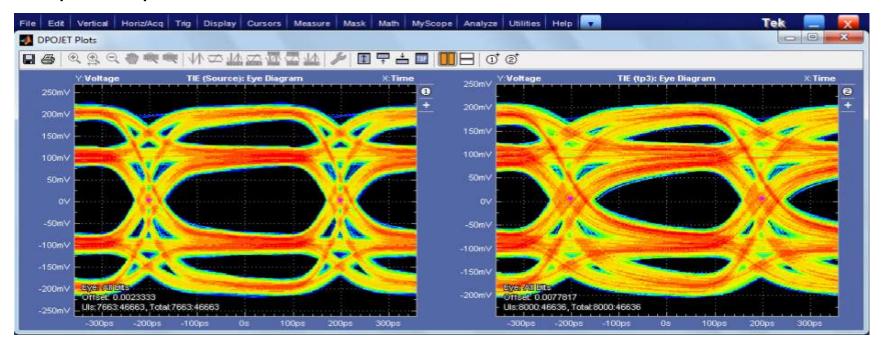
- VA, VB, VC

 HS Line Voltage { High, Low, Mid }
 { V, 0, V/2 }
- VAB, VBC, VCA Differential Signals


Source: MIPI Workgroup Proceedings

CPHY Eye Diagrams

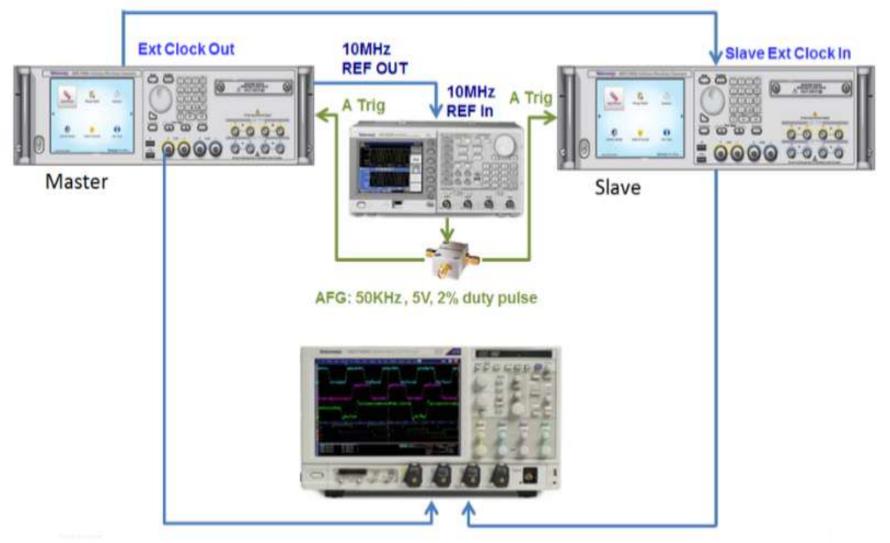
- CPHY uses a "triggered eye" method to render eye diagrams for analysis
 - Specified to model how three CPHY differential receivers work
- "Trigger" refers to the first crossing of Vab, Vbc, or Vca across the 0V threshold per UI
- This "trigger" is used as a reference point for plotting the eye diagram



Example:

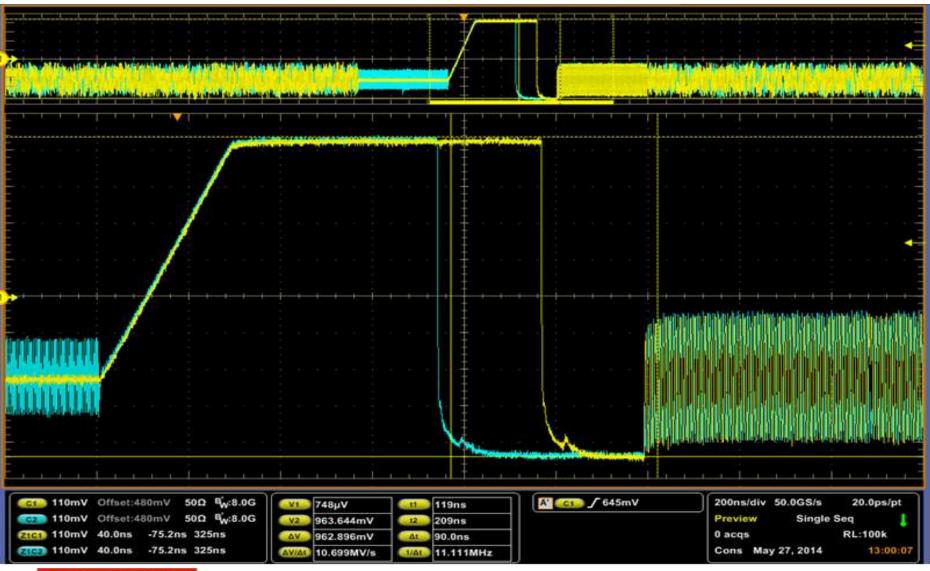
Embed Results Verification

- Results can be quickly verified by using DPOJET jitter & eye diagram software
- CPHY analysis is then performed on these signals in accordance with spec requirements.


Before embed

After embed

Example Setup Dual AWG70000



Generate CPHY Traffic

LP-HS Transition – (LP swing 0V up to 1V, HS swing 50mV up to 435mV)

Tektronix[®]

Thanks!

