

Test Setup and Configuration

- All the tests are logically grouped based on the input source requirement

 - WRITE
 - CLOCK - ADDR/CMD
- Quickly set up the test configuration by selecting a complete group or individual tests
- Flexible input source requirement, inputs are not hardwired to a particular Oscilloscope channel.

Tektronix^e

Burst Detection

- Read / Write bursts are automatically detected for analysis purposes
- Several different techniques are used for Read/Write Burst Separation

 - irst Separation

 DQ/DQS phase alignment: DQ and DQS have different phase relationship in Read and Write bursts

 CS, Latency + DQ/DQS Phase Alignment: CS is used to quality the occurrence of a burst, followed by DQ/DS phase relationship to distinguish between ReadWrite

 Logic State + Burst latency: The command bus probed using the digital channels on the MSO is used to identify. Boat Multiple propagated by the command business.
 - identify Read/Write commands on the command bus are quality and distinguish Read and Write bursts
- Options are provided to adjust the levels to improve burst detection in systems with lower signal integrity

Tektronix

Burst Detection

- Easily Identify, Mark & Measure all Read / Write bursts
 - Scroll through marked reads / writes across the entire waveform record
 - Measurements performed on ALL Reads/writes within an acquisition

Tektronix^{*}

Memory Probing

- Computer Systems use standardized DIMM's for which several probing solutions are available
- Memory in Embedded Designs is usually directly mounted on the PCB.
- Memory Components use BGA or PoP Packages
 - Reduces the parasitics, enabling performance at higher speeds
 - Mandate from JEDEC
- Probing a BGA or PoP package is Difficult
 - Unable to probe at the Balls of the Device
 - Probing at a connector, trace, or a via is not the same as probing at the device
 - Not a true representation of the signal

Tektronix^e

TriMode Probing

- TriMode, with a single probe-DUT connection, allows:
 - Traditional differential measurements: V+ to V-
 - Independent single ended measurements on either input
 - V+ with respect to ground
 - V- with respect to ground
 - Direct common mode measurements: ((V+) + (V-))/2 with respect to
- Many standards require both differential and single-ended voltage limit measurements. Requires two separate probes - Until Now!

Tektronix^{*}

Before and After

Before TriMode Probing

- 1 Probe for Differential 2 Probes for SE and Common Mode
- 1 Probe Soldered and Re-soldered 3 times 2 Probes for Common Mode

After TriMode Probing

1 Probe and 1 setup for Differential, SE and Common Mode

Tektronix

Memory Component Interposers Provide easy access to signals of Interest Controller Impedance path with embedded resistor for good signal Integrity De-embed filters to remove effects of interposer tap trace SPICE model available upon request for simulation and analysis

-	SPICE Induel available upon request for simulation and ana		
	Memory Standard	Supported Form Factors	Interposer Types
	DDR2	- BGA	- Socketed Interposer - Direct Attach Interposer
	DDR3	- BGA	- Socketed Interposer - Direct Attach Interposer - MSO DIMM Interposer - Instrumented DIMM
	DDR4	- BGA	- Socketed Interposer - Direct Attach Perimeter Interposer - MSO DIMM Interposer - Instrumented DIMM
	LPDDR2	- BGA - PoP	- Socketed Interposer - PoP Interposer
	LPDDR3	- BGA - PoP	- Socketed Interposer - PoP Interposer
	GDDR5	- BGA	- Socketed Interposer - Direct Attach Interposer
22			

Tektronix

De-embedding

- In order to remove the effects on the Interposer, probe tips and probes de-embedding must be considered.
- De-embedding filters will available for the interposers upon request.
 These de-embedding filters are developed assuming nominal values
- For more accurate characterization for a particular setup SDLA visualizer for Real time scopes can be used

Tektronix

Memory Interface Digital Validation

Measure the digital logic state and cycle based timing characteristics for diagnostic and troubleshooting purposes

Tektronix°

24

DDR4 Memory Component Interposers

- MCI's are used for probing signals from individual Memory Components
- Comes with a Custom Socket that needs to be soldered to Target system
- Quickly swap TLA & oscilloscope interposers on the same target. Quickly move interposers to different target.
- No special footprints or special routing requirements
- Memory Component Interposer Types
 - Logic Analyzer and Oscilloscope
 - Direct Attach or Socketed interposers
 - x4/x8 and x16 Memory Component types

Tektronix[,]

DDR4 ACC Interposers

- Protocol / Execution Validation
 - DIMM and SODIMM Interposers
 - Targeted for protocol compliance analysis
 - Automated Setup
 - Use with Nexus Compliance Analysis S/W
 - Compatible with P6960HCD or NEX-PRB1XL

Sales University 2012 - Tektronix Confidential Course Title vx.x (Edit in View/Insert > Header and Footer)

Tektronix •

Introducing New DDR3/4 High Speed Interposer

Next Generation DDR3/4 Probing Technology

Gain Unprecedented Visibility Into Your DDR3/4 Signal Activity

DIMM Interposer

SODIMM Interposer

Collaborative design combining years of Logic Analyzer acquisition and DDR3 probing experience between Tektronix and Nexus Technology

2

Tektronix^{*}

New DDR3/4 High Speed Interposer

Next Generation DDR3/4 Probing Technology

- Provides significant performance improvements to DDR3 probing
 - Integrates Tektronix ultra-high performance SiGe Hybrid ASIC technology
 - Compensation for platform trace loss on writes
- Improved interposer input impedance (5.2k to 0.73V)
 - Reduces load on target with minimal effect on bus
 - Provides an accurate representation of the signal on the target
- Enables probing DDR3/4 speeds at 2400MT/s and beyond
- Enables probing lower voltage signals on LVDDR3/4
- Interposers compatible with UDIMM, RDIMM, LRDIMM

Tektronix

What's unique about Execution Validation

Typical instrument use a post-capture model

TRIGGER → ACQUIRE → ANALYZE

Execution Validation use model

t₀ ← → t_{unlimited}

Analysis Run

Two equipment options

1. Logic Analyzer - S/W automates acquisitions

2. Memory Compliance Analyzer - Real-time Analysis

Memory Compliance Analyzer

REAL-TIME PROTOCOL COMPLIANCE ANALYSIS

- Analysis 160+ categories of JEDEC spec parameters
- Includes Power up/down, self-refresh and autoprecharge (RDA/WRA) analysis
- Timing and State analysis
- HTML reports / XML exporting

Real-time AND Post Capture Compliance Analysis

Command/Address

Tektronix^{*}

Programmable Front-End / High Speed Eye Diagrams

Tektronix^{*}

Automated Analysis Sessions

- One or Many Acquisitions / One or Both Analyzers
- Protocol Analysis Session
 - Protocol Analyzer runs until stopped
 - Violations and statistics are reported
- Single Acquisition Session
 - Protocol Analyzer runs until the state analyzer is triggered
 - Violations and statistics are reported.
 - State/Timing data is acquired and available for analysis
- Multi-Acquisition Session
 - Protocol Analyzer runs until the state analyzer is triggered
 - Results are stored in disk memory and analysis is restarted
 - Trigger conditions can be modified mid-session.

57

Tektronix^{*}

