HDMI2.0 Solution

Agenda

- HDMI Overview and updates
- Additional resources

HDMI – High Definition Multimedia Interface

HDMI 2.0 Testing Customer presentation

Overview of HDMI

- From 2003 till date and looking ahead...
 - Tek only solution provide for HDMI from 2003 to 2007
 - Contributor of SoftCRU method to the Specification
 - Innovative Sink solution leveraging Direct Synthesis method of AWG
- Hdmi 1.0 ---- 1.65GBps
- Hdmi 1.4—3.4GBps
- Hdmi 2.0..... 6GBps

HDMI Basics

Tektronix HDMI 1.4b Solution- Approved in CTS 1.4b

DPO/DSA/MSO Real Time Oscilloscopes

AWG5K/B or AWG7K/B Arbitrary Waveform Generators

DSA8200 Sampling Scope with i-connect software

Common Set of test equipment for HDMI and HEAC

HDMI Fixtures:

- 1. Type A(TF-HDMI-TPA-S/-STX)
- 2. Type C(TF-HDMIC-TPA-S/-STX)
- 3. Type D(TF-HDMID-TPA-P/-R)
- 4. Type E(TF-HDMIE-TPA-KIT)
- 5. HEAC Fixtures(TF-HEAC-TPA-KIT)

Probes and Accessories

HDMI Probes HEAC Probes HDMI Accessory Kit

GAME Changer - HDMI Protocol Analyzer

Tektronix and HDMI Forum

- 89 companies in the HDMI forum as of date. Source HDMI Forum
- Tektronix is member of this HDMI Forum. Actively participating in weekly/monthly calls and face-face meetings
- Tektronix's U.N.Vasudev is <u>Chairman</u> of HDMI forum test subgroup
- HDMI Forum has released the HDMI specifications 2.0 version 1.0 on 4th Sept 2013
 - Target
 - CTS 2013 Q4

HDMI 2.0 features

- Uses same Cat 2 Cable and HDMI 1.4b connector
- Support 4K 2K 4:4:4 60/50 Hz 594MCSC(Mega Characters per Second per Channel
- Support 4K 2K 4:2:0 297Mcsc
- 3D; 21: 9 ; Audio
- Low level Bit error rate testing
- Scrambling is introduced and mandatory for rates >340Mcsc.

System Recommendation for HDMI 2.0 for Source Measurement

HDMI 2.0 Source Testing Equipment Needs

- 16GHz BW scope will give 1% error and hence is recommended for HDMI 2.0 testing.
 - HDMI 2.0 RT/FT (20%-80%) data signals is 42.5ps
- P7313SMA probes (same used in HDMI 1.4b)
- Option HDM and HDM-DS
- HDMI 2.0 Fixture set

HDMI 2.0 Source Testing

Source Testing 1.4b Vs 2.0

- Eye Diagram test is now performed at TP2
- Rest of the tests is same as HDMI 1.4b
- 1.4b CTS test is a pre-requsite for HDMI 2.0
- Min 8GHz scope to 16GHz scope
- New Fixtures
- Same Probes
- HDM and HDM-DS Software

Source Testing

- Source Eye Diagram test is measured at TP2_EQ.
- TP2 is the signal after passing along a worst cable.
 - Worst cable has worst attenuation and skew of 112ps.

Source Electrical Tests

Test ID HF1-1: Source TMDS Electrical – 340-600Mcsc – V_L

Test ID HF1-2: Source TMDS Electrical – 340-600Mcsc – T_{RISE}, T_{FALL}

Test ID HF1-3: Source TMDS Electrical – 340-600Mcsc – Inter-Pair Skew

Test ID HF1-4: Source TMDS Electrical – 340-600Mcsc – Intra-Pair Skew

Test ID HF1-5: Source TMDS Electrical – 340-600Mcsc – Differential Voltage

Test ID HF1-6: Source TMDS Electrical – 340-600Mcsc – Clock Duty Cycle

Test ID HF1-7: Source TMDS Electrical – 340-600Mcsc – Clock Jitter

Test ID HF1-8: Source TMDS Electrical – 340-600Mcsc – Data Eye Diagram

Test ID HF1-9: Source TMDS Electrical – 340-600Mcsc – Differential Impedance (to be performed using sampling scope)

TP2 Source Eye for HDMI 2.0 6G Signal

Single End Input eye rendered at Tek lab

HDMI 2.0 Tx Compliance Software

VE TekExp	ress HDM - (Untitle	a)	Cyluna •	TekExpress HDM - (Until	ed) Options V	•
Betup Statun Results Reports	1 DUT 2 Text Selection 3 Acquisitions 4 Proferences	OUT ID: OUTDO! Image: PDM Physical Layer Solution Device: HDM Physical Layer Solution Salle: Source Image: Polyce Profile Device: Profile Device: Profile Termanation (b) 2.5 Attenuation (b) 2.5 Steres: Image: Polyce Number of Lances to Test SLance: Image: Polyce CountDial Image: Polyce		Status U Status 2 Reports 3 Acquisitions 4 Preferences	HDM Physical Layer Solution : Source : CTS 2.0 Correct Control Contro	0
	Contraction of the			ISN'S READ		

	PROPERTY PROPERTY AND				NINT_	Overall Test Result Q Pr	44					Frederingen	•
						Teat Name	Defatte	TEN	Value	tinto	Panetal	Margin	
2	Test liams	Acquiution	Arquire Status	Analysis Statestal	Bettap	e Chick					0111		8
6	1.3 TWDS TRine TPat	Intel Record wight for Real fail.	To be whated		Status	1.2 TMDS TRite	Clock Rise Time	168.3498 ps	38,7989	ps.	Q Fail	-36.2911	
	1.8 TWDS CircleOutyCycle	Shert Record-length for Cleck Duty Cycle	To be slarted			I J TMD'S TRise	Clock Fall Time	168.3498	38.1015	pa	Q fat	.36.9965	
2	1.6 TMDS Clock Jitter	Short Record-length for Clock Jiller	To be started		Hirut	1.5 TMDS	Maximum Duty Cycle	168.3498	50.01		O Pass	.9.99	
	1.1 TMDS V Low 1.4 TMD1 Intra-Per Bloow	Shert Record-length for VLow Shert Record-length for Intra-Par	To be started		Report	E 1.5 TMDS	Minimum Dely Cycle	168.3498	49.99	5	O Pass	9.99	
	a 04	Slew	10.94.5487000			E 1.6 TMDS Clock	TMDS Clock Jiller	168.3498	40.1239	ps	Pass	-1.9035	
	1.2 TMDS TRee TFel	Bhart Record length for Ree Fat	To be started			1.6 TMDS Clock	TMDS	168.3498	64.7912	mild.	1000	335.22 6	
	1.3 TMDS inter-Pair Skew	Short Record-length for Inter-Pair Skew	To be started			Jatter	VSwing	ps 168.3498	3,2972	v	Q ras	1135.22	
	1.1 TMDS V Law	Short Record-length for VLine	To be atarted				VLow for	ps		- C	Q Fall	-0.1822	
	t 4 TMDS who Pay Skew	Skert Record-length for intra-Pair Skew	To be started			1.1 TMDS V Low	TMDS VLow for	168.3492 p5	3.9736	v	Q Fail	0.8738 &	
	1.7 TMDS DetadlyeDiagnam	Shart Record-length for Date Eye Diegram	To be sliwted			1.4 TMDS	TMDS Intro-Pair	168.3498	9.7095	p4	1.000	-15.5429	
	(J) (H)					(3)	Skow for				O Pass		
	1.2 TMDS TRise That	Shurt Record-length for Rise Fall	To be started				Clock			_			
	1.3 THDS Inter-Pair Skew	Short Record-length for Inter-Pair Skew	To be abarted			(⊇ D0	Diff. Dista	140 1400	60.6370		G Fail	40 4370	
	1.1 TMDS V Low	Shart Record-length for Vulne	To be started			Trail	Time	LTS	00.0370		G Pass	10.1379	
	1.4 TMDS intre-Pay Skew	Short Record-length for Intra-Pair Skew	To be started			is 1.2 TMOS TRise	O0 Fell	168.3498	58.5778	25	Ø Pess	16.0778	
	A 7 THOSE Developments	Chief Barret incels for Cals For				1.1 TMDS V Low	VLow for	168.3498 ps	3.1720	v	O fail	0.0720 8	

Tektronix*

HDMI 2.0 Sink Testing

HDMI 2.0 Sink testing Equipment needs

- 16GHz BW scope will give 1% error and hence is recommended for HDMI 2.0 Sink testing for Jitter Verification/Calibration/Controller.
- P7313SMA probes
- Option HDM and HDM-DS
- HDMI 2.0 Fixture set
- 2# AWG7122C with Opt 01,02 or 06, 08 for <u>HDMI 2.0 Compliance only</u> <u>setup</u>.

OR

 2# AWG70002A with Opt 01,03 and 225 for <u>HDMI 2.0 Compliance and Margin Test</u> setup.(Margin test feature will be available later and is part of roadmap)

Note- We shall also support a 12.5GHz BW scope which would result in appx. 10% inaccuracy in RT/FT results .

Requirement for Signal Generation

Cable Emulation and Skew by Hardware

Hardware Skew and Software Cable Emulation

Sink Electrical tests

Test ID HF2-1: Sink TMDS Electrical – 340-600Mcsc – Min/Max Differential Swing Tolerance

Test ID HF2-2: Sink TMDS Electrical – 340-600Mcsc – Intra-Pair Skew

Test ID HF2-3: Sink TMDS Electrical – 340-600Mcsc – Jitter Tolerance

Test ID HF2-4: Sink TMDS Electrical – 340-600Mcsc – Differential Impedance (performed using sampling scope)

HDMI 2.0 Rx solution positioning statement

- Tektronix will support HDMI 2.0 Sink Electrical and protocol tests using either AWG7122C (w/ Opt 01,02/06,08) AND AWG70002A (W/ Opt 01,03 ,225)
- Solution Positioning:
 - **Compliance solution** for HDMI 2.0 Rx
 - 2# AWG7122C with opt 01, 02/06 and 08
 - 1# AFG3102/C

Customers can use common test setup for HDMI 1.4b and HDMI 2.0 giving value for their investment in Tektronix HDMI 1.4b Rx solution.

- Compliance and Margin solution for HDMI 2.0 Rx

- 2# AWG70002A with Opt 01,03 and 225.
- 1# AFG3102/C

Customers can use common test setup for HDMI 1.4b and HDMI 2.0 giving value for their investment in Tektronix HDMI 1.4b Rx solution

HDMI 2.0 Sink Test Setup

Tektronix AFG3000 (Synchronize two AWGs)

Sink Testing 1.4b Vs 2.0

- Jitter Tolerance test needs +ve and –ve lanes tested with 112ps delay line
- Rest of the tests is similar to HDMI 1.4b tests
- 1.4b CTS test is a pre-requsite for HDMI 2.0
- Need AWG 70002A for HDMI 2.0 Compliance and Margin needs while AWG7122C is suitable for HDMI 2.0 Compliance testing only..
- Min 8GHz scope to 16GHz scope
- Fixtures and Probes
- HDM and HDM-DS Software

HDMI 2.0 Rx Compliance Software

TekExpress MHL (Evaluation	n Version) + (Untitled)*	Options •	
Satur DUT	DUT O DUTOOT	0	C
Setup Status Insuito Inports Apports Status	Device #DM Physical Layer Solution Suite Sink © Use Pre - Defined Paterin Test Method © Compliance - Test device for passifial per ta Device Profile Refresh Rate (bbps) 0 0 0 0 0 0 0 0 0 0 0 0 0	Version CTS 2.0 •	-

TekExp	ress HDM (Evaluatio	on Version) - (Untibled)* Oppose •	8
Getup	тио 🔁	HDM Physical Layer Solution : Source : CTS 2.0	b
Results Reports	Configuration Configuration Prefurences	Sink	Ъ
		Test Description	
		Show MOI Schumate Contains	
Automore.	Batus Ready / 10		

Tektronix HDMI 2.0 Solution

- Tektronix HDMI 2.0 Solution will be available aligned to the CTS announcement from the new HDMI Forum.
- Full Source Test Solution including probes, Fixtures.
- Phased Rx Electrical solution- ensuring regular engagement with customers with pattern support added to solution.(between Dec 2013 to June 2014)
 - Release 1 HDMI 2.0 Sink Electrical tests HF2-1; HF2-2 and HF2-3 with the following VIC supported: (Dec MOI)
 - VIC 96, VIC97, VIC 101, VIC 102, VIC 106, VIC 107
 - Release 1 Sink Protocol test HF2-23 supported (Dec MOI)
 - Release 2 1H CY14 remaining VICs for electrical tests- Target for next MOI approval event (Q1 CY14)
 - Final Release Phased Rx Protocol solution- ensuring regular engagement with customers with pattern support added to solution.(starting by Q1 CY14 and complete by end 2014)
- Support for HDMI 1.4b CTS is a pre-requiste for HDMI 2.0 testing.
- Contact local Tektronix sales team for early interaction on our HDMI 2.0 solution.

Introduction to USB 3.0 SuperSpeedPlus

Increasing Serial Data Bandwidth

- USB 2.0, 480 Mb/s (2000)
 - Shift from slower, wide, parallel buses to narrow, high speed serial bus
 - 40x faster data rate, support for new connectors & charging
- USB 3.0, 5 Gb/s (2008)
 - ~10x faster data rate over 3 meter cable
 - Faster edges, 'closed eye' architecture
- USB 3.0, 10 Gb/s (2013)
 - 2x faster data rate over 1 meter cable
 - 'Scaled' SuperSpeed implementation

USB 3.0 SuperSpeedPlus Technology Timeline

Transmitter, Receiver, Channel

Why 10 Gb/s?

Video

- •HD video adapters with multi display outputs
- Dual HDMI/DVI with simultaneous 1080p displays

Storage

•5 Gb/s with 8b/10b -> 400 MB/s

High performance SSD saturation-> ~600 MB/s

Hub/Dock

- Multi-function, 'All in One' docking
- •Faster backups, multiple monitors, etc.

5 Gb/s Key Considerations

- Receiver testing now required
 - Jitter tolerance
 - SSC, Asynchronous Ref Clocks can lead to interoperability issues
- Channel considerations
 - Need to consider transmission line effects
 - Software channel emulation for early designs
- New Challenges
 - 12" Long Host Channels
 - Closed Eye at Rx
 - Equalization
 - De-emphasis at Tx
 - Continuous Time Linear Equalizer (CTLE) at Rx

Physical Layer

6

Figure 6-1. Super Speed Block Diagram: Physical

10 Gb/s Comparison

	SuperSpeed	SuperSpeedPlus		
Data Rate	5 Gb/s	10 Gb/s		
Encoding	8b/10b	128b/132b		
Target Channel	3m + Host/Device channels (-17dB, 2.5 GHz)	1m + board ref channels (-20dB, 5 GHz)		
LTSSM	LFPS, TSEQ, TS1, TS2	LFPSPlus, SCD, TSEQ, TS1, TS2,		
Reference Tx EQ	De-emphasis	3-tap (Preshoot/De-emphasis)		
Reference Rx EQ	CTLE	CTLE + 1-tap DFE		
JTF Bandwidth	4.9 MHz	7.5 MHz		
Eve Height (TP1)	100 mV	70 mV		
TJ@BER	132 ps (0.66 UI)	71 ps (0.714 UI)		
Backwards compatibility	Υ	Υ		
Connector	Std A	Improved Std A with insertion detect		

Channel Budget

- Target 20 dB (5 GHz) end-to-end loss budget
- Transmitter Equalization
 - < 3.5 dB (short channel), minimal loss profile</p>
 - $\geq 3.5 \text{ dB}$ (long channel), need Tx optimization
- Repeater may be required if host/device loss > 7 dB
- Tx/Rx compliance at TP1 (far end)

Source: USB 3.0 Rev 1.0 Specification

Reference Transmitter Equalization

- USB channel profiles are dynamic (consumer)
- Need flexible solution space for link optimization
- Below are <u>recommended</u> Tx settings for good margin with target reference channels

Host/Device Loss	<3.5dB	≥3.5dB	
C ₋₁	0.000	-0.125	
C ₁	-0.100	-0.125	0.10 Va Vb Vc Vd
Va/Vd	1.00	0.80	₩ 0.00 -0.05
Vb/Vd	0.75	0.55	
Vd/Vd	0.75	0.75	2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 time (ns)

End-to-end PHY Validation

Transmitter Validation Example - SDLA

- Capture CP9 (Scr0) and CP10 (Ah)
- Input reference channel models

CP9 Scrambled Pattern (TP0)

USB3 Reference Channel

CP9 Scrambled Pattern (TP1)

Transmitter Validation Example - SDLA

Find optimum Eye height vs. Rx EQ

O User O AMI O Thru O Off O CTLE Type Standard	Clock Recovery Bit Rate: Auto Detect Nominal 10 Gb/s	On Equalizer: FFE / DFE Off FFE/DFE Type Adapt Taps Custom Auto	Run E PCIE Ou
Taps A _{DC} f _z f _{p1} f _{p2}	PLL Type: ① 1	0 FFE Taps 1 DFE Taps 1 Sample/bit 0.03 Amplitude	CTL
rror Log 0.5 ADC 1.5 f _{p1} GH	IZ 0.7 PLL Damp	1 Ref Tap 0 Threshold	ок
1.0440	ant star	the second se	
-			

Tektronix

Transmitter Validation Example - DPOJET

Recall DPOJET SSP setups

Sitter and Lye Diagn	an Analysis Tools	• • • • • • • • • • • • • • • • • • •	4	Preletences	X
Select Period/	Standard USB	1	Measurement	Source(s)	Bacala
Freq			TJ@BER1	Math2	Recarc
Jitter	Test Point USB3_Device_CP0_Nor Setup	Ann anna an an	DJδδ1	Math1	
onfigure	TCdr-Slew- Tmin-Pulse- Tmin-Pulse-	Clear Selected	Eye Height	Math2	Single
Time	VTx-Diff-PP Max Tj Dj		USB UI1	Math1	
Results	(m) (m) (m)	Clear All	USB VTx-Diff-PP	Math1	Run
	SSC-MOD- SSC-FREQ- SSC-FREQ-	Clear All	De-emphasis	Math1	O
Plots Ampl	RATE DEV-MAX DEV-MIN		Preshoot	Math1	Show Plots
Provedored	More More		Eye Height afterCh	Math3	
Reports)			Mask Hits1	Math2	

Check JTF settings (f_{-3db} 7.5 MHz, 40dB slope)

Tektronix[®]

Transmitter Validation Example - DPOJET

Measure Eye height and jitter at TP1

Tektronix*

Recommended Transmitter Solution

- ≥20 GHz BW, 100 GS/sec preferred
 - DSA72004C minimum required, DSA72504D or greater preferred
- >10M minimum record length allows capture of 1M UI at 100Gs/sec, no interpolation. Increase memory depth if interpolation will be enabled, or if >1MUI captures are desired.
- Option DJA Advanced DPOJET required, signal analysis
- Option SLA Advanced SDLA required, cycle through 7 CTLE/1 DFE settings
- Option USB3 recommended, provides USB3 TX specific measurements

For instrument bandwidth, consider factors such as edge rate, reflections, SNR (de-embedding), and launch characteristics.

Receiver Testing

- Jitter Tolerance (JTOL) with swept jitter profile, reference channel
 - Verify CDR tracking and ISI compensation
- Link optimization/training critical
 - No back channel negotiation
- Return "echoed" data to a BERT (loopback)
- Detected errors are inferred to be a result of bad DUT receiver decisions

Tektronix*

JTOL Template Comparison (TBD)

Symbol	Parameter	Gen 1	Gen 2	Units	Notes
f1	Tolerance corner	4.9	7.5	MHz	
J _{Rj}	Random Jitter	0.0121	0.01308	UI rms	1
J _{Rj_p-p}	Random Jitter peak- peak at 10 ⁻¹²	0.17	.184	UI p-p	1,4
J _{Pj_500kHZ}	Sinusoidal Jitter	2	2.56	UI p-p	1,2,3
J _{Pj_1Mhz}	Sinusoidal Jitter	1	1.28	UI p-p	1,2,3
J _{Pj_2MHz}	Sinusoidal Jitter	0.5	0.64	UI p-p	1,2,3
J _{Pj_4MHz}	Sinusoidal Jitter	N/A	0.32	UI p-p	1,2,3
J _{Pj_f1}	Sinusoidal Jitter	0.2	0.17	UI p-p	1,2,3
J _{Pj_50MHz}	Sinusoidal Jitter	0.2	0.17	UI p-p	1,2,3
J _{Pj_100MHz}	Sinusoidal Jitter	N/A	0.17	UI p-p	1,2,3
V_full_swing	Transition bit differential voltage swing	0.75	TBD	V р-р	1
V_EQ_level	Non transition bit voltage (equalization)	-3	Pre=2.7 Post= -3.3	dB	1

Notes:

1. All parameters measured at TP1. The test point is shown in Figure 6-18.

2. Due to time limitations at compliance testing, only a subset of frequencies can be tested. However, the Rx is required to tolerate Pj at all frequencies between the compliance test points.

3. During the Rx tolerance test, SSC is generated by test equipment and present at all times. Each J_{Pj} source is then added and tested to the specification limit one at a time.

4. Random jitter is also present during the Rx tolerance test, though it is not shown in Figure 6-1

BERTScope USB 3.0 RX Test Configuration

USB Switch

creates the low-frequency periodic signaling (LFPS) required to initiate Loopback-mode

> DPP125C De-emphasis Processor

CR125A Clock Recovery

BSA125C BERTScope

Summary

- New opportunity for growth with USB 10 Gb/s
- Adds <u>additional</u> challenges beyond legacy requirements (backwards compatibility)
- Higher performance, more complex design but feasible within current infrastructure
- Extensive PHY validation tools for early designs
 - New USB SSP DPOJET setups for Tx validation
 - BERTScope USB library with JTOL templates
 - DSA8300 Sampling oscilloscope for channel characterization
 - Test procedures documented in Methods of Implementation (MOI)

Debug and Validation of Flash Memory Interface

Measure the Analog signal characteristics and Protocol Level Details on the flash Memory Interface

Memory Market Segmentation

Flash Market Segmentation

eMMC Card Concept

- Multimedia card transfers data via configurable data bus signals
- Communication Signals
 - CLK: Each cycle of this signal directs a one bit transfer on the command and either a one bit (1x) or a two bits transfer (2x) on all the data lines. The frequency may vary between zero and the maximum clock frequency.
 - CMD: This signal is a bidirectional command channel used for card initialization and transfer of commands.
 - DAT0-DAT7: These are bidirectional data channels (1 bit/4 bit/8bit)

eMMC Electrical measurements as eMMC4.41- SDR

eMMC HighspeedSDR measurement for eMMC4.41 Specification			
Parameter	Min	Max	Unit
Clock Frequency Data Transfer Node	0	52	MHz
Clock frequency Indentifiction Mode	0	400	KHz
Clock High Time	6.5		ns
Clock low Time	6.5		ns
Clock rise time		3	ns
Clock fall time		3	ns
Inputs CMD, data (referenced to CLK)			
Input setup time CLK-CMD	3		ns
Input hold time CLK-Data	3		ns
Input set up time CLK-Data	3		ns
Input hold time CLK-Data	3		ns
Outputs CMD, Data (referenced to CLK)			
Output delay time during data transfer CLK-CMD		13.7	ns
Output hold time CLK-CMD	2.5		ns
Output delay time during data transfer CLK-Data		13.7	ns
Output hold time CLK-Data	2.5		ns
Signal Rise time		3	ns
Signal fall time		3ns	

eMMC Electrical Measurements for Backward Compatibility

eMMC Highspeed SDR measurement for eMMC4.41 Specification				
Parameter	Min	Max	Unit	
Clock Frequency Data Transfer Node	0	26	MHz	
Clock frequency Indentifiction Mode	0	400	KHz	
Clock High Time	10		ns	
Clock low Time	10		ns	
Clock rise time		10	ns	
Clock fall time		10	ns	
Inputs CMD, data (referenced to CLK)				
Input setup time CLK-CMD	3		ns	
Input hold time CLK-Data	3		ns	
Input set up time CLK-Data	3		ns	
Input hold time CLK-Data	3		ns	
Outputs CMD, Data (referenced to CLK)				
Output setup time CLK-CMD	11.7		ns	
Output hold time CLK-CMD	8.3		ns	
Output setuptime CLK-Data	11.7		ns	
Output hold time CLK-Data	8.3		ns	

eMMC Electrical Measurements for DDR Mode-4.41

eMMC High speed DDR measurement for eMMC4.41 Specification				
Parameter	Min	Max	Unit	
Clock Duty Cycle	45	55	%	
Inputs CMD, data (referenced to CLK)				
Input setuptime CLK-CMD	2.5		ns	
Input holdtime CLK-Data	2.5		ns	
Input set up time CLK-Data	2.5		ns	
Input hold time CLK-Data	2.5		ns	
Outputs CMD, Data (referenced to CLK)				
Output delay time during data transfer CLK-CMD	1.5	7	ns	
Output delay time during data transfer CLK-Data	1.5	7	ns	
Signal Rise time		2	ns	
Signal fall time		2	ns	

Ultra High Speed cards

- UHS-1 provides 104 Mb/s performance with single ended performance
- UHS-I operation modes
 - DS- default signaling mode supports up to 25MHz up to 3.3V
 - HS- High speed up to 50MHz 3.3V
 - SDR12- SDR up to 25MHz at 1.8V
 - SDR25- SDR up to 50Mz at 1.8
 - SDR104- SDR upto 208MHz
 - DDR- DDR up to 50MHz 1.8V signalling

SD Electrical Measurements SDR12

Electrical Specification of SD SDR12			
Parameter	Min	Max	
Clock frequency		0 <mark>25M</mark> hz	
Clock low time	10ns		
Clock high Time	10ns		
Clock Rise Time		10ns	
Clock fall time		10ns	
CLK-CMD Input Setup time	5ns		
CLk_CMD Input Hold time	5ns		
CLK-Data Inut Setup time	5ns		
CLK-CMD Input Hold time	5ns		
CLK-CMD Output delay ime during Data Transfer		14ns	
CLK-data Output Delay time during Data Transfer		14ns	
CLK-CMD Output delay time during Identification		50ns	
CLK-Data Output Delay time during Identification		50ns	

SD Electrical Measurements SDR25

Electrical Specification of SD SDR25			
Parameter	Min	Max	
Clock Frequency		050MHz	
Clock low time	7ns		
Clock high Time	7ns		
Clock Rise Time		3ns	
Clock fall time		3ns	
CLK-CMD Input Setup time	6ns		
CLk_CMD Input Hold time	2ns		
CLK-Data Inut Setup time	6ns		
CLK-CMD Input Hold time	2ns		
CLK-CMD Output delay ime during Data Transfer		14ns	
CLK-data Output Delay time during Data Transfer		14ns	
CLK-CMD output Hold Time	2.5ns		
CLK-DAT output delay time	2.5ns		

SD Electrical measurements- SD50

Electrical Specification of SD SDR50			
Parameter	Min	Max	
Clock frequency		0102MHz	
Clock Period	9.6ns		
Clock Rise Time		0.2tCLK	
Clock fall time		0.2tCLK	
Clock Duty Cycle	30	% 70%	
CLK-CMD Input Setup time	3ns		
CLk_CMD Input Hold time	0.8ns		
CLK-Data Inut Setup time	3ns		
CLK-CMD Input Hold time	0.8ns		
CLK-CMD Output delay ime		201	
CLK-data Output Delay time		201	
CLK-CMD output vaid window	0.6UI		
CLK-CMD output Valid Window	0.6UI		

SD Electrical Measurements SDR104

Electrical Specification of SD SDR104			
Parameter	Min	Max	
Clock frequency		0208MHz	
Clock Period	4.8ns		
Clock Rise Time		0.2tCLK	
Clock fall time		0.2tCLK	
Clock Duty Cycle	30	% 70%	
CLK-CMD Input Setup time	1.4ns		
CLk_CMD Input Hold time	0.8ns		
CLK-Data Inut Setup time	1.4ns		
CLK-CMD Input Hold time	0.8ns		
CLK-CMD Output delay ime		201	
CLK-data Output Delay time		201	
CLK-CMD output vaid window	0.6UI		
CLK-CMD output Valid Window	0.6UI		

SD Electrical Measurements DDR50

Electrical Specification of SD DDR50			
DDR50	Min	Max	
Clock frequency		050MHz	
Clock Period	20ns		
Clock Rise Time		0.2tCLK	
Clock fall time		0.2tCLK	
Clock Duty Cycle	459	6 55%	
CLK-CMD Input Setup time	6ns		
CLk_CMD Input Hold time	0.8ns		
CLK-Data Inut Setup time	3ns		
CLK-CMD Input Hold time	0.8ns		
CLK-CMD Output delay ime		13.7ns	
CLK-CMD output hold time	1.5ns		
CLK-data Output Delay time		7ns	
CLK-DAT output hold time	1.5ns		

Market Needs

- Electrical validation of eMMC as per 4.41, 4.51 and 5.0 Specification
- Protocol Decode of command line
- Protocol Analysis (tests)
- Protocol Timing measurements
- Protocol Aware Trigger
- Protocol Decode for long duration
- Protocol decode of command and Data bus

PGY-eMMC/SD Electrical Validation and Protocol Decode Software-Select

- User can select eMMC type and data mode
- eMMC electrical measurements as specified in eMMC Standard document are listed
- Supports electrical measurement for eMMC4.41 and 4.51 (HS200)
- Protocol aware measurements to support host and device measurements
- Flexibility to select Electrical Validation or Protocol Analysis or both or fast frame based decode and Protocol code using Digital Channel

PGY-MMC-SD Electrical Validation and Protocol Decode Software-Configure- Electrical and Protocol Analysis

- Select the source of the signal from oscilloscope or saved files
- Flexibility to select Electrical validation or Protocol Analysis or both
- Clock and data reference identifies signal transitions
- Oscilloscope setup helps is automatic oscilloscope setup or recall saved oscilloscope setup

PGY-MMC-SD Electrical Validation and Protocol Decode Software-Configure- Digital Decode

W PGY-MMC-SD Electrical Validation and Prot	ocol Decode Software	Save Recall Recall Default About	2 🔿 😣
Select Select Configure Limit Setup Trigger	Select Digital 1-bit SDR 4-bit SDR 8-bit SDR 4-bit DDR 8-bit DDR	Signal Assignment Clock: CMD: D1: D2: D3: D4: D5: D6: D7: CH1 ◆ CH2 ◆ D2 ◆ D3 ◆ D4 ◆ D5 ◆ D6 ◆ D7 ◆ D8 ◆ D9 ◆ Digital Resolution Global Threshold Apply	Run Single No Acq Run / Stop Run Options Analyse Export Report
Version :2.9.3 Select clock and Data waveforms	and Click Single Run or S	equence Waveform Files Selected	

- Select the source of the signal from oscilloscope digital channel or saved CSV digital data file
- Combination of Analog and Digital Channels to reduce probe loading on CLK and CMD
- Select different data modes such as 1-bit SDR, 4-bit SDR, 8 bit SDR, 4 bit DDR and 8 bit DDR
- Set Global threshold and Digital Sampling Resolution

PGY-eMMC-SD Electrical Validation and Protocol Decode Software-Limit Setup

🔯 PGY-MMC-SI	D Electrical Validati	on and	Protoco	Decode	Software				Save Recall Recall D	efault		About	2 🔿 🛞
Select		Low	High		Measureme	ent Li Low	<u>mits</u> High			Low	High		Run Single
	Clock Frequency	0	52	MHz 🔻	Clock Period Time:	1	5	nS 🔫	Input Setup Time	3	NA	nS 🔻	No Acq
Configure	Clock Rise Time	NA	3	nS 🔻	Output Hold Time:	2.5	NA	nS 🔻	Input Hold Time	3	NA	nS 👻	Run / Stop
	Clock Fall Time	NA	3	ns 👻	Dutput Data Rise Time:	NA	3	nS 🗸	Input Data Rise Time	NA	3	nS 👻	Run Options
Limit Setup	Clock High Time	6.5	NA	nS 👻	Output Data Fall Time:	NA	3	nS 🗸	Input Data Fall Time	NA	3	nS 👻	Analyse
Triana	Clock Low Time	6.5	NA	nS 👻	Output Delay Time:	8	20	nS 🗸		Door		Hedata	Export
ingger	Clock Duty Cycle	: NA	NA	% •					Setup	Defai	ult	Limits	Export
													Report
Version :2.9.3	Select clock and Data	a wavef	orms and	Click Sing	le Run or Sequence		Oscill	oscope_Dig	ital : Clock D0, CMD_Digital	D1, Da	ta_D0 D2	2	

- Limits can be set to default limits as specified in standard document
- User has flexibility to edit the limits and apply
- Save and Recall the limits

PGY-MMC-SD Electrical Validation and Protocol Decode Software-Protocol Aware Trigger

🔯 PGY-MMC-S	w PGY-MMC-SD Electrical Validation and Protocol Decode Software Save Recall Recall Default About							
Select	Trigger Event Clk Source: CH1 -	Trigger Source: CH3 -	Data Rate: 26 Mbps	Clk Level: 0.0 V	Data Level: ^{0.0} V	Set Trigger	Run Single No Acq	
Configure Limit Setup	Trigger On Command 👻	Index Con CMD0 - GO	tent _PRE_IDLE_STATE	•			Run / Stop Run Options	
Trigger		[47:44] [4 Edit 0100 _	43:40] [39:36] [35:32] [3 0000 _ 1111 _ 0000 _	1:28] [27:24] [23:2 1111 _ 0000 _ 111	20] [19:16] [15:12] [11:8] 11 _ 0000 _ 1111 _ 0000	[7:4] [3:0]	Export	
Version :2.6.4	Trigger Setup done			Waveform Files Selec	sted			

- eMMC Protocol Aware trigger capabilities
- Trigger on command or Response
- Flexibility to edit the trigger conditions
- Prerequisite is Serial pattern setup feature in oscilloscope

PGY-MMC-SD Electrical Validation and Protocol Decode Software-Analyze

	Measurement	Minimum	Mean	Maximum	Low Limit	High	Result *		Run
Select	🕗 Clock Rise Time	1.3305nS	1.8930nS	3.5875nS	NA	3.0000nS	Pass*	Detail View	Single
	🕗 Clock Fall Time	1.3063nS	1.9395nS	3.9166nS	NA	3.0000nS	Pass*		No Ac
onfiguro	🕜 Clock High Time	19.742nS	473.92nS	1.2842µS	6.5000nS	NA	Pass	View	Dun / C
Jingule	Clock Low Time	18.460nS	473.25nS	1.2838µS	6.5000nS	NA	Pass		Run Onti
	Clock Duty Cycle	49.533 %	50.523 %	53.489 %	NA	NA	NA	View	Kun opt
nit Setup	🕺 Clock Cycle Time	39.285nS	947.16nS	2.5652µS	1.0000nS	5.0000nS	Fail	Destand	Analyse
	🕜 Input Setup Time	15.873nS	484.16nS	1.2801µS	3.0000nS	NA	Pass	Test	
rigger	🖉 Input Setup Time	14.678nS	16.205nS	17.785nS	3.0000nS	NA	Pass	Aca Count	Export
	🕜 Input Hold Time(21.310nS	557.00nS	1.2875µS	3.0000nS	NA	Pass	1	

- Displays measurement limits and annotation to indicate pass or fail
- Provides min, max and mean measurement values
- Measurements are made using the complete acquisition data, min, mean and max value for the complete acquired data (max Record length support is 125MB)
- List the measurements for Clock, command, response, data write and data read to cover all the electrical tests as per eMMC specs
- Green annotation indicates test pass, orange color indicates, test may be failed for either min or max value and Red color indicates test is fail

Protocol test

Protocol_Test		×
Description	Result	
Packet Integrity	Pass	
Integrity Between Command and Response	Pass	
Reserve Command Presence	No	
Error Flag Set in Response	Fail	
CRC Error Check For Command	Pass	
CRC Error Check For Response	Pass	

- PGY-MMC analyses whether Protocol packets complies to specs
 - Packet Integrity checks for number of bits per packet in command or response.
 - Integrity between command and response checks for whether each command is receiving the expected response as per spec
 - Reserve command presence- Checks for any reserved command by host
 - Error Flags set Response- Indicates some error flags are set in response
 - CRC Checks in Command verifies transmitted CRC value with computed CRC by taking row packet data
 - CRC Checks for Response- verifies transmitted CRC value with computed CRC by taking row packet data
- Enables Protocol checks without going through all the data

Timing View

Description	Symbol	Primary Coverage	Minimum	Maximum	Unit	Minimum Measured	Maximum Measured	Resu
Data Read Timing	NAC	System		10*(TAAC*FOP+10	Clock Cycles	12	2260	Pass
Last Host Command to Next Host Command Timing	NCC	System	8	NA	Clock Cycles	NA	NA	NA
Boot Operation Command - Command Timing	NCD	System	56	NA	Clock Cycles	92	92	Pass
Boot Operation Command - Data Timing	NCP	System .	74	NA	Clock Cycles	2959	2959	Pass
Assign a Device Relative Address Timing	NCR	System	2	64	Clock Cycles	5	9	Pass
Device Identification and Device Operation Condit	NID	System	5	5	Clock Cycles	5	5	Pass
Last Device Response to Next Host Command Ti	NRC	System	8	NA	Clock Cycles	131	14003	Pass
R1b Response Timing	NST	System	2	2	Clock Cycles	2	2	Pass
Data Write Timing	NWR	System	2	NA	Clock Cycles	2863	18251	Pass
Boot Operaion tBA Timing	tBA	System	NA	50	mS	21.096	21.096	Pass

- PGY-MMC-SD software checks for all timing measurements between command, Response and data
- Checks for number of cycles between command-Response, Response-data and so forth
- Gives Pass/fail results

Protocol Decode using Digital Channels (MSO)

Recommended use cases

Case#1

- Connect Digital Channel to eMMC CLK, CMD and Data lines
- Connect CLK and CMD to Analog Channel
- Set eMMC Protocol Trigger to trigger on read and write operation
- Run the application

Case #2

- Connect Digital Channel to eMMC CLK, CMD and Data lines
- Set Data line falling edge as trigger condition
- Run the application
- Above cases allows you focus on decoding the datelines

Protocol Decode using Digital Channels

- Protocol View list decoded data
- Each row will have CMD, response and number data bytes
- Selected row details including all data bytes is displayed on right bottom
- Only oscilloscope based solution

PGY-MMC-SD Electrical Validation and Protocol Decode Software- Detail View Provides powerful debug environment co-relating physical layer waveform, protocol decode data and electrical

measurements

- If any protocol packet is failed in Protocol test is highlighted in red color
- Selected protocol decode message waveform is plotted in selected waveform window
- Reference cursor will be placed in acquired waveform window to indicate the position of the waveform in Acquired data
- Failed Electrical measurements selected in red color
- Cursor measurements for manual analysis
- Markers to indicate reference level for measurement
- Take snapshot of selected waveform image from detail view for report
- Decode tables list the Commands and responses from card
- Utility features for zooming the waveform, pan, cursors, reference set markers and image capture for report

83-Jun-14

PGY-MMC-SD Electrical Validation and Protocol Decode Software-Export

🔯 PGY-MMC-SI	D Electrical Validation and Protocol Decode So	ftware <u>Save</u> <u>Recall Recall Default</u>	About	8 🔿 🖇
Select Configure Limit Setup	Protocol Image: state of the state of t	Electrical .csv (Comma Separated Values) .txt (Text File) SY-MMC-SD\AppDat Browse	Export	Run Single No Acq Run / Stop Run Options Analyse Export
			Į.	Report
Version :2.1.0		Dscilloscope: clock ch1, DATA ch2,CMD ch3 bits/data 8 bit order msb Mark		

- Export of Electrical measurements and Protocol Decode data to CSV and TXT file format
- Browser allows to place the data in desired location

PGY-MMC-SD Electrical Validation and Protocol Decode Software-Report

🔯 Prodigy Tech	novations - PGY-I2C Electrical Validation	n and Protocol Decode Software	About 👔 😑 😣
	Content	Report Header	Run
Select	Configuration	Organisation Name: Prodigy Technovations	Generate Single
	Electrical Parameters	Project Name: <protocol analyser=""> Test Name: <test name=""></test></protocol>	No Acq
Configure	Saved Images Review	Description: DESCRIPTION	Run
	Protocol Listing	Remarks: REMARKS	Run Options
Limit Setup	Select Range	Prepared by: <designer name=""></designer>	Analyze
	OMessage Range 💽 All	Report Location : C:\Prodigy_Technovations\PGY-I2C\AppData\Reports	
	Start Index End Index	Use My Company Logo : Prodigy	Export
	0	TECHNOVATIONS J-	Report
Version 1.8.0		Wfm File Clock: Ref Level 50, Hys 5 Data: Ref Level 50, Hys 5 A	ddress 7/10 bit

- Supports customizable pdf format report generation
- Report can include electrical measurements, protocol decode, oscilloscope images, detail view images, and reference level setup
- Review of saved images allows the user to add title to image, description and delete the images

Market Needs

- Electrical validation of eMMC as per 4.41, 4.51 and 5.0 Specification (Supported; 5.0 spec by June 2014)
- Protocol Decode of command line (Supported)
- Protocol Analysis (tests) (Supported)
- Protocol Timing measurements (Supported)
- Hardware based realtime Protocol Aware Trigger (supported)
- Protocol Decode for long duration (Supported)
- Protocol decode of command and Data bus (Supported)

Competitive info

- Agilent Provide separate Electrical validation software for eMMC and SD
- Tektronix & Provides single integrated eMMC/SD/SDIO Electrical validation and protocol Analysis Software
- Agilent does not provide Protocol Analysis Software
- LeCroy has no solution in space

Details of UPIU

UPIU Data Structure	Description
NOD Out	The NOP Out transaction acts as a ping from an initiator to a target. It can be used to check for a connection path to a device and
	LUN.
NOP In	The NOP In transaction is a target response to an initiator when responding to a NOP In request.
Command	The Command transaction originates in the Initiator (host) and is sent to a logical unit within a Target device. A Command UPIU will contain a Command Descriptor Block as the command and the command parameters. When using the phase collapse feature the UPIU will also contain a data segment that would have been sent during the DATA OUT phase. This represents the COMMAND phase of the command.
Response	The Response transaction originates in the Target and is sent back to the Initiator (host). A Response UPIU will contain a command specific operation status and other response information. When using the phase collapse feature, the UPIU will also contain a data segment that would have been sent during the DATA IN phase. This represents the STATUS phase of the command.
Data Out	The Data Out transaction originates in the Initiator (host) and is used to send data from the Initiator to the Target (device). This represents the DATA OUT phase of a command.
Data In	The Data In transaction originates in the Target (device) and is used to send data from the Target to the Initiator (host). This represents the DATA IN phase of a command.
Task Management Request	This transaction type carries SCSI Architecture Model (SAM) task management function requests originating at the Initiator and terminating at the Target. The standard functions are defined by the SAM-5 specification. Addition functions might be defined by UFS.
Task Management Response	This transaction type carries SCSI Architecture Model (SAM) task management function responses originating in the Target and terminating at the Initiator.
Ready To Transfer	The Target device will send a Ready To Transfer transaction when it is ready to receive the next Data Out UPIU and has sufficient buffer space to receive the data. The Target can send multiple Ready To Transfer UPIU if it has buffer space to receive multiple Data Out UPIU packets. The maximum data buffer size is negotiated between the Initiator and Target during enumeration and configuration. The Ready To Transfer UPIU contains a DMA context and can be used to setup and trigger a DMA action within a best controller.
Query Request	This transaction originates in the Initiator and is used to request descriptor data from the Target. This transaction is defined outside of the Command and Task Management functions and is defined exclusively by UFS.
Query Response	This transaction originates in the Target and provides requested descriptor information to the Initiator in response of the Query Request transaction. This transaction is defined outside of the Command and Task Management functions and is defined exclusively by UES
9- un-	Tektronix*

Thank you!

