Understanding Colors and Gamut
Understanding Colors and Gamut

Science Behind the Technology

Table 2. Amplitude limits of color bars

<table>
<thead>
<tr>
<th>Format</th>
<th>Color Bars</th>
<th>Signal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>100%</td>
<td>0 to 700 mV</td>
</tr>
<tr>
<td>PAL</td>
<td>100%</td>
<td>0 to 650 mV</td>
</tr>
<tr>
<td>SECAM</td>
<td>100%</td>
<td>0 to 700 mV</td>
</tr>
<tr>
<td>HDTV</td>
<td>100%</td>
<td>0 to 700 mV</td>
</tr>
</tbody>
</table>

Chroma limit have been exceeded and lower case signal exceeds valid composite NTSC color space. The level of the lower G' axes. The operator can decide if this condition is acceptable for their requirements.

A Hue error added to the rainbow pattern will result in distortions in the text identifier. A green gamma error has been added to the test pattern, resulting in distortions in the text identifier.

The Spearhead display can be used to quickly make color adjustments. The Spearhead Display is a tool for performing interchannel timing measurement. On the screen there are nine cross-hairs and indicates a timing error of about 55 ns. In the lower half of the display, the vertical line in both upper and lower diamonds, provided the black offset adjustment should be made before the gray-scale balance of the RGB gamma controls affects the alignment of the monochrome picture monitors handle amplitudes of a 100% color bars signal.

The Tektronix Split Diamond display is a special version of the Lightning display to provide both amplitude and interchannel timing measurement. This indicates a Chroma error within the signal. Lower traces fall outside the individual graticules boxes and are a gray value. A resulting gray scale will therefore produce a "washed out" image. The white point of the system within each format is defined by the illuminant D x = 0.3127 y = 0.3290. The television color specification is based on standards defined by the CIE Science Behind the Technology.

The primary colors, red, green and blue, can be mapped onto a three-dimensional (x and y) of all colors for a relative value of luminance (Y) as specified by the illuminant D. CIE x = 0.3101 y = 0.3162 Z = Z / (X + Y + Z)

The NTSC Arrowhead Display is a tool for performing gamma correction, this image has too much "washed out." The Spearhead Display can be used to quickly make color adjustments. The Spearhead Display is a tool for performing interchannel timing measurement. On the screen there are nine cross-hairs and indicates a timing error of about 55 ns. In the lower half of the display, the vertical line in both upper and lower diamonds, provided the black offset adjustment should be made before the gray-scale balance of the RGB gamma controls affects the alignment of the monochrome picture monitors handle amplitudes of a 100% color bars signal. To predictably display all three components, they must lie between 700 mV to 0 V. Picture monitors handle amplitudes of a 100% color bars signal falls exactly within the graticule. The 100% color bars signal is not suitable for color bars. Within NTSC color space a color hue for a fixed Value and Saturation, with ramps (white) to 100% Saturation (primary colors). The middle set of lines all have 100% Saturation, and range from 100% Value (primary colors) to 0% Value (black). The right set of lines all have 100% Value, and range from 0% Saturation (primary colors) to 100% Saturation (black). A hue error added to the rainbow pattern will result in distortions in the text identifier. A green gamma error has been added to the test pattern, resulting in distortions in the text identifier.
PID-Z

MPEG-2 Transport Stream

for (i=0;i<N;i++) {
 data_byte 8
 transport_scrambling_control 2
 adaptation_field_control 2
 synch_byte 8

ID
 Indicator
 Indicator
 Syntax
 CONDITIONAL ACCESS SECTION DIAGRAM

 bits
 bits
 16 bits 5 bits 1 bit 8 bits 8 bits 32 bits
 12 bits 32 bits
 Info
 Section
 Number
 Random
 bits
 8 bits 1 bit 1 bit 12 bits
 Loop
 Stream
 Transport
 16 bits 13 bits 13 bits 16 bits
 bits
 bits
 3
 Number
 Number
 Adaptation
 Next
 Descriptors
 Loop
 Section
 Program
 PID i
 Stuffing
 Adaptation
 4
 32
 CRC
 Transport Stream Program Map Section (PMT)
}

else {

 if (program_number=='0') {
 reserved 3
 reserved 2
 table_id 8
 }
}

section_number 8
section_length 12
reserved 4
reserved 4
reserved 3
'0' 1
descriptor()
reserved 2
table_id 8
CA_section() {

Syntax No. of bits
 2 bits 2 bits 1 bit 1 bit 1 bit 1 bit 8 bits 8 bits m*8 bits
 Start Code
 33 bits 42 bits 22 bits 8 bits 7 bits 16 bits
 33 bits
 24 bits 8 bits 16 bits
 PES
 Stream
 Sequence Counter
 Length
 RateESCR
 PES PACKET SYNTAX DIAGRAM

 HEADER
 Optional
 Mode
 P-STD
 Original
 Extension
 7 Flags
 Data Length

CRC_32 32
}

if(section_syntax_indicator=='0') {

 reserved 2
 section_syntax_indicator 1
 private_section() {

PID=0x0002
PID=0x0001(0xFF)
reserved
section_lengthtable_id_extension
section_syntax_indicatorprivate_indicator
system_time
reserved
private_indicator
table_id
section_length
reserved
section_syntax_indicatorprivate_indicator
private_section() {

MPEG Poster

This poster provides a quick graphical reference to understand the fundamentals of the MPEG Transport and Service Information.

For Further Information

Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com

Contact Tektronix:

ASEAN / Australasia (65) 6356 3900
Austria* 00800 2255 4835
Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777
Belgium* 00800 2255 4835
Brazil +55 (11) 3759 7600
Canada 1 (800) 833-9200
Central East Europe, Ukraine and the Baltics +41 52 675 3777
Central Europe & Greece +41 52 675 3777
Denmark +45 80 88 1401
Finland +358 50 588 9101
France* 00800 2255 4835
Germany* 00800 2255 4835
Hong Kong 400-820-5835
India 000-800-650-1835
Italy* 00800 2255 4835
Japan 81 (3) 6714-3010
Luxembourg +352 2626 2200
Mexico, Central/South America & Caribbean +52 (55) 56 04 50 90
Middle East, Asia and North Africa +41 52 675 3777
The Netherlands* 0800 2255 4835
Norway 800 16098
People’s Republic of China 400-820-5835
Poland +41 52 675 3777
Portugal 800 812370
Republic of Korea 001-800-8255-2835
Russia & CIS +7 (495) 7484900
South Africa 27 11 206 8360
Spain* 00800 2255 4835
Sweden* 00800 2255 4835
Switzerland* 00800 2255 4835
Taiwan 886 (2) 2722-9622
United Kingdom & Ireland* 00800 2255 4835
USA 1 (800) 833-9200

* If the European phone number above is not accessible, please call +41 52 675 3777

Contact List Updated 25 May 2010

Our most up-to-date product information is available at: www.tektronix.com

www.tektronix.com/video

Monitoring with FlexVu™ Technology Poster

This poster shows you how easy monitoring can be when you get the information you need displayed the way you want.

To order your free copy of this poster, please visit: www.tek.com/video/FLEXUposter/

Understanding High Definition Video Poster

This poster provides graphical reference to understanding high definition video.

To order your free copy of this poster, please visit: www.tek.com/video/HDposter/