

Introduction

As of today, there are still very few UMTS networks offering commercial service. However, since third-generation (3G) handset functionality is improving and a wider range of handsets is becoming available, the number of 3G UMTS subscribers is increasing. By March 2003 there were more than 350,000 UMTS users and more than 6,000,000 cdma2000 users in Japan, and the rollout of UMTS throughout Europe is underway. Even some GSM operators in the US are already testing or are about to test UMTS. Therefore, there is an urgent need to provide hands-on practical examples of protocol testing in the first UMTS "islands" of this world. Call tracing and similar tasks haven't vanished with the advent of UMTS; in fact, tasks such as these have become even more complex. This is also valid for engineers with many years of protocol testing experience in GSM-networks. This document is intended to ease troubleshooting and protocol testing tasks in today and tomorrow's UMTS-networks.

Standards

The International Telecommunication Union (ITU) solicited several international organizations for descriptions of their ideas for a 3G mobile network:

CWTS	China Wireless Telecommunication Standard group
ARIB	Association of Radio Industries and Businesses, Japan
T1	Standards Committee T1 Telecommunications, USA
TTA	Telecommunications Technology Association, Korea
TTC	Telecommunication Technology Committee, Japan
ETSI	European Telecommunications Standards Institute

As a result, ITU combined different technologies for IMT-2000 standards at 2000 MHz. The main advantage of IMT-2000 is that it specifies international standards and also the interworking with existing PLMN standards, such as GSM.

In general the quality of transmission is improved. The data transfer rate is increased dramatically. Transfer rates of 144 kbps or 384 kbps is available in a short time; however, 2Mbps will only be available in certain small areas or will remain a theoretical value for a long time. New service offerings will help UMTS to become financially successful for operators and attractive to users. For example, users will have worldwide access with a mobile phone, and the look and feel of services will be the same wherever he or she may be.

There is a migration path from second-generation (2G) to 3G systems that may include an intermediate step – the so-called 2.5G network. Packet switches, the GPRS support nodes (GGSN / SGSN), are implemented in the already existing core network while the radio access network is not changed significantly. In the case of a migration from GSM to UMTS a new radio access technology (W-CDMA instead of TDMA) is introduced. This means the networks are equipped with completely new radio access networks that replace the 2G network elements in the RAN. EDGE is a different way to offer high-speed IP services to GSM subscribers without introducing W-CDMA. The already existing CDMA cellular networks, which are especially popular in Asia and North America, will undergo an evolution to become cdma2000 networks with larger bandwidth and higher data transmission rates.

Technical Brief

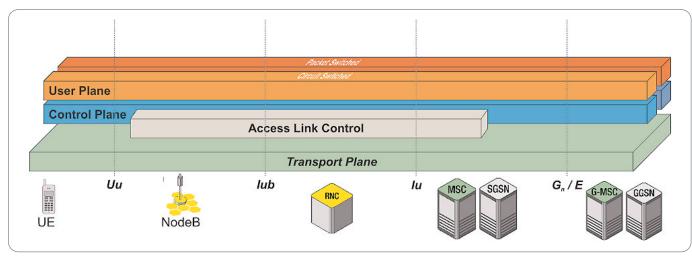


Figure 1. An Abstract View at the UMTS Protocol Stack.

UMTS

For the purpose of this paper, we are focusing on UMTS, the clear 3G successor to GSM and GPRS. As we discuss the most important UMTS procedures and with consideration of transaction-tracing possibilities, the experienced reader will frequently recognize the "spirit" of GSM, because much of the so-called Non-Access-Stratum or NAS-messaging in UMTS is actually adopted from GSM. However, in the lower layers within the UTRAN, UMTS introduces a set of new protocols, which deserve close understanding and attention for protocol testing. Even more important, the UMTS control plane and user plane (figure 1) are essentially based on ATM and on AAL-2 and AAL-5 within the transport plane. While the generic objectives of a mobile network, and therefore the NAS-messaging, didn't significantly change from GSM and GPRS, the underlying access network signaling fully supports the new, and by far, more flexible requirements of a 3G- and W-CDMA-based standard.

The philosophy of UMTS is therefore continuously targeted at the separation of user plane and control plane, of radio and transport network, of access network and core network and of access stratum and non-access stratum. The User Plane is again separated into two traffic-dependent domains. The circuit switched domain (CS Domain) and the packet switched domain (PS Domain). Both traffic-dependent domains use the functions of the remaining entities – the Home Location Register (HLR) together with the Authentication Center (AC), or the Equipment Identity Register (EIR) – for subscriber management, mobile station roaming and identification, and handle different services. Thus, the HLR contains GSM, GPRS, and UMTS subscriber information. The two domains handle their traffic types at the same time for both the GSM and the UMTS access networks. The CS domain handles all circuit switched type of traffic for the GSM

as well as for the UMTS access network; similarly, the PS domain takes care of all packet switched traffic in both access networks.

Protocol Analysis in UMTS Networks

The analysis of protocol recordings in UMTS is much more complex than in GSM-/GPRS-networks for a number of reasons:

1. No Pre-configured Timeslots or Channels for Signaling Messages and User Data

First of all, UMTS networks use the packet-switched ATM protocol to provide for the highest possible flexibility in resource allocation. Using so called cells on a serial link with a payload of just 48 octets, ATM is capable to share an E1, T1 or STM-1 link among a literally unlimited number of users or, at the other extreme, to provide all resources to only a single user.

With respect to ATM, the term "user" refers to virtual paths and channels, which in turn, are only bearers for the higher UMTSlayers. This and other advantages of using ATM are good for UMTS but unfortunately, ATM does not come with pre-configured timeslots or dedicated channels. This issue appears to be trivial, but finding signaling messages on the lub- or lu-interfaces in a UMTS-network without knowing where to look for them is impossible.

As a matter of fact, ATM is not providing dedicated timeslots or channels for neither signaling messages nor user data. Rather, ATM is providing virtual channels and virtual paths that need to be configured by the higher protocol layers of UMTS upon putting an interface and a network node (e.g. RNC, NodeB or cell) into service.

Technical Brief

✓ [Monitor - Recording		Options Window	Help		_ 8 ×
				미(曰(당) १)	
	$\left \mathbf{H}\left[\mathbf{H}\right]\right \neq \left \mathbf{H}\right $	ı ≣C+ ≣↓ Liv	re Hode Freeze Hode Zoon	I Unzoom	
From	2. Prot 2. 1	Sho 1SG 3. Prot	a. MSG	Procedure Code	4. 1.
NB2 to RNC6 NBAP	SSCOP SD		succesfulOutcome		
RNC6 to NB2 ALCAP	SSCOP SD		ERQ		
RNC 6 to NB2 NBAP			Cell 5 on UPI/UCI/CID	6/58/11	
NB2 to RNC6 ALCAP	SSCOP SD	AAL2L3	ECF	7	
RNC6 to NB2 ALCAP	SSCOP SD		ERQ		
RNC 6 to NB2 NBAP			Cell 5 on VPI/VCI/CID	6/58/12	
NB2 to RNC6 ALCAP	SSCOP SD		ECF		
RNC 6 to NB2 NBAP	SSCOP SD		initiatingMessage	id-systemInformation	
RNC6 to NB2 ALCAP	SSCOP SD	AAL2L3	ERO		-
RNC 6 to NB2 NBAP	text open	ed RACH For	Cell 5 on UPI/UCI/CID	6/58/13	<u> </u>
1 S. 1					
)-messade confidure	s a PCH	ne View		
DITPHSK for cell 5 of Nod	Q-message configure leB 2 on CID = 11 and	saPCH 🛛	Comme	nt or Value	
00000010 I Path 1 translate	Q-message configure leB 2 on CID = 11 and s into VPI/VCI = 6/58	saPCH 🛛	Comme conn. elem. id		
60000010 I Path 1 translate	leB 2 on CID = 11 and s into VPI/VCI = 6/58	s a PCH path 1.	Comme conn. elem. id Release Connect	ion	-
00000010 I 11 I 0 Send not. inc	leB 2 on CID = 11 and s into VPI/VCI = 6/58 d general ad	s a PCH path 1.	Comme conn. elem. id Release Connect Do not send not	ion	
600000010 I 11 I 0 Send not. inc 0 reserved - ge	leB 2 on CID = 11 and s into VPI/VCI = 6/58 d. – general ac eneral action	s a PCH path 1. ction	Comme conn. elem. id Release Connect Do not send not reserved	ion ification	
BITTHESK for cell 5 of Nod 000000010 I 11 I 0 Send not. inc 0 reserved - ge 11 Instr.ind	WeB 2 on CID = 11 and s into VPI/VCI = 6/58 d. – general ac eneral action pass-on not pe	saPCH path 1. ction ossible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne	ion ification	
BITTHISK for cell 5 of Nod 000000010 I 11 I 0 Send not. ind 0 reserved - ge 11 Instr.ind 00 Send not. ind	leB 2 on CID = 11 and s into VPI/VCI = 6/58 d general ac eneral action pass-on not po d pass-on not	saPCH path 1. ction ossible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne Palease Conne Do not send noc	ion ification	
Birninsk for cell 5 of Nod 000000010 I 11 I 0 Send not. inc 0 reserved - ge 11 Instr.ind 00 Send not. inc 00000101 Length of cor	WeB 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not po d pass-on not ntents of IE	saPCH path 1. ction ossible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne	ion ification	•
Birninsk for cell 5 of Nod 00000010 I 0- Path 1 translate 0- Send not. inc 0- reserved - ge 11 Instr.ind 00 Send not. inc 00 Send not. inc 00 Send not. inc reserved - ge 11 Instr.ind 00 Send not. inc 00000101 Length of cor ***B4*** AAL2 type 2 p	WeB 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not po d pass-on not ntents of IE path id.	saPCH path 1. ction ossible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne Do not send not 5	ion ification	
BITTHASK for cell 5 of Nod 00000010 I 11 I 0 Send not.ind 11 Issue 1 11 Instr.ind 00 Send not.ind 11 Issue 1 00 Send not.ind 11 Issue 1 00 Send not.ind 00000101 Length of cor ***B4*** AAL2 type 2 p 0000101 channel id. ()	WeB 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not po d pass-on not ntents of IE path id. (0, 8-255)	saPCH path 1. ction ossible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne p Do not send not 5 1	ion ification	•
Birninsk for cell 5 of Nod 00000010 I 0- Path 1 translate 0- Send not. inc 0- reserved - ge 11 Instr.ind 00 Send not. inc 00 Send not. inc 00 Send not. inc reserved - ge 11 Instr.ind 00 Send not. inc 00000101 Length of cor ***B4*** AAL2 type 2 p	WeB 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not po d pass-on not ntents of IE path id. (0, 8-255)	saPCH path 1. ction ossible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne p Do not send not 5 1	ion ification th ID tion	
BITTHESK for cell 5 of Nod 00000010 I 11 I 0 Send not.ind 0 reserved - ge 11 Instr.ind 00 Send not.ind 00000101 Length of cor ***B4*** AAL2 type 2 p 00000101 channel id.(Dest NSAP Serv. Endp. 00000100 IE	We B 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not pe d pass-on not ntents of IE path id. (0, 8-255) Address	saPCH path1. ction ossible ot possible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne p: Do not send not 5 1	ion ification th ID tion EP Addr.	
BITTHASK for cell 5 of Nod 00000010 I 11 I Path 1 translate 0 Send not. inc 0 reserved - ge 11 Instr.ind 00 Send not. inc 00 Send not. inc 00000101 Length of cor ***84*** AAL2 type 2 p 00001011 channel id. (Dest NSAP Serv. Endp. 00000100 IE Name 11 Instr. ind	WeB 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not pe d pass-on not d pass-on not ntents of IE path id. (0, 8-255) Address - general actio	saPCH path 1. ction ossible ot possible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne pa Do not send not 5 1 1 11 0 Dest NSAP Serv.	ion ification th ID tion EP Addr. ion	
BITTHESK for cell 5 of Nod 00000010 I 11 I 0 Send not. inc 0 reserved - ge 11 Instr.ind 00 Send not. inc 00 Send not. inc 00 Send not. inc 00000101 Length of cor ***B4*** AAL2 type 2 p 00000101 channel id. (Dest NSAP Serv. Endp. 00000100 IE Name 11 Instr. ind	We B 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not pe d pass-on not ntents of IE path id. (0, 8-255) Address - general action d general action	saPCH path 1. ction ossible ot possible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne pa Do not send not 5 1 1 11 0 Dest NSAP Serv. Release Connect	ion ification th ID tion EP Addr. ion	
BITTHESK for cell 5 of Nod 00000010 I 0- Send not. inc 0 Send not. inc 0 reserved - ge 11 Instr.ind 00 Send not. inc 00 Send not. inc 00000101 Length of cor 000001011 channel id. (0000010011 channel id. (000001001 IE Name Send not. ind Serv. Endp. 00000100 IE Name Send not. ind	We B 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not pe d pass-on not ntents of IE path id. (0, 8-255) Address - general action d general action	saPCH path 1. ction ossible ot possible	Comme conn. elem. id Release Connect Do not send not reserved Release Conne pa Do not send not 5 1 1 11 0 Dest NSAP Serv. Release Connect Do not send not	ion ification th ID tion EP Addr. ion	×
BITTHESK for cell 5 of Nod 00000010 I 0- Path 1 translate 0- Send not. inc 0- reserved - ge 11 Instr.ind 00 Send not. inc 00 Send not. inc 00 Send not. inc 00000101 Length of cor ***B4*** AAL2 type 2 p 0000101 channel id. (Dest NSAP Serv. Endp. 00000100 IE Name Send not. inc Send not. inc	We B 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not pe d pass-on not ntents of IE path id. (0, 8-255) Address - general action eneral action	saPCH path 1. ction ossible ot possible on ction	Comme conn. elem. id Release Connect Do not send not reserved Release Conne Do not send not 5 1 11 11 Dest NSAP Serv. Release Connect Do not send not reserved	ion ification th ID tion EP Addr. ion	×
Birnhisk for cell 5 of Nod 00000010 I Path 1 translate 0 Send not. inc 0 Send not. inc 0 Send not. inc 00000101 Length of cor 00000101 Length of cor ***84*** AAL2 type 2 p 00001011 channel id. (Dest NSAP Serv. Endp. 00000100 IE Name 0 Send not. inc 0 Send not. inc	We B 2 on CID = 11 and s into VPI/VCI = 6/58 d general action pass-on not pe d pass-on not ntents of IE path id. (0, 8-255) Address - general action d general action	saPCH path 1. ction ossible ot possible on ction	Comme conn. elem. id Release Connect Do not send not reserved Release Conne pa Do not send not 5 1 1 11 0 Dest NSAP Serv. Release Connect Do not send not	ion ification th ID tion EP Addr. ion	×

Figure 2. Extract of a Cell Configuration, recorded by Tektronix Protocol tester on an lub-interface.

Figure 2 illustrates an example: In this case, the new cell No 5 is put into service at a given NodeB. Among other things, the common control channels need to be configured. Figure 2 highlights part of the configuration of a PCH on channel 11 of the ATM-path and circuit with VPI = 6 and VCI = 58. Note that VPI/VCI = 6/58 is only an example. The respective values are dynamic and need to be pre-configured in the protocol tester.

You can also see that a few rows underneath this highlighted part on channel 12 (\Leftrightarrow same VPI/VCI), a FACH is opened and on channel 13 (\Leftrightarrow same VPI/VCI) a RACH is opened. Without tracking these configuration messages, protocol tracing on the respective channels becomes an almost impossible undertaking.

One way to quickly gather information on which VPI/VCI values are used by the NBAP and ALCAP and on what VPI/VCI/CID

values are used by the Common Control Channel is to simply re-start the Node B and look at the content of the initialization messages. However, it interrupts service to subscribers – the one thing no network can afford to do unnecessarily.

Another way is to use an lub Automatic Configuration application, available on Tektronix' K15 protocol analyzer;. This Expert software can automatically configure all the logical links required to monitor NBAP, ALCAP for each Node B under observation and RACH, FACH, PCH for each cell under observation. The ability to perform automatic analysis on the lub-interface will give users a large advantage. It will automatically track the configured channels and display the configuration of each channel in plain text. The Protocol tester locks to these channels and allows tracing the upcoming signaling messages.

Technical Brief

2. Limited Possibility of HEX-Trace Analysis

Another challenge for the experienced GSM-protocol expert is the fact that some higher layer UMTS-protocols like RANAP, NBAP or RRC do not only use ASN.1 encoding rules but for optimization, apply the so called Packed Encoding Rules (PER).

Figure 3 illustrates the basic parameter encoding rules of ASN.1: Each parameter is encoded using a unique tag, followed by a length indication and finally the parameter value. Of course, ASN.1 provides many more capabilities, but what is important to consider is the fact this type of encoding is a waste of radio resources.

Figure 4 clearly highlights this problem, using the example parameter "MyInteger." This parameter can take on only two values: '0' and '1.' Besides, the presence of the parameter "MyInteger" shall be mandatory in the message to be encoded. Just applying ASN.1 basic encoding leaves us with three octets to be transmitted. But after applying PER, only a single bit (\Leftrightarrow '0' or '1') needs be sent. The benefits of PER are obvious; however, one may still miss the possibility to easily match hexadecimal values to protocol tester mnemonics.

In UMTS, it is therefore no longer trivial to translate hexadecimal recordings into mnemonics just by using the respective specifications. One needs a PER decoding and therefore, a protocol tester for almost any kind of protocol analysis. The hexadecimal debugging alternative is cumbersome for all protocols that apply the PER.

3. Following a Single Call Flow

Protocol Analysis in UMTS, compared to GSM, has an essential impact on the very basic task to follow a single call setup or registration or PDP context activation. To recall some of the very basic questions:

- Which parameters tie the various messages to each other?
- Which call was successful and which one wasn't?
- Did this transaction fail because of errors in the previous parameterization?

Now, let's clearly line out how you can follow a single transaction in your recording.

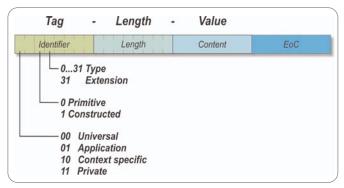


Figure 3. Parameter Encoding in ASN.1.

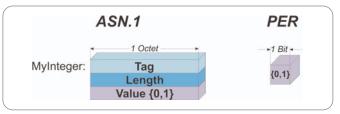


 Figure 4. The Impact of Applying PER on a Mandatory Parameter "MyInteger" (\(\epsilon example).

Selected UMTS-Procedures

Registration / Location Updating

Upon power-on, the UE will register to the network. The following pages illustrate the respective message flow on the terrestrial interfaces lub (\leftarrow NodeB \Leftrightarrow RNC) and lu-Cs (\leftarrow RNC \Leftrightarrow MSC). Please note the additional information to reflect how the parameters relate the messages of a single call flow to each other.

Example: The NBAP: successful Outcome-message [Procedure Code: id-radioLinkSetup] being sent from the Node-B to the RNC can be linked to the related ALCAP: ERQ-message by means of the parameter 'Binding ID' which value is repeated in the ERQ-message in the 'Served User Generator Reference' parameter. To continue, one may use the parameter 'Originating Signaling Association ID' in the ALCAP: ERQ-message to relate it to the respective ALCAP: ECF-message (the parameter 'Originating Signaling Association ID' is mirrored in the ALCAP: ECF-message as 'Destination Signaling Association ID').

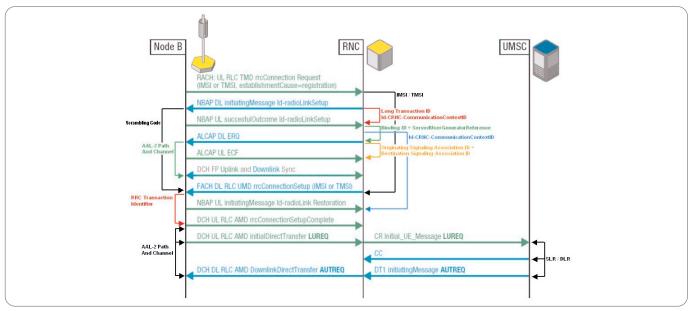


Figure 5. Registration of a UMTS UE (circuit-switched).

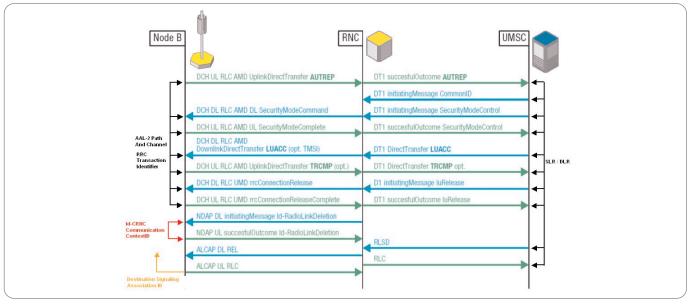


Figure 6. Registration of a UMTS UE (circuit-switched).

Please note that on the lu-interface the well-known SCCP is used to establish virtual signaling connections between the RNC and the MSC. Also, one should recall SCCP is using SLR / DLR (Source Local Reference and Destination Local Reference) to identify SCCP-messages that belong to the same connection. In this scenario, "registration" and the following scenarios will be the SLR and the DLR. These are almost always used on the lu-interface to relate the very RANAP-messages to each other. Following a successful registration, the bearer channels in the transport network are released. Note how the RANAP is initiating this release through an initiating Message (Procedure Code: 'Id-Iu-Release'). On the lub-interface, ALCAP will release the respective bearer channel by sending an ALCAP: ERQ-message.

Technical Brief

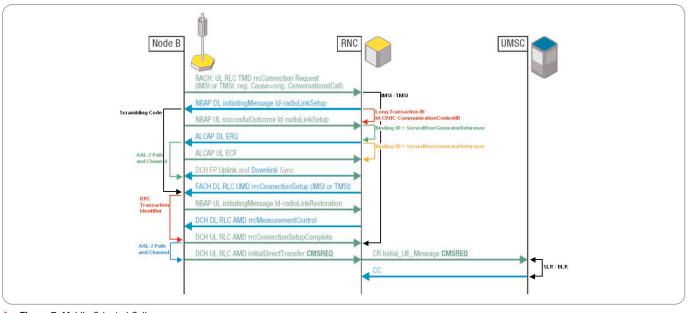


Figure 7. Mobile Oriented Call.

Mobile Oriented Call

The following scenario illustrates a more complex transaction: A mobile oriented call that includes the allocation and release of a radio access bearer. Please note that in case of conversational calls in UMTS opposed to GSM there is no CC: DISC-message sent when the network side releases the call.

As seen in the previous registration scenario, the SCCP SLR/DLR is used on the lu-interface for identification purposes. The situation on the lub-interface is more complicated, at least during the initial setup phase and for the setup of the radio link (⇔ Figure 7). For example, to link an NBAP-initiating message (Id-radioLinkSetup) to the respective rrcConnectionSetup-message, only the scrambling code can be used.

The only difference during the radio link setup phase between the illustrated scenario and the previously presented scenario registration is the measurement initiation through the RNC. It is important to emphasize that this measurement initiation is optional, and that most likely, the RNC will invoke it.

For the relation of this rrcConnectionSetup-message and all the RRC-messages that follow in Figure 8, the RRC-transaction identifier is used. Please note that these RRC-messages are really transparent bearers for the respective NAS-messages. Please compare these NAS-messages to the ones that are used in GSM.

Technical Brief

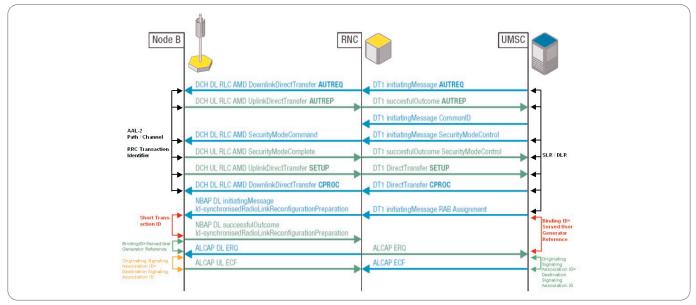


Figure 8. Mobile Oriented Call.

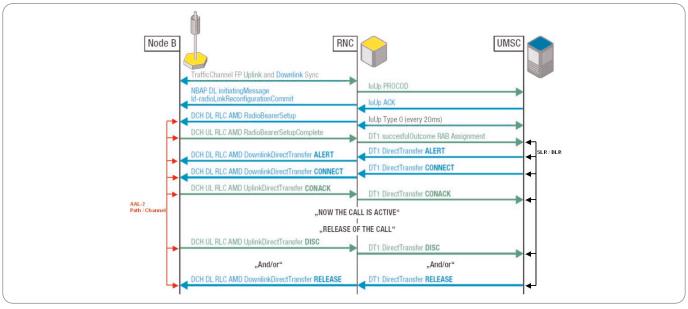


Figure 9. Mobile Oriented Call.

Figure 9 illustrates in detail the establishment of the radio access bearer channel, which is required for the actual conversation. This configuration is required as well on the lu-interface as on the lubinterface and is the responsibility of the ALCAP. Please note the use of the AAL-2 path and channel to relate the following RRC-messages to each other. Of course, you may still want to use the RRCtransaction identifier for the same purpose.

Again, it is worth emphasizing that there would be no DISC-message if the call release would have been initiated by the network. In this

case, the network would have sent just the REL-message. This way, the release procedure is simplified. Note how the RANAP initiating Message (Procedure Code: 'id-lu-Release') invokes the upcoming release of the allocated bearer channels on the lu- and lub-interfaces.

Finally, ALCAP will de-allocate the bearer channels on lu- and lubinterface. Opposed to the scenario registration, this de-allocation is also required on the lu-interface. For registration this was obviously not required.

Technical Brief

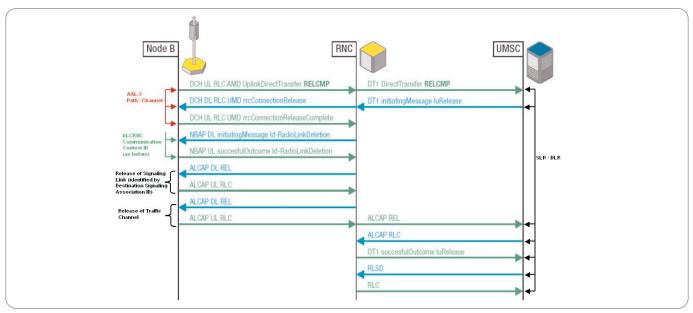


Figure 10. Mobile Oriented Call.

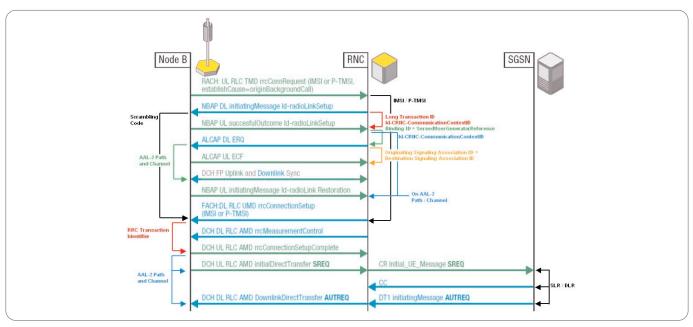


Figure 11. Mobile Originating PDP-Context Activation and Deactivation.

PDP-Context Activation and Deactivation (Mobile Originating)

The last scenario is the packet-switched PDP-context activation, which is usually originated by the user equipment. Please note the differences, and in particular, the similarities between circuitswitched call establishment and packet-switched PDP-context activation. Whether the mobile station intends to perform either procedure is identified already in the rrcConnection Request-message through the access reason (in this case 'originating background call'). The message flow in the first part (Figure 11) is quite similar to what is already known from the registration and mobile oriented call scenario. Obviously, the peer of the mobile station will be in this case the SGSN rather than the MSC. Therefore the mobile station will identify itself through the P-TMSI (if available) or the IMSI.

The packet data transfer itself is not illustrated when focused on the control plane.

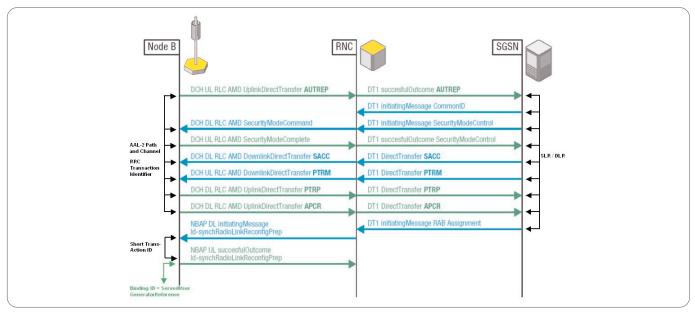
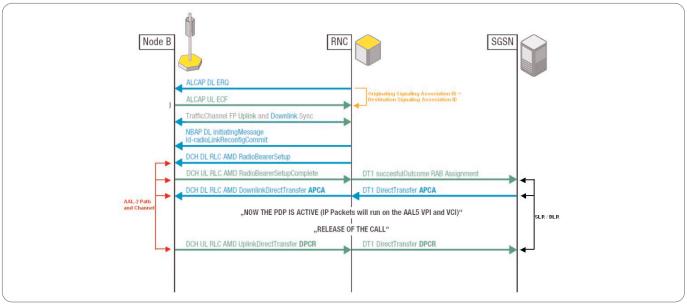
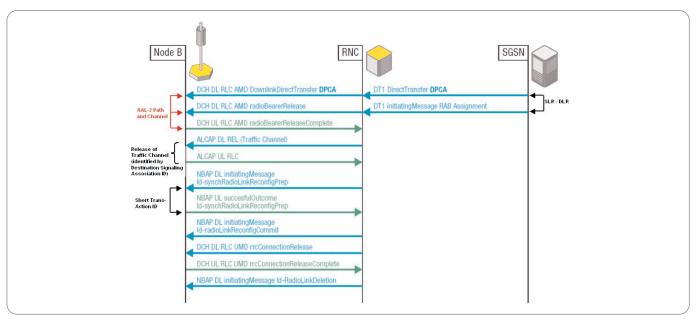




Figure 12. Mobile Originating PDP-Context Activation and Deactivation.

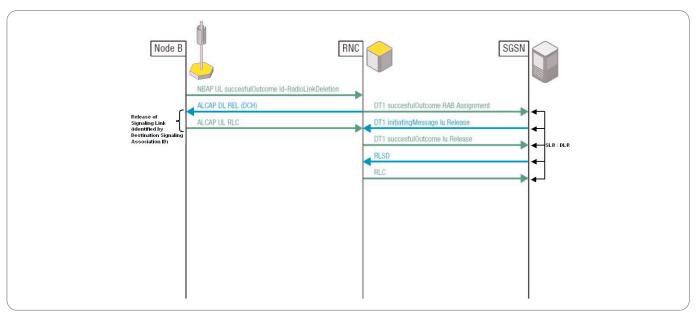


Figure 13. Mobile Originating PDP-Context Activation and Deactivation.

Technical Brief

Figure 14. Mobile Originating PDP-Context Activation and Deactivation.

Figure 15. Mobile Originating PDP-Context Activation and Deactivation.

▶ Technical Brief

Abbreviation List		OPDCP	Packet Data Convergence Protocol (3GTS 25.323)
AAL-2	ATM Adaptation Layer 2	PDP	Packet Data Protocol
AAL2L3	See ALCAP	PER	Packed Encoding Rules (ITU-T X.691)
AAL-5	ATM Adaptation Layer 5	QoS	Quality of Service
ALCAP	Access Link Control Application Protocol	RACH	Random Access Channel
	(ITU-T Q.2630.1; Q.2630.2 (also referred to as AAL2L3)		Radio Access Network Application Part (3GTS 25.413)
REL	Release Request (⇔ ALCAP)	RLC	Radio Link Control (3GTS 25.322)
RLC	Release Confirm (\Leftrightarrow SCCP / ALCAP)	RNC	Radio Network Controller
RLSD	Released (SCCP)	RNS	Radio Network Subsystem
CRNC	Controlling Radio Network Controller	RRC	Radio Resource Control (3GTS 25.331)
AS	Access Stratum	SGSN	Serving GPRS Support Node
CID	Channel Identifier	SLR	Source Local Reference (SCCP)
ASN.1	Abstract Syntax Notation 1 (ITU-T X.690)	DLR	Destination Local Reference (SCCP)
ATM	Asynchronous Transfer Mode	SCCP	Signaling Connection Control Part (ITU-T Q.710 - Q714)
DRNC	Drift Radio Network Controller	SM	Session Management
ERQ	ALCAP: Establishment Request	SMS	Short Message Service
FACH	Forward Link Access Channel	SRNC	Serving Radio Network Controller
GGSN	Gateway GPRS Support Node	SSCOP	Service Specific Connection Oriented Protocol
PROCOD	Procedure Coding (3GTS 25.415)		(ITU-T Q.2110)
GMM	GPRS Mobility Management	TBF	Temporary Block Flow
GPRS	General Packet Radio Service	TCP	Transmission Control Protocol
GSMS	Short Message Services through GPRS	TLLI	Temporary Logical Link Identifier
	$(\Leftrightarrow$ packet-switched transmission)	UDP	User Datagram Protocol
HLR	Home Location Register	UMTS	Universal Mobile Telecommunication System for the time
IP	Internet Protocol		beyond the year 2000
MAC	Medium Access Control (3GTS 25.321)	UTRAN	UMTS Terrestrial Radio Access Network
NAS	Non-Access Stratum	VCI	Virtual Channel Identifier
NBAP	Node B Application Protocol (3GTS 25.433)	VPI	Virtual Path Identifier
PCH	Paging Channel	W-CDMA	Wideband Code Division Multiple Access
PCU	Packet Control Unit		

Contact Tektronix:

ASEAN / Australasia / Pakistan (65) 6356 3900 Austria +43 2236 8092 262 Belgium +32 (2) 715 89 70 Brazil & South America 55 (11) 3741-8360 Canada 1 (800) 661-5625 Central Europe & Greece +43 2236 8092 301 Denmark +45 44 850 700 Finland +358 (9) 4783 400 France & North Africa +33 (0) 1 69 86 80 34 Germany +49 (221) 94 77 400 Hong Kong (852) 2585-6688 India (91) 80-2275577 Italy +39 (02) 25086 1 Japan 81 (3) 3448-3010 Mexico, Central America & Caribbean 52 (55) 56666-333 The Netherlands +31 (0) 23 569 5555 Norway +47 22 07 07 00 People's Republic of China 86 (10) 6235 1230 Poland +48 (0) 22 521 53 40 Republic of Korea 82 (2) 528-5299 Russia, CIS & The Baltics +358 (9) 4783 400 South Africa +27 11 254 8360 Spain +34 (91) 372 6055 Sweden +46 8 477 6503/4 Taiwan 886 (2) 2722-9622 United Kingdom & Eire +44 (0) 1344 392400 USA 1 (800) 426-2200 USA (Export Sales) 1 (503) 627-1916 For other areas contact Tektronix, Inc. at: 1 (503) 627-7111 Updated 20 September 2002

For Further Information

Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit www.tektronix.com

Copyright © 2003, Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies. 08/03 FL565636/SFI 2FW-16822-0

12 www.tektronix.com/signaling