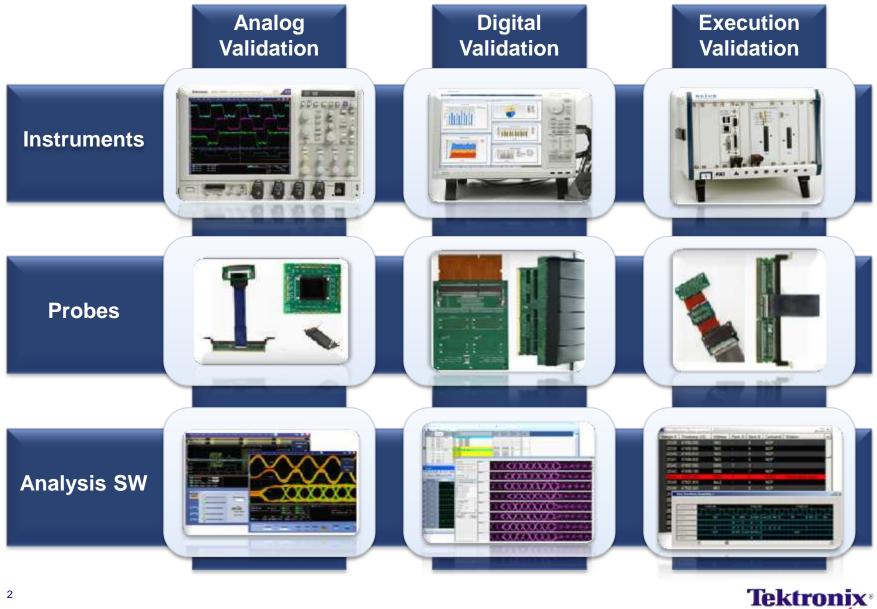

Memory Interface Verification and Debug


Customer Presentation Version 1.0

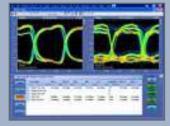
Memory Validation Continuum

Memory Interface Analog Validation

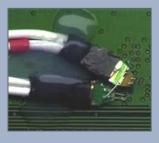
Measure the analog signal characteristics; trtf, Vmin/max, jitter, eye size, crossover, strobe/clock alignment, etc.

DDR Analog Verification and Debug

Signal Acquisition


- Automatically trigger and capture Memory Interface signals
 - Identify and trigger directly on DQ, DQS in real-time to isolate Reads/Writes
 - Automatically set voltage levels and data rates
- Capture long time duration at high resolution
 - Direct connection to DPOJET for signal analysis

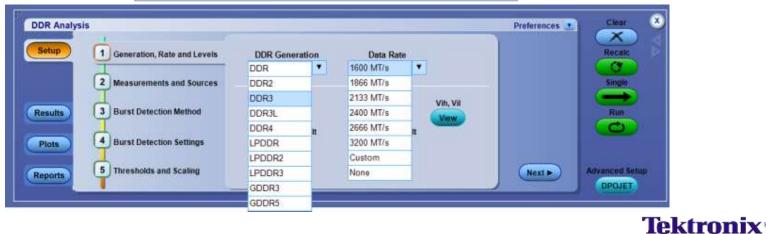
Signal Access - Probing


- Easy but reliable physical connectivity
 - access to various measurement points on DRAM device
- Maximum signal integrity
 - sufficient performance for signal speeds

Signal Analysis

- DDRA Automated setup, read/write burst detection, JEDEC pass/fail meas.
- DPOJET The most powerful Jitter, Eye and Timing analysis tool
 - Time, Amplitude, Histogram, measurements
 - Advanced Jitter, Eye diagram measurements and Pass/Fail testing
 - Many display and plotting options
 - Report generator

Tektron



Supported Standards

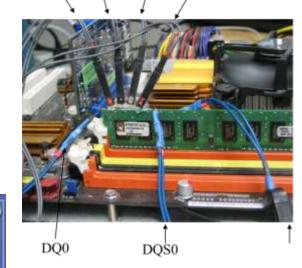
- Comprehensive coverage of multiple JEDEC memory standards in a single package
- Support for all the JEDEC defined speed grades in each standard as well custom settings
- JEDEC Standards specify measurements & methods

Memory Type	JEDEC Specification
DDR	JESD79E
DDR2	JESD79-2F
DDR3	JESD79- 3F
DDR3L	JESD79-3-1
DDR4	JESD79-4
LPDDR	JESD209A
LPDDR2	JESD209-2E
LPDDR3	JESD209-3
GDDR5	JESD212

Test Setup and Configuration

- All the tests are logically grouped based on the input source requirement
 - READ
 - WRITE
 - CLOCK
 - DQS
 - ADDR/CMD
- Quickly set up the test configuration by selecting a complete group or individual tests for targeted analysis.
- Flexible input source requirement, inputs are not hardwired to a particular Oscilloscope channel.

Setup	Generation, Rate and Levels	Measurement Type	_	10137	asurem	7.7.7.4.		Recalc
		Write Bursts	2		Sources	10000		CO
	2 Measurements and Sources	🖃 🗹 Write Bursts Measurements	^	DQS	Ch 1	•		Single
	weasurements and sources	🚽 🗸 Data Eye Height		DQ	Ch 2	Y		Single
	3 Burst Detection Method	🗸 🗸 Data Eye Width		СК	Ch3	T		
Results	Burst Detection Method	🛨 🔽 Differential DQS			1			Run
	<u>_</u>	🛨 🔽 Single Ended DQS					\square	
Plots	4 Burst Detection Settings	🛨 🔽 Slew Rate DQ					Prev	Show Plots
	5 Thresholds and Scaling		~					


Burst Detection

- Read / Write bursts are automatically detected for analysis purposes
- Several different techniques are used for Read/Write Burst Separation
 - DQ/DQS phase alignment: DQ and DQS have different phase relationship in Read and Write bursts
 - CS, Latency + DQ/DQS Phase Alignment: CS is used to quality the occurrence of a burst, followed by DQ/DS phase relationship to distinguish between Read/Write
 - Logic State + Burst latency: The command bus probed using the digital channels on the MSO is used to identify Read/Write commands on the command bus are quality and distinguish Read and Write bursts
- Options are provided to adjust the levels to improve burst detection in systems with lower signal integrity

DDR Analys		2	Preferences 👱	X
Setup	Generation, Rate and Levels	Burst Detection Method		Recat
	3	DG/DQS Phase Alignment Chip Select, Latency + DQ/DQS Phase Alignment		0
	Measurements and Sources	Cogic State + Burst Latency		Single
Results	3 Burst Detection Method	NUMBER OF THE PROPERTY		Run
	I	• Das	1000	0
Plots	4 Burst Detection Settings		Prev	Show Plots
-		Burst auto identified based on DQS/DQ phase relationship		stille
Reports	5 Thresholds and Scaling	Measurement results may vary as the Ref levels are changed.	Next	Advanced Setu

RAS# WE# CAS# CS#

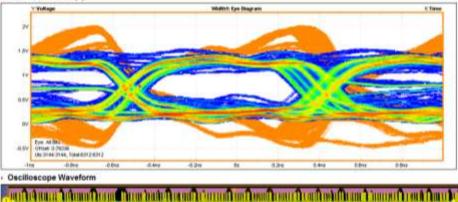
Burst Detection

- Easily Identify, Mark & Measure all Read / Write bursts
 - Scroll through marked reads / writes across the entire waveform record
 - Measurements performed on ALL Reads/writes within an acquisition

Reports

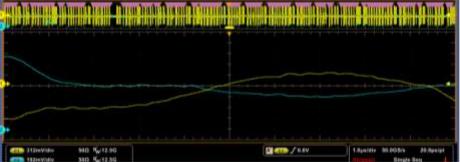
- Analysis results are compiled into an HTML report enabling easy report management and distribution.
- Report includes
 - Measurement results
 - Pass/Fail test results based on specification values
 - Summary and detail plots
 - Oscilloscope screenshots
 - Measurement and Instrument configuration summary
- Report contents are user definable content
- Provision to append more results later

Description	Mean .	Std Dev	Max.	Miter	p.p	Populatio
Data Eye Height, DQ, DQS	485-04mV	\$3.316mV	522 Nimit	447.34mV	15-400mW	21
Current Acquisition	522.74miV	0.0000V	522 74ml/	522.74mV	0.0000V	1
The second se	The second se	and the second second	The second second	the second se	A CONTRACTOR OF THE OWNER OF THE	10


772 50pe 0.0000s

Pass/Fail Summary There were no pass/fail limits defined for the selected measurement(s)

Piot Images



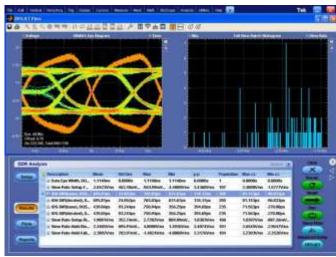
Measurement Results

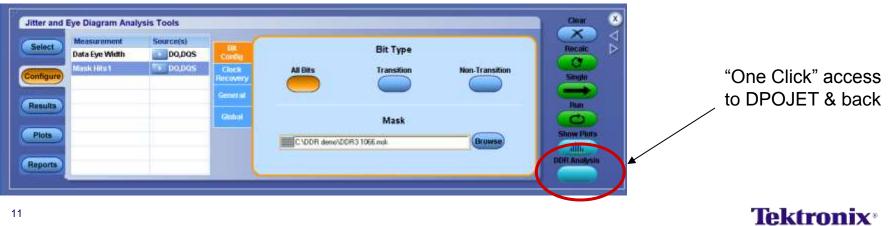
Max.cc Min.cc
 0.0000V 0.0000V
 0.0000V

Tektronix[®]

Setup	Overall Test Result:	🕴 Fail				View	Summary	Expand	Recalc
	Description	Pass/Fail	Mean	Std Dev	Max	Min	р-р	Population	C
	🛨 Data Eye Width, DQ		277.69ps	0.0000s	277.69ps	277.69ps	0.0000s	1	
	🛨 tDH-Diff(base), DQS	. 🥝 Pass	517.93ps	78.008ps	908.52ps	214.20ps	694.32ps	856	Single
	🛨 tDQSH, DQS	Pass	1.2500ns	6.7707ps	1.2692ns	1.2249ns	44.286ps	898	
esults	🛨 tDQSL, DQS	Pass	1.2479ns	6.6527ps	1.2663ns	1.2240ns	42.297ps	783	Run
	IDS-Diff(base), DQS	. 🔞 Fail	581.49ps	132.47ps	929.69ps	6.880309	922.83ps	951	
Plots	High Limit								Show Plots
	Low Limit	🕴 Fail				75.000ps			
eports	Current Acquisition		581.49ps	132.47ps	929.69ps 🕄	6.8603ps 🔍	922.83ps	951	Advanced Setup

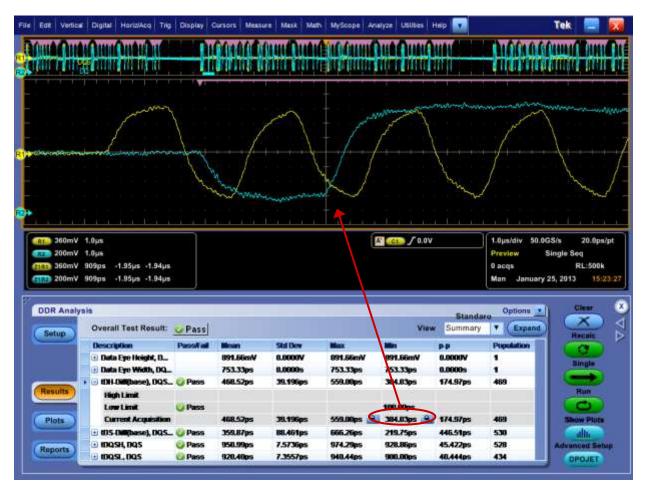
Beyond DDRA


- Tektronix Oscilloscopes come with several tools that aid in debug of Memory Interfaces
 - DPOJET advanced Jitter analysis toolkit
 - PinPoint Triggering
 - Visual Trigger
 - Mask Testing
 - Advanced Search and Mark



Signal Analysis & Debug DDRA + DPOJET

- DDRA is not a closed tool seamlessly links directly to DPOJET for measurement analysis
- Opportunity to change or fine-tune settings, add new measurements as needed

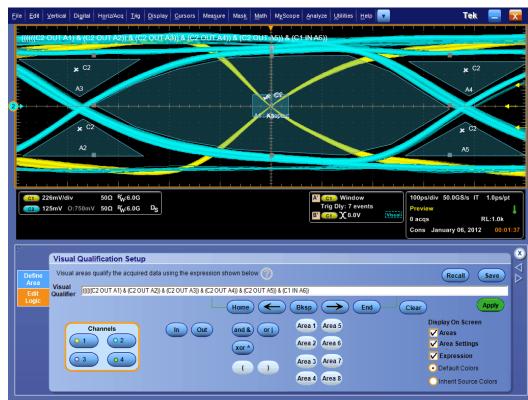


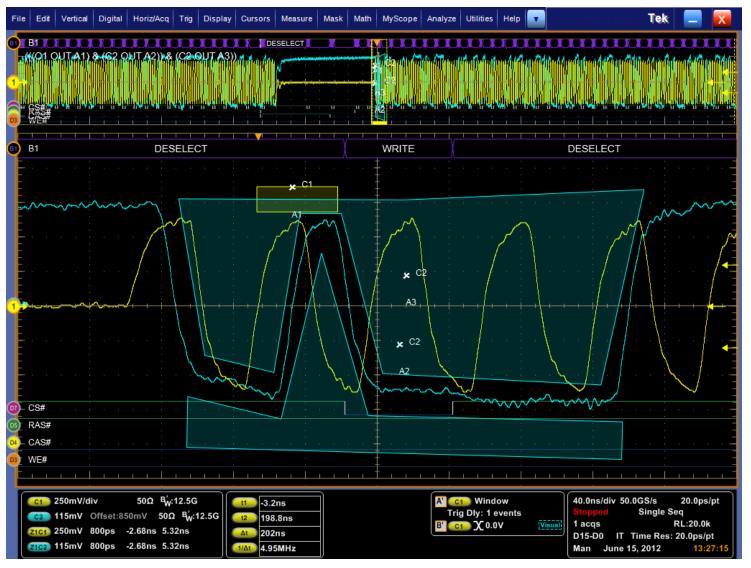
- DPOJET powerful measurement engine for DDRA
- All settings are explicit you can see them and change them.

DPOJET Debug Tools

- "Find Worst Case Events" feature
 - Zoom to waveform from Min / Max for each measurement

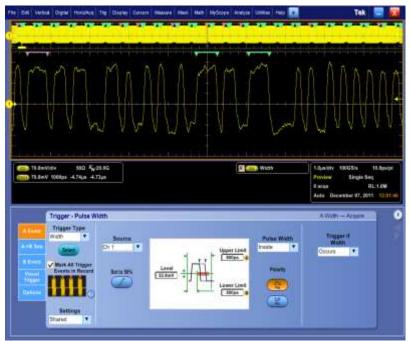
Pinpoint Triggering

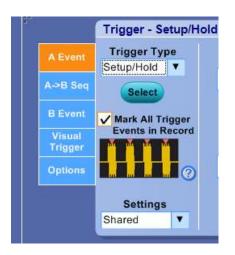

- Fastest way to solve sophisticated Memory signaling issues
 - Superior real-time insight into the complex signaling
 - DPX (FastAcq) and Pinpoint Triggering gives you "the power to see what others can't"
 - FastAcq shows any disparities on signals, like infrequent glitch's



Visual Trigger

- 8 customizable zones to quality HW trigger setup
- Areas may be resized or moved after creation
- Four standard shapes supported (rectangle, triangle, hexagon, trapezoid)
- Custom shapes may be built from templates up to 48 verticies
- Areas are "keep in" or "keep out" and can be applied to either trigA or trigB.
- Can be used to
 - Separate Read / Write Bursts
 - Separate ranks
 - Look for pattern dependencies
 - Enable persistence eye diagrams


Visual Trigger Used For DQ Pattern Detection 010000X Pattern



Tektronix*

Advanced Search and Mark

- Scans entire acquisition for multiple occurrences of an event and marks each occurrence
- Extends across live data, stored as well as math waveforms.
- Integrated with Trigger function and extends it
 - Marks all events in the current acquisition that match the trigger setup
- Integrated with DDRA
 - DDRA uses ASM to mark all the events of interest and the marked events are used as gates for analysis by DDRA

Advanced Search and Mark

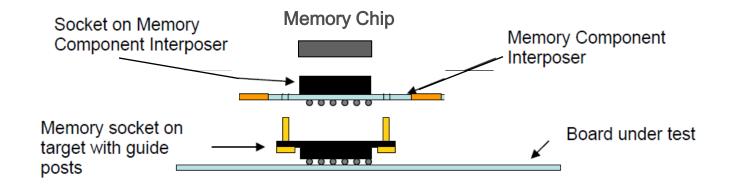
- Tabular Results and Navigation
 - Events by Type read/write or other events _
 - Time stamps, delta-times between events —
 - Intuitive navigation Zoom on the burst of interest _
- 'Stop on Found' works as a pseudo-trigger mode

Select onfigure	1 2	DD	Type R Read R Write		12	Count 130 157							
8	Re	sult	s: Ma	rk Table									
Select	1	-	1.1.1	T	0	1		Ti	me Del	ta		Provide a	
Select			Index	Туре	Src	Location	sec	ms	us	ns	ps	Description	
			1	DDR Write	C1	-8.579us						DDR3 - WRITE - 1.066G	
Configure		Z2	2	DDR Write	C1	-8.496us	000	000	000		480	DDR3 - WRITE - 1.066G	
		-	3	DDR Write	C1	-8.414us	000	000	000	082	520	DDR3 - WRITE - 1.066G	
Results		Z1	4	DDR Write	C1	-8.331us	000	000	000	082	500	DDR3 - WRITE - 1.066G	
			5	DDR Write	C1	-8.29us	000	000	000	041	240	DDR3 - WRITE - 1.066G	
View			6	DDR Write	C1	-8.208us	000		the state of the s	082		DDR3 - WRITE - 1.066G	
2040/04/2012			-			ΔZ1.Z2	000	000	000	164	000		
Mode			Tota	Marks: 2	87	ΔZ2,Z3 ΔZ1,Z3							
			Sear	ch Marks								All Marks	View
	6	Sav	ne) (s	ave All) Cle	ar	(Digits :	>>)			(<<	Digits	Export Clear	Count
		Contra Co				-				-	and and		Count

Memory Probing

- Computer Systems use standardized DIMM's for which several probing solutions are available
- Memory in Embedded Designs is usually directly mounted on the PCB.
- Memory Components use BGA or PoP Packages
 - Reduces the parasitics, enabling performance at higher speeds
 - Mandate from JEDEC
- Probing a BGA or PoP package is Difficult
 - Unable to probe at the Balls of the Device
 - Probing at a connector, trace, or a via is not the same as probing at the device
 - Not a true representation of the signal

Tektronix

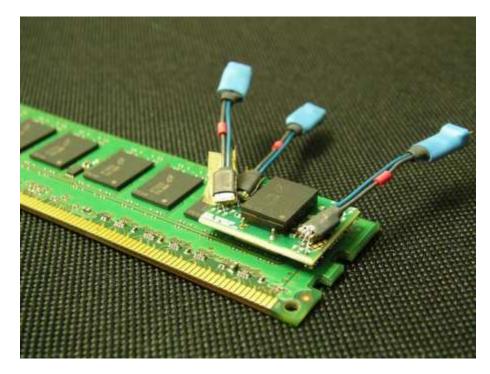

*Courtesy Micron Technologies

Memory Component Interposers

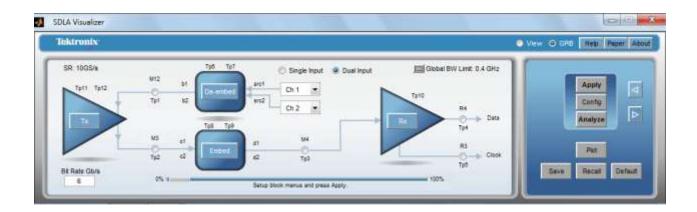
- Provide easy access to signals of Interest
- Controller Impedance path with embedded resistor for good signal Integrity
- De-embed filters to remove effects of interposer tap trace
- SPICE model available upon request for simulation and analysis

	Memory Standard	Supported Form Factors	Interposer Types	·
	DDR2	- BGA	Socketed InterposerDirect Attach Interposer	
	DDR3	- BGA	 Socketed Interposer Direct Attach Interposer MSO DIMM Interposer Instrumented DIMM 	
	DDR4	- BGA	 Socketed Interposer Direct Attach Perimeter Interposer MSO DIMM Interposer Instrumented DIMM 	Natur Technelegye DDR4WCI-BD-7885C- Cepyr Bh1 (c) 7011 Nade In 2 5 4
	LPDDR2	- BGA - PoP	Socketed InterposerPoP Interposer	
	LPDDR3	- BGA - PoP	Socketed InterposerPoP Interposer	
19	GDDR5	- BGA	Socketed InterposerDirect Attach Interposer	Tektro

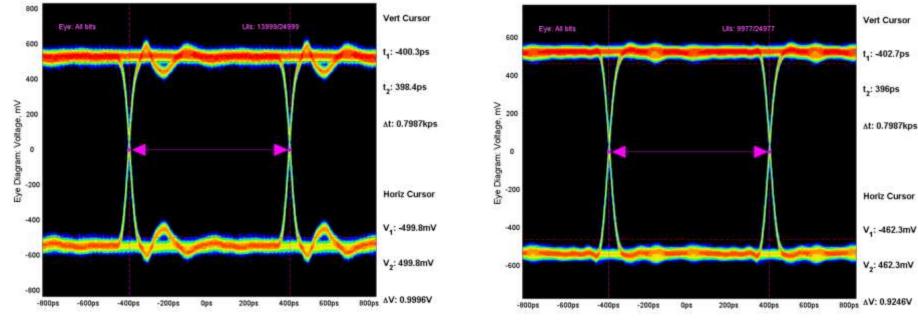
Installation Process



BGA Chip Interposer for Oscilloscopes

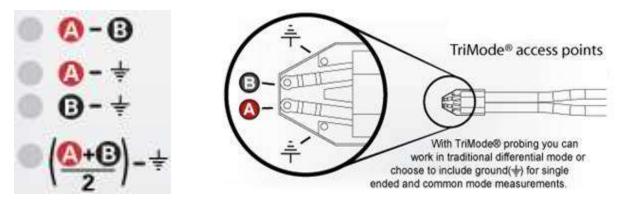


- Installation Similar to LA Interposer
- Interposers with and without sockets are available
- Recommended probes: P7500 Series
 - P7504, P7506, P7508, P7513A
 - New P7500 solder tip adapter for Nexus interposer: order part #020-3022-00


De-embedding

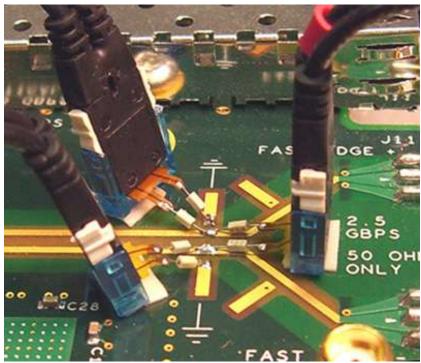
- In order to remove the effects on the Interposer, probe tips and probes de-embedding must be considered.
- De-embedding filters will available for the interposers upon request.
 These de-embedding filters are developed assuming nominal values
- For more accurate characterization for a particular setup SDLA visualizer for Real time scopes can be used

BGA Chip Interposer for Oscilloscopes – Signal Fidelity

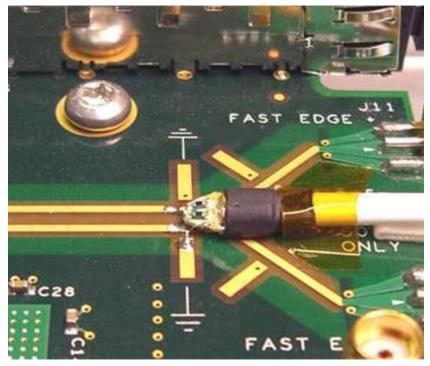

DDR Eye - unfiltered

DDR Eye – with filter

Tektronix*


TriMode Probing

- TriMode, with a single probe-DUT connection, allows:
 - Traditional differential measurements: V+ to V-
 - Independent single ended measurements on either input
 - V+ with respect to ground
 - V- with respect to ground
 - Direct common mode measurements: ((V+) + (V-))/2 with respect to ground
- Many standards require both differential and single-ended voltage limit measurements. Requires two separate probes – Until Now!


Before and After

Before TriMode Probing

Probe for Differential
 Probes for SE and Common Mode
 or

1 Probe Soldered and Re-soldered 3 times 2 Probes for Common Mode

After TriMode Probing

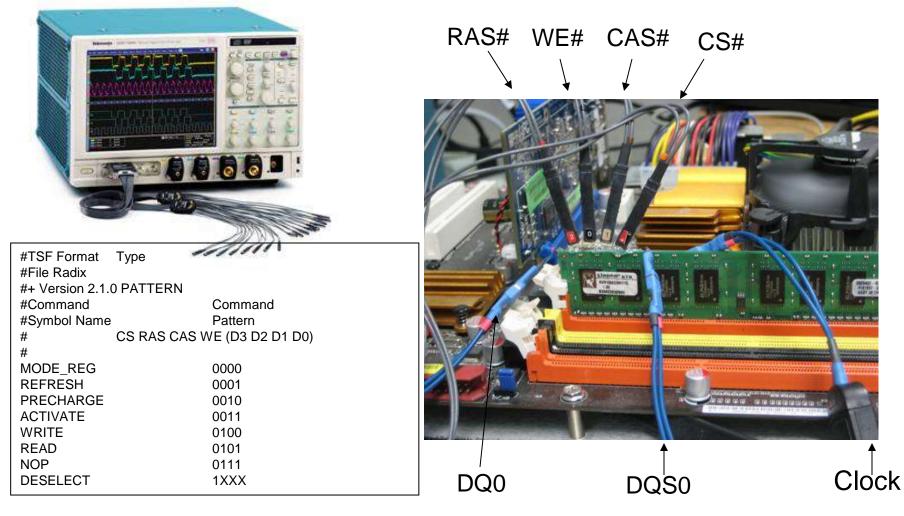
1 Probe and 1 setup for Differential, SE and Common Mode

Oscilloscope Bandwidth Requirement

Memory Technology	DDR	DDR2	DDR2	DDR3	DDR3	DDR3L	LPDDR3	DDR4
Speed	all rates	to 400MT/s	to 800MT/s	to 1600MT/s	to 2400MT/s	to 1600MT/s	to 1600MT/s	to 3200MT/s
Max slew rate	5	5	5	10	12	12	8	18
Typical V swing	1.8	1.25	1.25	1	1	0.9	0.6	0.8
20-80 risetime (ps)	216	150	150	60	50	45	45	27
Equivalent Edge BW	1.9	2.7	2.7	6.7	8.0	8.9	8.9	15.0
Recommended Scope BW (Max Performance)	2.5	3.5	4.0	12.5	12.5	12.5	12.5	16
Recommended Scope BW (Typ Performance)	2.5	2.5	3.5	8.0	12.5	12.5	12.5	12.5

Highest Accuracy on Faster Slew rates

Slew Rates are about 80% of the Max Spec


DDR3L, DDR4 and LPDDR3 is supported only on DSA/MSO/DPO70000C/D models only

Digital + Analog Probing for MSO70K

16 Digital Channels in addition to 4 Analog Channels


Tektronix[®]

DDR3系统模拟、数字信号验证续

低速串行与高速串行联合调试

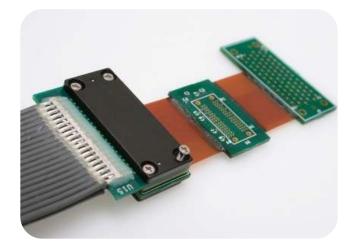
- 高频VCO、Clock、Serdes通常通过低速串行总线控制其参数和行为
- 常见低速串行总线为I2C、SPI以及用户自定义的总线
- 通过对特定寄存器的操作,完成高速芯片控制

同步时钟采样系统调试

同步时钟采样系统调试

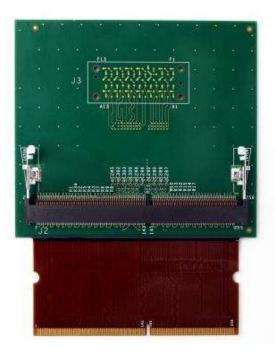
- 16 Digital channel观察系统行为,发现问题
- iCapture遍历数字通道,进行模拟、数字联合调试

Memory Interface Digital Validation


Measure the digital logic state and cycle based timing characteristics for diagnostic and troubleshooting purposes

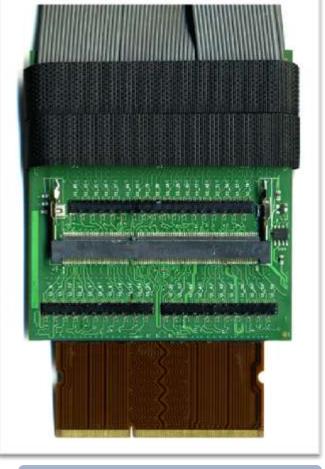
DDR4 Memory Component Interposers

- MCI's are used for probing signals from individual Memory Components
- Comes with a Custom Socket that needs to be soldered to Target system
- Quickly swap TLA & oscilloscope interposers on the same target. Quickly move interposers to different target.
- No special footprints or special routing requirements
- Memory Component Interposer Types
 - Logic Analyzer and Oscilloscope
 - Direct Attach or Socketed interposers
 - x4/x8 and x16 Memory Component types



DDR4 ACC Interposers

- Protocol / Execution Validation
 - DIMM and SODIMM Interposers
 - Targeted for protocol compliance analysis
 - Automated Setup
 - Use with Nexus Compliance Analysis S/W
 - Compatible with P6960HCD or NEX-PRB1XL



Introducing New DDR3/4 High Speed Interposer

Next Generation DDR3/4 Probing Technology

Gain Unprecedented Visibility Into Your DDR3/4 Signal Activity

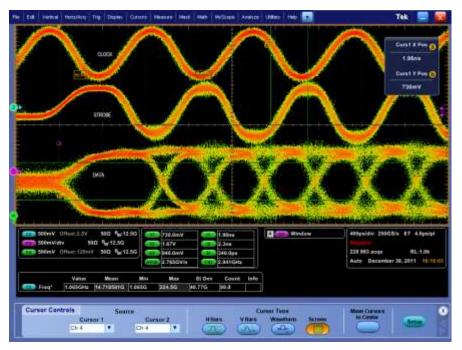
SODIMM Interposer

Collaborative design combining years of Logic Analyzer acquisition and DDR3 probing experience between Tektronix and Nexus Technology

New DDR3/4 High Speed Interposer

Next Generation DDR3/4 Probing Technology

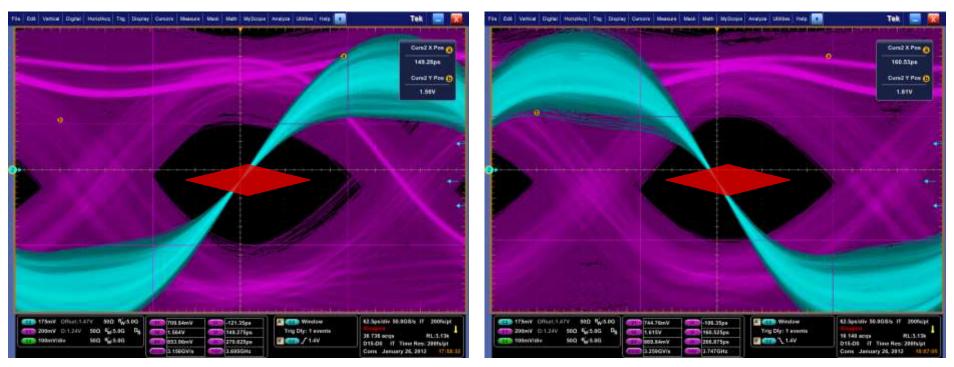
- Provides significant performance improvements to DDR3 probing
 - Integrates Tektronix ultra-high performance SiGe Hybrid ASIC technology
 - Compensation for platform trace loss on writes
- Improved interposer input impedance (5.2k to 0.73V)
 - Reduces load on target with minimal effect on bus
 - Provides an accurate representation of the signal on the target
- Enables probing DDR3/4 speeds at 2400MT/s and beyond
- Enables probing lower voltage signals on LVDDR3/4
- Interposers compatible with UDIMM, RDIMM, LRDIMM



Scope Screenshots at DDR3 2133MT/s – Writes

OLD Interposer

w Ext Vencel HonstAce Try Dealer	Genere Manne Made Made Mid	Scope Avviljan Ulliber Hele 💽	Tek 📰 🔯
			Cust X Pro 0 2 38ns Cust Y Pro 0 3 87Y
	STROPE		
		an an	ant det a
	diller Mys	Man Mark	Anna Meres M
100ev Dilactiliev HD %/12 100ev Dilactiliev HD %/12 100ev Dilactiliev HD %/12 100ev Dilactiliev HD %/12	50 2781V 22 50 110.5erv 55	Sileren Sileren 41 Gitz	499gstäv 209055 ST 4.8pstpt 105 pm/ 2 NB acqs RL.1.05 Acto January 05, 2312 15.35 32
Value Maan Freq" (1.057Getz (1.06827970)	1.0416 [11.836 [11.336]2	Count 110	
Cursor Controls Sour Cursor 1 Ch 4	Cursor 2 Dt 4	Vibes Wexten Scree	Mare Catalant to Compet


NEW Interposer

Write Data Eye - DDR3 2400MT/s

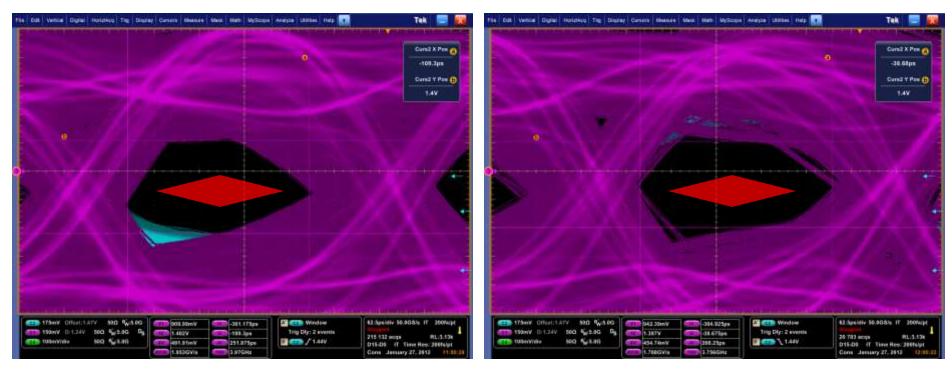
Write data eye, rising strobe edge, 853mV x 270ps Write data eye, falling strobe edge, 869mV x 266ps

Represents minimum TLA7BB4 eye size, 180ps x 200mV

NOTE: Signals probed via TLA7BB4 analog mux into a 70000C series real time scope.

Scope Screenshots at DDR3 2133MT/s - Reads

OLD Interposer

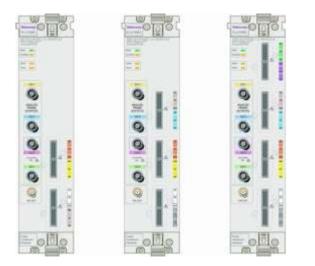

NEW Interposer

Tektronix[®]

Read Data Eye – DDR3 2400MT/s

Read data eye, rising strobe edge, 492mV x 252ps Read data eye, falling strobe edge, 454mV x 266ps

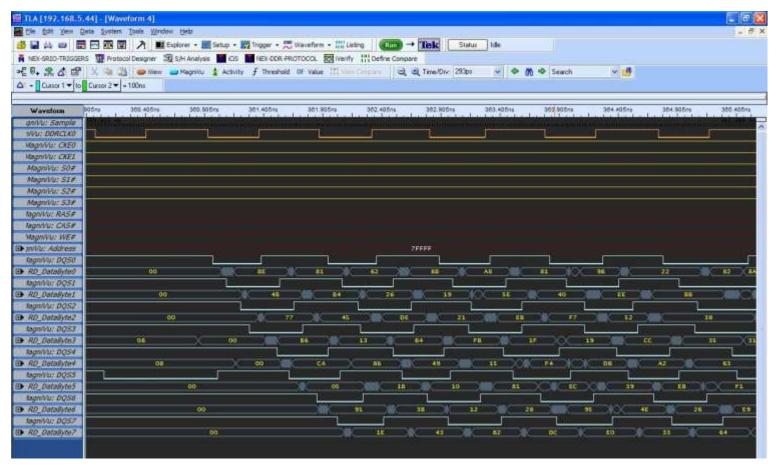
Represents minimum 7BB4 eye size, 180ps x 200mV


NOTE: Signals probed via TLA7BB4 analog mux into a 70000C series real time scope.

TLA7BBx Logic Analyzer Modules

Proven Technology for Analyzing DDR3 SDRAM

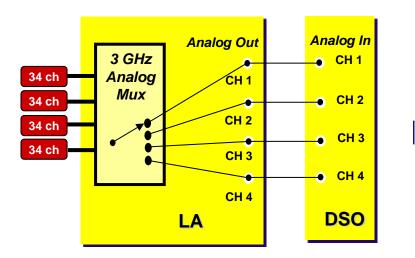
DIGITAL CHARACTERISTICS	TLA7BB2	TLA7BB3	TLA7BB4		
Digital Channels	68	102	136		
High Speed Timing (MagniVu)	50GS/s (20ps)				
Deep Memory Timing	Up to 6.4GS/s				
State Speed	Up to 1.4GHz/3.0Gbps				
Memory Depth	Standard	2Mb, Maxim	um 64Mb		
Probes	All P68xx and P69xx				
iCapture (Analog Mux)		3 GHz			

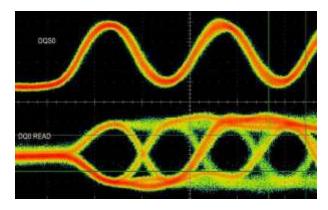


- Preserve investment in TLA7BBx modules
- Enable higher DDR3 speed support with new interposer

MagniVu 20ps (50 GS/s) High Speed timing

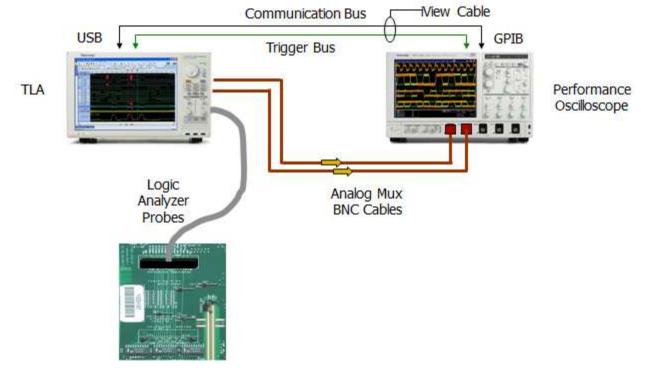
Industry Leading Sampling Resolution


- 50GHz timing analysis on every channel
- Acquired simultaneously and time-correlated with state acquisition data
- Enables acquisition and debug of S/H violations, glitches, and other timing violations
- Reveals fly-by command/address/control bus timing


Analog Mux, iCapture

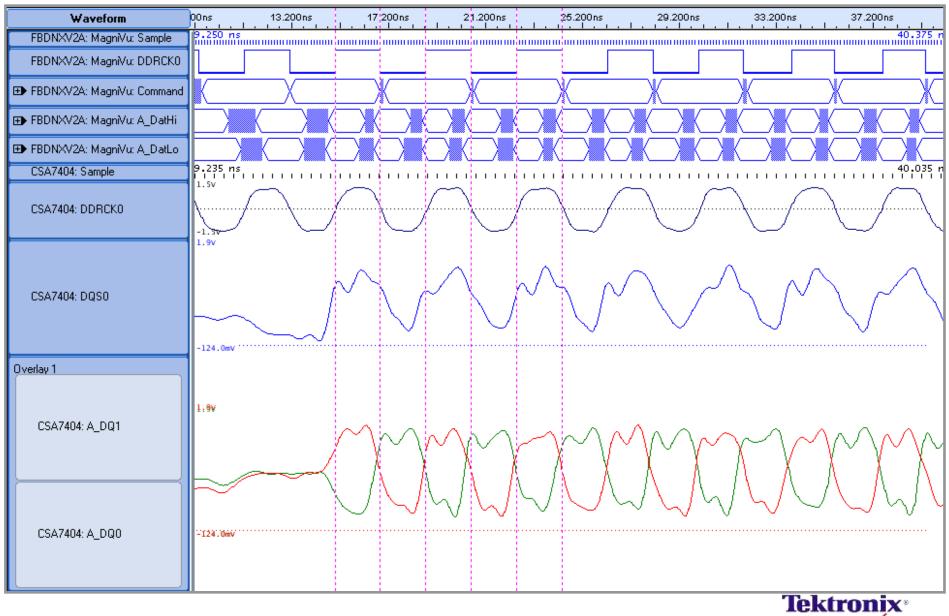
Enables Signal Integrity Troubleshooting

- Unrivaled capability of the TLA that provides single-point digital and analog probing
- No need to separately probe with a scope, as probing done through the interposer
- Walk through all the signals on your DDR bus in less than 15 minutes to review channel behavior and isolate any potential problems
- Quickly perform detailed analog characterization on signals of interest using a scope component interposer



iView

View Correlated Analog & Digital Characteristics in the Same Display


- Unique capability on the TLA that provides time correlated state acquisition, high-speed MagniVu timing acquisition, and analog scope capture results on the same screen.
- Capture events that occur in analog or digital domain through cross triggering
- Enables cross domain analysis by quickly capturing and isolating potential problems


iView

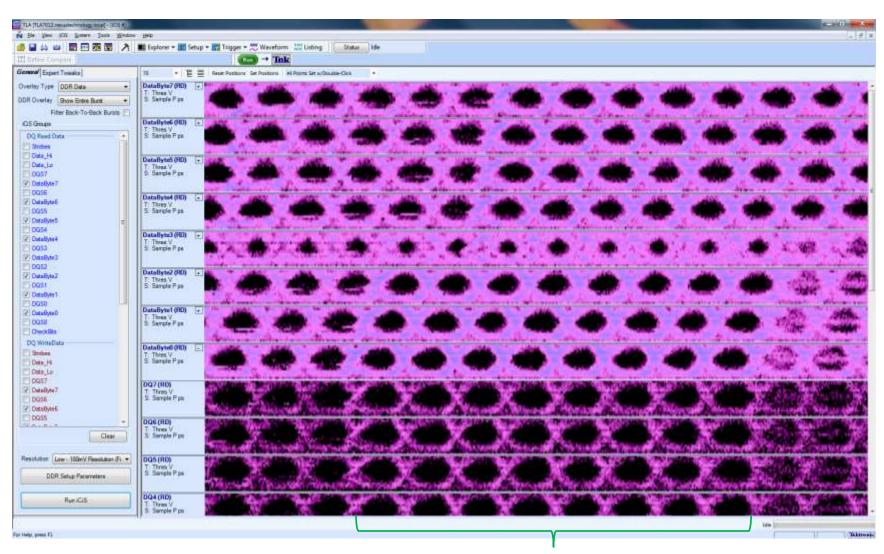
Correlated High-Speed MagniVu Acquisition & Scope Capture Data Example

TLA - Initial Setup

- New Fast & Easy Setup
 - Quick and easy connection
 - Fast software setup
 - No calibration needed for CMD/ADDR/CTRL
 - Automated and graphical DQ data calibration
 - Up and running acquiring ALL data in 15-30 minutes!
 - Identify problem channels at the same time!

- Load the TLA Software
- Load the Support Package
- Ready to Acquire CMD / ADDR / CTRL!

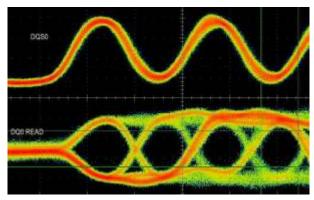
着 NEX-5980-TRIGGERS 3型 S7H Analysis	S Nedy III (http://www.sec.internationalistics) - Tada
	E Igatum 11.4/884-884
	Lance John Party Bank St.
	Duckie De 12 1 T
	Open Selup Hindow
	Open Trigger Window Default Rivelate
	Load Methon.
	Save Wedde Save Wedde As
	Load Support Package
	Beratta
	Properties
	Products Medica Candia
	Brunn

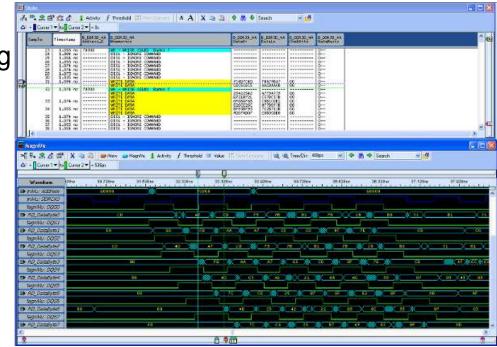

iCis Overview

- Goals of iCiS
 - Make LA memory tuning easier and quicker
 - Less dependency on platform specific DQ valid regions
 - Less dependency on DQS placement
 - Put more power in the users hands
 - Allow both Vth and sample point to be determined at same time
 - Quick check of signal integrity on the memory bus
 - Allow tuning of address and command signals
 - Simultaneous tuning of Read and Write sample points
 - Double mouse click method to set Vth and sample point for all signals
 - Single tuning tool leveraged for DDR3, DDR4, LPDDR2/3
- User control
 - DDR bus parameters
 - Voltage sweep step size
 - Voltage sweep range
 - Which signals to tune
 - Address bit(s)
 - Command bit(s)
 - DQ-byte lane or individual DQ
 - Read & Write, read only, write only

DDR3 Sweep

100mV Resolution, Full Burst Mode / 8 DQ Eyes, Reads


8 valid DQ eyes


Tektronix[®]

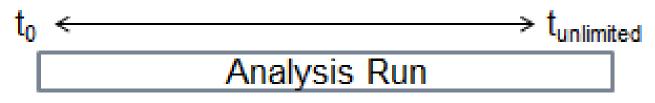
TLA Data Analysis

- State, MagniVu timing, & analog mux at your fingertips
- Compliance analysis tools
 - Fast setup
 - Comprehensive coverage and violation detection

	Min.(ps)	Max.(ps)	Average(ps)	Margin(%)	Spec. v
R2 RI R0	NA	NA	NA	NA	959,880
R2 RI RO		10,273,985	2,106,353		26,250
e re ri <mark>ro</mark>	7,441	878,808	123,227	3.3	7,200
5 R2 R1 R0					5,625
E RZ RI RO	NA	NA	NA	NA	70,200,000
8 R2 R1 R0	1,855	8,189,726	945,496	-85.9	13,125
e re ri <mark>ro</mark>	114,121	8,169,101	6,001,631	3.7	110,000
8 R2 R1 <mark>R0</mark>	42,969	2,839,180		14.6	
e re ri <mark>ro</mark>	42,969	2,839,180	267,945	-99.9	70,200,000
5 R2 R1 <mark>R0</mark>	18,652		20,254		13,125
I EZ RI <mark>RO</mark>	13,066	316,308	170,537	16.1	11,250
2 RI RO					20,625
T RO	37,383	326,054	162,946	10.8	33,750

Memory Interface Execution Validation

Measure the bus command and control timing sequences, and compare them to a specification or evaluate them as indicators of bus utilization or performance



Stat	Num.	Name	Occurences	Violations	Status	Min.(ps)	Max.(ps)	Average(ps)	Margin(%)	Spec. Value(ps)
?	22	SRE Separation from RD(A)	00	00	R7 R6 R5 R4 R3 R2 R1 R0	NA	NA	NA	NA	22,488
?	23	MRS Settle			RT RS RS RE R3 R2 R1 R0	NA	NA	NA	NA	22,500
?	24	MRS Burst			R7 R6 R5 R4 R3 R2 R1 R0					
?	25	sSREF Time			RT RE RE RE RE RE RE RO					7,500
٠	26	WR Burst			R7 R6 R5 R4 R3 R2 R1 R0					
@	27	RD to WR(A) Separation	13,386		RT RE RE RE RE RE RE RE			64,028	70310809855578300.0	13,118
?	28	PDX Slow Exit			R7 R6 R5 R4 R3 R2 R1 R0					
?	29	Rank DLL Reset to RD(A)	00	00	RT RE RE RE RE RE RE RO	NA	NA	NA	NA	959,700
۰.	30	WR to RD(A) Separation			R7 R6 R5 R4 R3 R2 R1 R0					
e	31	RD Burst	22,075		RT RE RE RE R3 R2 R1 R0			164,742	128102389400761000.0	7,200
?	32	sPD Time Min.			R7 R6 R5 R4 R3 R2 R1 R0					
?	33	sPD Time Max.			RT RE RE RE R3 R2 R1 R0					70,200,000
2	34	PRE(A) Bank Settle	26,733	29	R7 R6 R5 R4 R3 R2 R1 R0	00	00	947,528	70273310756988700.0	13,125
e	35	sREF Time	1,527	00	RT RE RE R4 R3 R2 <mark>R1 R0</mark>	00	00	5,297,689	8384883669867880.0	110,000
۰.	36	sACT Time Min.			R7 R6 R5 R4 R3 R2 R1 R0					
@	37	sACT Time Max.	19,499		RT RE RE RE R3 R2 <u>R1 R0</u>			265,733	13138706605106.2	70,200,000
۰.	38	ACT to RD(A)/WR(A)			R7 R6 R5 R4 R3 R2 R1 R0					
@	39	RD to PRE(A)	15,227	00	RT RE RE RE R3 R2 R1 R0	00	00	175,659	82029278164841400.0	11,244
2	40	RD to ACT			R7 R6 R5 R4 R3 R2 R1 R0					
e	41	WR to PRE(A)	4,217	00	RT RE RE RE R3 R2 R1 R0	00	00	164,649	27343092721613700.0	33,732
?	42	WR to ACT			R7 R6 R5 R4 R3 R2 R1 R0					
?	43	CKEx Signal After DLL Reset			RT RS RS RE R3 R2 R1 R0					959,700

What's unique about Execution Validation

- Typical instrument use a post-capture model
 TRIGGER → ACQUIRE → ANALYZE
- Execution Validation use model

- Two equipment options
 - 1. Logic Analyzer S/W automates acquisitions
 - 2. Memory Compliance Analyzer Real-time Analysis

Memory Compliance Analyzer

REAL-TIME PROTOCOL COMPLIANCE ANALYSIS

- Analysis 160+ categories of JEDEC spec parameters
- Includes Power up/down, self-refresh and autoprecharge (RDA/WRA) analysis
- Timing and State analysis
- HTML reports / XML exporting

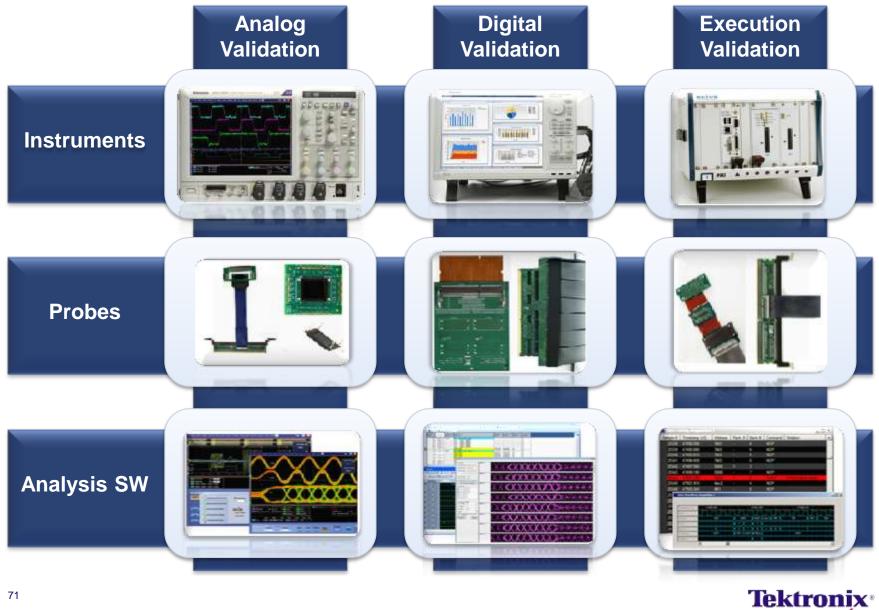
Real-time AND Post Capture Compliance Analysis

Command/Address

Real-time Compliance Results

Compliance Parameters										
Stat	Num.	Name	Occurences	Violations	Status	Min.(ps)	Max.(ps)	Average(ps)	Margin(%)	Spec. Value(ps)
?	22	SRE Separation from RD(A)	00	00	R7 R6 R5 R4 R3 R2 R1 R0	NA	NA	NA	NA	22,488
?	23	MRS Settle	00	00	R7 R6 R5 R4 R3 R2 R1 R0	NA	NA	NA	NA	22,500
?	24	MRS Burst			R7 R6 R5 R4 R3 R2 R1 R0					22,500
?	25	sSREF Time	00	00	R7 R6 R5 R4 R3 R2 R1 R0	NA	NA	NA	NA	7,500
۰	26	WR Burst	13,386		R7 R6 R5 R4 R3 R2 R1 R0			168,523	128102389400761000.0	7,200
0	27	RD to WR(A) Separation	13,386	00	R7 R6 R5 R4 R3 R2 R1 R0	00	00	64,028	70310809855578300.0	13,118
?	28	PDX Slow Exit			R7 R6 R5 R4 R3 R2 R1 R0					24,000
?	29	Rank DLL Reset to RD(A)	00	00	R7 R6 R5 R4 R3 R2 R1 R0	NA	NA	NA	NA	959,700
۰	30	WR to RD(A) Separation	22,075		R7 R6 R5 R4 R3 R2 R1 R0			910,959	35155404927789100.0	26,236
۰.	31	RD Burst	22,075	00	R7 R6 R5 R4 R3 R2 <mark>R1 R0</mark>	00	00	164,742	128102389400761000.0	7,200
?	32	sPD Time Min.			R7 R6 R5 R4 R3 R2 R1 R0					5,625
?	33	sPD Time Max.	00	00	R7 R6 R5 R4 R3 R2 R1 R0	NA	NA	NA	NA	70,200,000
8	34	PRE(A) Bank Settle	26,733	29	R7 R6 R5 R4 R3 R2 R1 R0	00	00	947,528	70273310756988700.0	13,125
۰	35	sREF Time	1,527	00	R7 R6 R5 R4 R3 R2 <mark>R1 R0</mark>	00	00	5,297,689	8384883669867880.0	110,000
۰.	36	sACT Time Min.	19,499		R7 R6 R5 R4 R3 R2 R1 R0		00	265,733	24595658764946000.0	37,500
۰.	37	sACT Time Max.	19,499	00	R7 R6 R5 R4 R3 R2 <mark>R1 R0</mark>	00	00	265,733	13138706605106.2	70,200,000
۰.	38	ACT to RD(A)/WR(A)	19,636		R7 R6 R5 R4 R3 R2 R1 P	00		19,999	70273310756988700.0	13,125
۰	3 9	RD to PRE(A)	15,22	00	R7 R6 R5 R4 P* «2 R1 R0	00	00	175,659	82029278164841400.0	11,244
?	40	RD to ACT	00		R7 P5 R4 R3 R2 R1 R0					20,614
۰	41	WR to PRE(A)	.217	00	R7 R6 R5 R4 R3 R2 R1 R0	00	00	164,649	27343092721613700.0	33,732
?	42	WR to ACT	00	01	R7 R6 R5 R4 R3 R2 R1 R0					20,614
?	43	CKEx Signal After DLL Reset	00	00	RT R6 R5 R4 R5 R2 R1 R0	NA	NA	NA	NA	959,700

Real-time event statistics


Benefits of Real-Time + Post Capture

	ACC (Address/Command/Control)	ACC+DQ (Address/Command/Control/Data)
At-Speed / Real-Time	MCA	MCA+LA
Post Capture		LA

MCA Advantages	LA Advantages
Capture Depth 1Gcycles	State Capture of ALL DDR Signals
Cost	20ps High Speed Timing / MagniVu
PA Real Time + LA State Analysis	Analog Mux
	Multi Bus Cross Correlation

Memory Validation Continuum

