
 
Debugging with Forte Workshop

Introduction
This application note discusses how to debug Keithley Interactive 
Test Tool (KITT) macros and Keithley User Library Tool (KULT) 
modules using the Forte Workshop Debugger. Two debugging 
scenarios are outlined.

The Forte Workshop Debugger tool provides many functions 
for troubleshooting coding problems that may arise when using 
KITT and the Keithley Test Execution Engine (KTXE). These 
functions include, but are not limited to, setting break points, 
single-stepping through code, and analyzing run-time values.

The Debugger is a standard part of the Forte Development 
Tool set on Keithley’s Series S400 and S600 parametric testers.

Coding problems that occur while developing parametric test 
programs can cause test programs to crash or abort. These test 
programs can be at the KITT macro or KTXE level.

This application note assumes familiarity with the Keithley 
Test Environment (KTE) tools discussed here, as well as a work-
ing knowledge of the C programming language.

Debugging Scenarios
This application note discusses the following debugging 
scenarios:

When running a KITT macro, the macro aborts.•	

The KTXE test program crashes.•	

Scenario 1: The KITT macro aborts
The KITT macro shown in Figure 1 calls a KULT test module 
(vth) to measure the drain current at the threshold voltage. 

During the execution of this macro, the macro aborts, as shown 
in the Messages box in Figure 1.

If the macro was executed successfully, the software would 
normally return a “Done 1” message and the drain current 
(n10xp3_ids) value would be displayed in the Results window 
(not shown). However, the message returned is “Test Aborted,” 
indicating a problem somewhere in the macro. This macro only 
contains one test module (vth), but most test macros contain 
many more modules, which complicates the process of locating 
the problem.

This macro aborted due to some coding problem within the 
vth routine. One method of locating the source of the problem is 
to use the C language printf statement throughout the vth mod-
ule. The printf statement would generate output to the terminal 
window, making it possible to determine the execution flow of 
this routine.

This note will discuss how the Debugger can be used to 
locate the problem. To gain a better understanding of the pro-
cess involved, we recommend you create a stand-alone C pro-
gram, called a Practice Task. From the Program menu, select the 
“Practice Task…” function as illustrated in Figure 2.

You will be asked to enter a UNIX file name. KITT will create 
this file, which will contain all the C code required and macro 
contents needed for execution. This file will be compiled and 
executed using the Workshop Debugger.

When the Debugger is started, it will display the C code from 
the Practice Task file using a text editor, as shown in Figure 3. 

Number 2900

Application Note 
Series

Figure 1

Figure 2



The text editor used here is Emacs, but the Debugger can be con-
figured to use any text editor, such as NEdit.

To execute the Practice task from the beginning, click either 
green down arrow (located at the top of window along with the 
Debugger icons).

Now the Practice Task will execute. In this example, a SIGEGV 
fault (segmentation violation) has occurred at line 59 in the code 
(see Figure 4).

As Figure 5 illustrates, the green right arrow in the Debugger 
will identify the line of code that generated this fatal condition.

In the vth routine, the line that caused the crash is:

drange = *rngptr;

The variable rngptr is to contain a memory address that 
points to an instrument measurement range value previously 
stored in memory. The dpGetDataPtr routine returns the mem-
ory address for the tag (identifier) defined in the variable key-
word and is a DOUBLE data type. In this example, the keyword 
is equal to: “n10xp3_irange”, which is the combination of the 
name of the device “n10xp3” and the string “_irange”.

The variable drange is to contain the drain measurement 
range that will be set using the rangei command.

If the tag is not defined in memory, a NULL pointer (address) 
is returned to rngptr and the code tries to assign the value at 
this address (NULL), which is illegal.

The problem here is “n10xp3_irange” of type DOUBLE was 
not found in memory and when the NULL address was accessed 
to retrieve the range value, the C code crashed and the macro 
aborted. At this point, you need to investigate why “n10xp3_
irange” was not stored in memory in the first place.

One suggestion in the vth code is to check for the NULL 
address before trying to access it. You could modify the code as 
follows:

rngptr = (double *) dpGetDataPtr (keyword, DOUBLE);

if (rngptr == NULL)

	 drange = 0.0; /* Set to auto-range */

else

	 drange = *rngptr;

Scenario 2: The KTXE program crashes
The test macro discussed in Scenario 1 is included in a cassette 
plan. When KTXE executes this cassette plan, a segmentation 

Figure 3
Figure 5

Figure 4



fault could generate the error message shown in Figure 6, and 
KTXE will abort. Here in Scenario 2, the ws cassette plan  
(ws.cpf) crashed.

At this point, you need to debug the entire cassette plan. You 
can use the Debugger to step to (run up to) the offending line, 
much as in the previous scenario. Type in the command:

workshop -D $KIBIN/ktxe &

This will start the Debugger and load in all the run-time files 
needed for the execution of KTXE.

NOTE: You may get a warning message about No symbolic infor-
mation. If this occurs, click OK.

Now select the “Edit Run Parameters for ktxe” from the 
Debug menu. Enter the run parameters for KTXE as shown in 
Figure 7 and click OK.

Select the green down arrow to start the execution of KTXE 
(refer to Figure 3). The Debugger will execute KTXE and will dis-
play the offending line (refer to Figure 5, which illustrates using 
the Emacs editor).

Setting break points and analyzing run-time values
Another feature of the Debugger allows you to set break points 
at specified locations in the execution flow. Setting a break point 
allows you to stop execution to perform several debugging func-
tions:

single-stepping through the code•	

stepping into calling functions/subroutines•	

analyzing run-time values•	

This section will illustrate how to set a break point in the vth 
routine, step through the code, and look at the run-time values.

Start the Debugger by typing in this command:

workshop -D $KIBIN/ktxe &

Set the Run Parameters, as shown in Figure 5.

In the Dbx command section, load the KULT library that con-
tains the vth routine (refer to Figure 8). Because KTXE has not 
started execution yet, the KULT libraries have not been loaded 
and the Debugger needs to know the routine names. To load in a 
KULT library, type in the command:

loadobjects -p /opt/kiS600/usrlib/libexample.so

NOTE: The routine vth is located in the KULT library example 
and this library file is located in the directory /opt/kiS600/usrlib. 
The actual KULT library name is libexample.so.

Now, you need to set a break point in the function vth. From 
the Execute Menu, select “Set Breakpoints” as shown in Figure 
9. Enter the function name vth and click Add. The list of break 
points will appear at the top of this box.

To start execution of KTXE, select the green down arrow on 
the Workshop Debugging window, as shown in the top left por-
tion of Figure 8. KTXE will now execute normally and stop at 
the established break points. Because the vth routine was select-
ed as the break point, KTXE will execute up to this routine. The 
Debugger will display the source code at the break point using 
an editor (Emacs), as shown in Figure 10.

The break point is the first executable line in the vth routine 
and indicated by a red stop sign (mostly hidden by the green 
arrow in the left-hand margin). The green arrow indicates which 
line is to be executed next (the highlighted printf statement).

Figure 8

Figure 7

Figure 6



At this point, you can single-step through the code by select-
ing the down/right green arrow. Each time this button is select-
ed, the next statement in the execution flow is performed, and 
the green arrow moves to the line that will be executed next. 
The break point (the red stop sign) will remain in the same loca-
tion for future executions.

Figure 11 indicates we have stepped down through the code 
to the dpGetDataPtr statement. Because the sprintf line has 
completed, the variable, keyword, should have some value (a 
string of characters). You can select this variable by highlighting 
it; click the “p=” button to view its contents. The bottom of the 
editor box will display the contents:

keyword = “n10xp3_irange”

You can now verify whether this value is correct.

Summary
Although the Workshop Debugger offers many other useful fea-
tures, the ones discussed in this note are the most useful for 
debugging coding problems.

Figure 9

Figure 11

Figure 10

Specifications are subject to change without notice.
All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. 

All other trademarks and trade names are the property of their respective companies.

Keithley Instruments, Inc.  ■  28775 Aurora Road  ■  Cleveland, Ohio 44139-1891 ■  440-248-0400  ■  Fax: 440-248-6168  ■  1-888-KEITHLEY  ■  www.keithley.com 

© Copyright 2008 Keithley Instruments, Inc. Printed in the U.S.A. No. 2900 Jan 08


