

# 示波器介紹

# 實驗室試驗



本文件匯整了許多的實驗室試驗,向您介紹數位示波器的基本控制功能,以進行常見的電子量測。



# 版權通告和複製權

©2009 Tektronix版權所有。

爲培訓Tektronix示波器和儀器使用者或潛在使用者之限定目的,可以重新列印、修改和分發本文件。在複製 本文件時必須包括含有本通告的本頁副本。

# 目錄

| 實驗室試驗簡介4    |   |
|-------------|---|
| 目標4         | • |
| 設備清單4       | • |
| 示波器概述       | ) |
| 簡介5         | ; |
| 效能術語和考慮因素   | , |
| 初始設定和螢幕說明   | , |
| 建立穩定的顯示畫面   | , |
| 螢幕說明7       | , |
| 儀器控制功能      | ; |
| 垂直控制功能9     | ) |
| 簡介9         | ) |
| 垂直位置/刻度控制10 | ) |
| 水平控制功能11    |   |
| 簡介11        |   |
| 水平位置/刻度控制11 |   |
| 設定記錄長度11    |   |
| 觸發控制12      |   |
| 簡介12        |   |
| 觸發位準控制12    | • |
| 觸發功能表13     | , |
| 示波器量測14     |   |
| 簡介14        | • |
| 手動量測14      |   |
| 游標量測15      | , |
| 自動量測15      | , |
| 最後練習17      | , |

| 實驗室試驗簡介 |                                     |
|---------|-------------------------------------|
| 目標      |                                     |
| 1.      | 瞭解數位示波器的方框圖和基本控制功能。                 |
| 2.      | 設定示波器,穩定地顯示應用的訊號。                   |
| 3.      | 使用數位示波器進行常用的電子量測                    |
|         |                                     |
| 1.      | 一台Tektronix MSO2000或DPO2000系列數位示波器。 |
| 2.      | 一個P2221 1X/10X被動式探棒。                |
| 3.      | 一條主機/設備USB電纜。                       |
| 4.      | 一片Tektronix 878-0456-xx展示電路板。       |
|         |                                     |



# 效能術語和考慮因素

使用者可以利用多種方式來指定數位示波器效能;但最重要的指標有頻寬、上升時間、取樣速率和記錄長 度等等。

#### 頻寬

頻寬是要探討的第一個指標。頻寬是示波器的頻率範圍,通常用MHz表示,是顯示的正弦波的振幅衰減到 原始訊號振幅70.7%的頻率。

在量測高頻或快速上升時間訊號時,示波器的頻寬尤為關鍵。如果沒有足夠的頻寬,示波器將不能顯示和 量測高頻變化,一般建議示波器頻寬至少是需要量測的最高頻率的5倍。這種「五倍法則」可顯示訊號的五 次諧波,保證盡可能地減少由於頻寬引起的誤差。

#### 示波器的頻寬 ≥ 訊號的五次諧波

實例:若關心的訊號為100 MHz,示波器需要擁有500 MHz的頻寬。

上升時間

數位訊號的邊緣速度 (上升時間) 承載的高頻的內容可能會多於其重覆速率表示的高頻內容。示波器和探棒 必須擁有足夠快的上升時間, 擷取更高頻率的成分, 從而準確顯示訊號跳變。上升時間是步階或脈衝從振 幅位準的10%上升到90%所需的時間。這也適用於「五倍法則」, 建議示波器的至少要比需要量測的上升 時間快5倍。

#### 示波器的上升時間 ≥ 訊號的上升時間/5

實例:若關心的訊號的上升時間為5µsec,則示波器的上升時間至少要快於1µsec。

取樣率

數位示波器以某種頻率對輸入訊號取樣,稱為取樣速率,單位為取樣點/秒 (S/sec)。為正確重建訊號,內 奎斯特取樣定理要求取樣率至少是待測最高頻率的兩倍,這是理論上的最低值。一般而言,在實作中,取 樣速率最好要快五倍。

#### 取樣速率 ≥ 5.× 最高頻率

實例:450 MHz訊號的正確取樣速率應大於或等於2.25 GS/sec。

#### 記錄長度

數位示波器為擷取的每個波形擷取特定數量的取樣點或資料點,稱為記錄長度。記錄長度的單位為點或取 樣點 (取樣點/秒),得到擷取的總時間 (秒)。

#### **擷取時間 = 記錄長度/取樣速率**

實例:若記錄長度為1 M點,取樣速率為250 MS/sec,則示波器擷取的訊號長度為4 msec。

若想擷取2 ms的1 V<sub>pk-pk</sub>, 250 MHz正弦波, 要求示波器最低效能是多少?

頻寬:

取樣速率:

記錄長度:

| 初始設守和巡酋設明                          |                                       |
|------------------------------------|---------------------------------------|
|                                    |                                       |
| 建立穩定的顯示畫面                          |                                       |
| 1. 下面介紹了如何使用1 kHz, 5 Vpk-pk方波自動建立积 | 意定的示波器顯示畫面。                           |
| a. 按儀器左下角的power按鈕,打開MSO/DPO200     | O系列示波器。                               |
| b. 按前面板上的Default Setup按鈕,將示波器設定    | 成已知狀態。                                |
| c. 將一個P2221 1X/10X被動式探棒連接到通道1輸入    | 。爲連接BNC連接器,按下並旋轉探棒連接器,直               |
| 到滑至連接器。然後順時針旋轉鎖環,將連接器鎖             | 在相應位置。                                |
| d. 使用探棒滑動開關,將探棒衰減設為10X。            |                                       |
| e. 將探棒的鱷魚夾式地線連接到示波器右下角的接地          | 也連接器上。                                |
| f. 將探棒尖端連接到地線連接器下面的PROBE COM       | NP連接器上。PROBE COMP連接器提供了一個1            |
| kHz方波,本試驗將使用這個方波來展示示波器操作           | 乍。                                    |
| g. 按前面板上的Autoset按鈕,讓示波器自動設定        | Tielk Run Trig'd Noise Filter 01      |
| 垂直設定、水平設定和觸發設定,以穩定顯示               | Autoset                               |
| PROBE COMP 1 kHz方波。                |                                       |
|                                    |                                       |
|                                    | · · · · · · · · · · · · · · · · · · · |
|                                    |                                       |
|                                    | Undo Autoset                          |
|                                    |                                       |
|                                    |                                       |
| 1. 按Default Setup按鈕,將示波器還原為已知狀態。   |                                       |
| 2. Autoset按鈕調整垂直設定、水平設定和觸發設定,      | 以便在螢幕中間附近與觸發一起顯示四個或五個波                |
| 形週期。                               |                                       |
| 螢幕說明                               |                                       |
| 1. 下面概括介紹了示波器的顯示畫面。                |                                       |

| a. 通道1縱軸按鈕為黃色,螢幕上與通道1訊號有關的大部分要素的顏色都是黃色的。                 |
|----------------------------------------------------------|
| b. 在顯示幕上,下述項目為黃色,表明其與通道1相關:                              |
| ■ 波形                                                     |
| ■ 波形地位準指標 (螢幕中心左面)                                       |
| ■ 垂直刻度讀數 (螢幕左下方2.00 V)                                   |
| c. 通道2、3和4縱軸按鈕分別為藍色、洋紅色和綠色。顯示畫面使用這些通道顏色編碼的原理與1的黃色        |
| 相同。                                                      |
| d. 從示波器螢幕上可以看出,方波從接地位準指標起在顯示格線向上延伸了大約21%格。由於垂直刻度         |
| 因數是2 Volts/div,這表示訊號的正峰值大約為+5 V。                         |
| e. 波形的一個週期大約寬 2½格。每個橫格的時間用水平刻度讀數表示,在本例中為400 µsec/div (顯示 |
| 畫面中下方)。在400 μsec/div時,訊號週期約為1 msec,頻率約為1 kHz。            |
| f. 最後,觸發頻率讀數表明通道1訊號的頻率約為1 kHz,如顯示畫面右下角所示。                |
| 記憶要點                                                     |
| 1. 輸入通道附有顏色編碼。螢幕上的通道資訊採用該通道的顏色表示,包括波形、接地位準指標及垂直刻         |
| 度因數 (Volts/div)。                                         |
| 2. 將波形涵蓋的縱格數乘以垂直刻度因數,可以得到訊號的振幅。                          |
| 3. 通過將橫格數乘以水平刻度因數,可以得到訊號週期。                              |
| 4. 用1除以訊號週期,可以得到訊號頻率。                                    |
| 練習                                                       |
| 根據所示螢幕,回答下述問題:                                           |
|                                                          |
| 訊號的峰值電壓是多少?                                              |
|                                                          |
| 訊號的正峰值電壓是多少?負峰值電壓是多少?                                    |
|                                                          |
| 計號的週期相頻率定多少?                                             |
|                                                          |
|                                                          |
|                                                          |

# 儀器控制功能

普通示波器的控制功能可以分成三大類:垂直控制、水平控制和觸發控制。這是示波器設定使用的三個主要功能。下面幾節介紹了如何使用這些控制功能。



示波器的縱軸控制功能一般用於控制哪個參數?

# 垂直控制功能

### 簡介

垂直控制功能設定或修改每條類比輸入通道刻度、位置及其他訊號條件。

每條輸入通道均有一套垂直控制功能,用於定標、定位和修改該通道的輸入訊號,從而可以在示波器顯示 幕上相應地查看訊號。除每條通道專用的垂直控制功能外,還有多個按鈕可以進入數學運算功能表、參考 功能表和匯流排功能表。

| 垂直位置/刻度控制                                              |
|--------------------------------------------------------|
| 1. 下面將探討如何使用前面板上的縱軸位置和刻度控制功能。                          |
| a. 使用通道1垂直Position旋鈕,使波形位於顯示幕底部附近,注意接地位準指標也會移動。        |
| 垂直位置控制功能可上下移動波形,其一般用於將波形與格線上的縱格對準。位置一般只是一種圖形           |
| 顯示功能,不會影響擷取的波形資料。                                      |
| b. 使用通道1垂直Scale旋鈕,將垂直刻度從2 V/div變成1 V/div。              |
| 垂直刻度 (Volts/division) 控制功能可在顯示幕上調整波形的高度。一般來說,垂直刻度控制功能會 |
| 改變輸入放大器和 (或) 衰減器的設定,不影響擷取的資料。由於垂直刻度控制著進入ADC訊號振         |
| 幅,因此當訊號幾乎在垂直方向填滿螢幕,且沒有移出螢幕以外時,即可達到最高解析度的量測。            |
| 記憶要點                                                   |
| 1. 垂直位置旋鈕控制著波形在縱軸上的位置。                                 |
| 2. 垂直刻度旋鈕控制著格線上縱格表示的電壓量。                               |
| 練習                                                     |
| 為進行最高解析度量測,應使用什麼垂直刻度量測PROBE COMP方波?為什麼?                |
|                                                        |
|                                                        |
|                                                        |
|                                                        |
|                                                        |

| 水平控制功能                                         |
|------------------------------------------------|
| 簡介                                             |
| 水平控制功能用來確定示波器顯示幕中時間軸的刻度和位置,前面板上有一個專用控制功能,設定顯示幕 |
| 的水平刻度 (時間/格),另一個專用控制功能設定顯示的訊號水平位置。             |

Acquire功能表為修改波形顯示畫面及設定記錄長度提供了額外的選項。

# 水平位置/刻度控制

下面將探討如何使用前面板上的橫軸刻度控制功能。水平刻度控制功能 (也稱爲時間/格或秒/格) 調整螢幕上顯示的時間量。

a. 按下前面板上的Autoset按鈕,將示波器還原為已知狀態,然後將垂直刻度設定為1 V/div。

b. 使用垂直**Position**旋鈕,將波形放在螢幕中心。

- c. 旋轉水平Scale旋鈕,直到水平讀數顯示10µs/div (讀數顯示幕下方)。 由於水平方向有10個格,因此10 µsec/div的刻度因數會得到一個100 µsec的時間窗口。此設定顯示 了方波上升邊緣的實際形狀。
- 2. 水平Position控制功能在顯示幕上來回移動波形及其水平參考或觸發點 (在顯示幕頂部用橙色圖示表示),其用來將顯示的波形與格線上的橫格對準。

a. 逆時針旋轉水平Position旋鈕,使波形的下降邊緣位於顯示幕中心。

#### 記憶要點

1. 水平刻度控制功能設定示波器螢幕上顯示的時間視窗。由於水平方向有10格,因此時間視窗等於:

# 時間視窗 =水平刻度因數 ×10格

2. 水平位置旋鈕允許將顯示的波形與顯示格線的橫格對準,或查看顯示的波形的不同部分。

### 練習

若水平刻度因數設為1µsec/div,則顯示的時間視窗為:

# 設定記錄長度

1. 下面探討了示波器水平刻度因數、記錄長度和取樣速率之間的關係。

a. 將水平刻度設定為100µs/div。

- b. 按下Acquire前面板按鈕。按下Acquisition Details底部聚光按鈕。注意對125 k點的記錄長度,取樣 速率目前為125 MS/s
- c. 按下Record Length底部聚光按鈕,按下1.00M points 側聚光按鈕,將記錄長度設為1 M點。
- d. 再按下Acquisition Details底部聚光按鈕。注意取樣速率現在為1 GS/s。1 msec時間視窗沒有變化, 表示取樣速率提高的比率與記錄長度相同。

# 記憶要點

1. 示波器的取樣速率取決於顯示的時間視窗 (進而水平刻度因數) 和選擇的記錄長度。

# 取樣速率 = 時間視窗/記錄長度

水平刻度因數設為200µsec/div,記錄長度設為1 Mpoints,示波器的取樣速率是多少?查看示波器上的采集細節,檢驗答案。

# 觸發控制

#### 簡介

觸發規定了什麼時候擷取及將訊號儲存在記憶體中。對重複的訊號,則要求使用觸發穩定顯示畫面。

在前面板上有一個控制功能可設定觸發位準,有一個按鈕強制示波器觸發。Trigger功能表提供了不同的觸發類型,可讓使用者設定觸發條件。

#### 觸發位準控制

1. 下面介紹了如何使用前面板上的觸發位準控制功能。

使其與這裡顯示的書面一致。

a. 使用Default Setup和Autoset按鈕,將示波器設定成已知狀態。

b. 按下Menu Off按鈕,關閉功能表。設定示波器,



 在預設觸發設定下,示波器在通道1輸入訊號上查找上升邊緣。觸發位準控制用來設定示波器觸發的電 壓。這會顯示波形上升邊緣與觸發點對齊(在顯示畫面頂部,用黃色的T圖示指明)。觸發電壓位準用顯 示幕右側的黃色箭頭表示。在本例中,箭頭略高於縱軸中點。

a. 旋轉**Trigger Level**旋鈕,直到觸發位準高於波形頂部 (大約5.5 V),如螢幕右側的黃色箭頭所示,得 到沒有觸發的顯示畫面。

### 記憶要點

- 1. 觸發規定了什麼時候擷取及將訊號儲存在記憶體中
- 2. 觸發位準必須位於訊號範圍內,以正確觸發示波器。

3. 對重複訊號,必須使用觸發,才能獲得穩定的顯示畫面。

#### 練習

使用Trigger位準控制功能,將觸發位準移入及移出訊號的電壓範圍,注意其對顯示的訊號的影響。注意顯示畫面左上方 (稱爲觸發指標)的文字如何從Auto變爲Trig?及Trig'd,具體視觸發電壓位準的位置而定。您知道,Trig?和Trig?d是什麼意思嗎?

實驗室試驗

| (Auto觸發指標表示波器位於自動觸發模式,若沒有找到觸發事件,則會大約每秒鐘擷取一次。這會提供一              |
|----------------------------------------------------------------|
| 個顯示畫面,但並不穩定,如這裡所示。)                                            |
| 觸發功能表                                                          |
| 1. 下面將設定觸發,建立穩定的顯示畫面。                                          |
| a. 按下Trigger Level旋鈕 (按兩次變成一個按鈕),將觸發電壓設定強制設為訊號的50%點。現在,示波      |
| 器顯示畫面應與上一節的圖示一致。                                               |
| b. 將水平刻度因數變為100µsec,顯示訊號的一個完整週期。                               |
| c. 按下前面板上的Trigger Menu按鈕。                                      |
| Trigger Menu允許指定擷取波形使用的觸發事件。提供的觸發類型包括特定脈寬和突波、短數位矮              |
| 波、上升時間、下降時間等。                                                  |
| d. 按下Source底部聚光按鈕。觸發源功能表允許選擇監測觸發事件的哪個訊號。                       |
| e. 使用Multipurpose a控制項選擇作為觸發源的通道。順序選擇channels 2, 3和4,注意這對顯示畫面  |
| 已觸發狀態的影響。在沒有通道1時,顯示畫面沒有觸發,因為通道2、3和4沒有應用訊號。                     |
| f. 使用Multipurpose a控制項選擇channel 1,保證觸發顯示畫面。按Menu Off前面板按鈕。     |
| g. 按下Slope底部聚光按鈕,選擇訊號的下降邊緣作為觸發點。                               |
| 斜率功能表控制著觸發在觸發訊號上查找的是正邊緣還是負邊緣。                                  |
| 2. 預設狀態下會使用邊緣觸發。但是,由於觸發是量測中的關鍵要素,因此根據量測需求,有多個觸發選               |
| 項可供選擇。使用下述步驟。查看如何使用其它觸發類型。                                     |
| a. 按下Type底部聚光按鈕,出現觸發類型選項。                                      |
| b. 使用Multipurpose a旋鈕選擇Pulse Width。                            |
| c. 按下Trigger When底部聚光按鈕。                                       |
| d. 使用Multipurpose a控制項選擇Pulse Width =                          |
| Pulse Width =設定會導致脈寬位於指定值+/-5%範圍內時觸發。                          |
| e. 使用Multipurpose b控制項選擇500µs,注意示波器在500µsec脈衝上觸發。記住這個訊號的週期為1   |
| msec,工作週期為50%。因此脈寬為500µsec。                                    |
| f. 按下Type底部聚光按鈕,使用Multipurpose a旋鈕選擇Edge trigger,返回預設的邊緣觸發模式。然 |
| 後按下前面板上的Menu Off按鈕兩次,清除功能表。                                    |
|                                                                |
| 1. 按下觸發位準旋鈕會強制觸發位準變成應用訊號的50%點。                                 |
| 2. 功能表允許指定擷取波形使用的觸發事件。                                         |
| 3. 使用觸發源功能表選擇觸發事件監測哪條輸入通道。                                     |
| 4. 斜率控制指定哪個邊緣 (上升邊緣或下降邊緣)。                                     |
| 5. 脈寬觸發可以隔離一個訊號內的多個脈衝。                                         |
| 練習                                                             |
| 在上一個練習,使用了脈寬觸發擷取了1 kHz方波。爲觸發快於500 Hz的所有方波,您應該如何設定示波器           |
| 的觸發功能?假設方波的工作週期為50%。                                           |
|                                                                |

# 示波器量測

# 簡介

數位示波器可以對電訊號進行各種量測,如峰-峰值和RMS振幅量測及頻率、週期和脈寬時序量測。示波器 為進行這些量測提供了多種方式。本節將探討三種最常見的量測方法:

- 手動量測
- 游標量測
- 自動量測

**手動量測**。手動量測依賴顯示幕上的格線及垂直刻度和水平刻度設定進行量測。典型的格線在垂直方向有8格,在水平方向有10格。為實現最高準確度,應確定波格刻度及位置,在垂直方向和水平方向填充顯示幕,然後目視數出用格線單位表示的參數。然後將格數乘以刻度因數,即可得到最終的量測值。

游標量測。游標量測需將一對游標手動對準波形上的點,然後從顯示游標讀數中讀出量測值。

**自動量測**。自動量測採用示波器上韌體中儲存的演算法,這些演算法可識別相應的波形特點,進行量測, 確定量測刻度,套用相應的單位,並在示波器上顯示量測值。

# 手動量測

| 1. 下面的練習將探討手動波形量測。                                                                                                 |                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>a. 將示波器復原為已知狀態,使用前面板上的控制功能建立此畫面。</li> <li>在正常情況下,為提高準確度,應在垂直方向調整波形,盡可能使波形塡滿顯示幕。在本練習中,使波形如右圖所示。</li> </ul> | Tek Run         Trig'd         Voise Filter Off           1         1.00 V         200,05         0.00000 s) 1         72.48 V         987.482 Hz) |
| 練習                                                                                                                 |                                                                                                                                                    |

1. 數出格線上的縱格數,將其乘以垂直刻度因數,確定訊號的振幅。在這裡寫出振幅:

2. 數出格線上的橫格數,將其乘以水平刻度因數,確定訊號的週期。在這裡寫出訊號週期:

3. 執行下述計算,得到訊號的頻率:

頻率= 1/(訊號週期)。在這裡寫出頻率:

#### 游標量測

1.為實現更高的量測準確度,示波器提供了多個游標,下面對此進行了介紹。

a. 按下前面板上的Cursors按鈕兩次,開啓所有游標。

- 垂直游標沿著橫軸量測時間。
- 水平游標沿著縱軸量測電壓。
- 在游標停用時,即會變成虛線。實線表示游標啓用。

b. 按下Select按鈕,在游標停用時可以將水平游標變成實線。使用Multipurpose a和b旋鈕,將水平游標定位在波形的頂部和底部。在下面的練習中,寫出顯示幕右上角的訊號振幅。

c. 按下Select按鈕選擇垂直游標。注意a和b指標會移到時序讀數上,垂直游標從虛線變成實線。

d. 使用**Multipurpose a**和**b**按鈕,將游標定位在訊號一個週期的起點和終點 (從下降邊緣到下降邊緣), 然後讀出顯示幕上的時間讀數。

#### 練習

- 1. 在這裡寫出訊號振幅:
- 2. 在這裡寫出訊號週期:

#### 自動量測

MSO/DPO2000系列示波器提供了29種自動量測功能,為自動量測峰-峰值振幅、週期和頻率,示波器必須至少顯示波形的一個完整週期,讓波形盡可能填滿縱軸,而不會使訊號移到螢幕頂部或底部以外的區域。這可確保量測演算法可在計算的記憶體中完整描述波形。

下面將使用示波器的自動量測功能分析訊號。

- a. 按下**Cursor**按鈕一次,關閉游標。
- b. 按前面板上的Measure按鈕。

c. 按下Add Measurement底部聚光按鈕。

- d. 使用Multipurpose a旋鈕選擇Peak-to-peak,按OK Add Measurement側聚光按鈕。
- e. 使用Multipurpose a旋鈕選擇Period,按OK Add Measurement側聚光按鈕。
- f. 使用Multipurpose a旋鈕選擇Frequency,按OK Add Measurement側聚光按鈕。
- g. 按下Menu Off按鈕兩次,螢幕底部現在應該顯示Pk-Pk、Period和Freq自動量測項目。

| 1. | 將峰-峰値和週期自動量測結果寫在這裡:<br>自動量測和手動量測之間差異有多大?<br>自動量測和游標相關比例: |
|----|----------------------------------------------------------|
| 記  | 憶要點                                                      |
| 1. | 可以手動進行量測,使用游標進行量測,或使用根據韌體的處理示波器記憶體中儲存的波形的演算法自            |
|    | 動進行量測。                                                   |
| 2. | 在所有技術中,手動量測的準確度最低,游標量測的準確度通常高於手動量測,自動量測的準確度最高。           |
| 3. | 示波器螢幕上必須顯示與自動量測有關的所有訊號要素。                                |

| 最後練習                            |
|---------------------------------|
| 1. 在選擇示波器時要考慮的第一個指標是:           |
| a. 大小                           |
| b. 記錄長度                         |
| c. 頻寬                           |
| d. 量測數量                         |
|                                 |
| 2. 示波器通常:                       |
| a. 在顯示畫面縱軸上顯示振幅,如電壓             |
| b. 在前面板上提供最常用的控制功能              |
| c. 提供多種方式進行波形參數量測               |
| d. 上述皆是                         |
|                                 |
| 3. 典型的數位示波器:                    |
| a. 使用放大功能調整類比輸入訊號               |
| b. 以高取樣速率對輸入訊號取樣,然後轉換成數位格式      |
| c. 將數位化的波形資料儲存在記憶體中,然後在顯示幕上顯示波形 |
| d. 上述皆是                         |
|                                 |
| 4. 示波器的三套主要控制功能是:               |
| a. 垂直控制、量測控制和顯示控制               |
| b. 水平控制、自動設定和量測控制               |
| c. 垂直控制、水平控制和觸發控制               |
| d. 觸發控制、量測控制和游標控制               |
|                                 |
| 5. 示波器可以進行的量測有:                 |
| a. 自動量測,使用根據韌體的演算法處理儲存的波形資料     |
| b. 游標量測                         |
| c. 根據顯示幕上的格線進行手動量測              |
| d. 上述皆是                         |
|                                 |

| 6. 本最後練習要求使用獲得的技巧和知識進行如下操作。                                                                          |
|------------------------------------------------------------------------------------------------------|
| <ul> <li>6. 本最後練習要求使用獲得的技巧和知識進行如下操作。</li> <li>a. 使用USB電纜,將示範電路板連接到示波器的USB<br/>連接埠上,如右圖所示。</li> </ul> |
|                                                                                                      |
| b. 將示波 器採棒的鱷魚接地突端連接到 GND連接器上,將採棒突端<br>連接到標為CNT_CLK的針腳上,如右圖所示。按下Default Setup<br>按鈕。                  |
| c. 設定示波器,獲得由2-4個週期組成的穩定顯示畫面,在垂直方向盡可能填充螢幕,且不會削掉波形。<br>請勿使用自動設定!                                       |
| 在下面寫出相應的步驟:                                                                                          |

d. 使用示波器的格線量測:

1. 峰-峰值電壓

2. 訊號週期

e. 使用示波器的游標量測:

1. 峰-峰值電壓

2. 訊號週期

f. 使用示波器的自動量測功能,量測:

1. 峰-峰值電壓

2. 訊號週期

3. 訊號頻率

#### Tektronix 聯絡方式:

東南亞國協/大洋洲 (65) 6356 3900 奧地利 00800 2255 4835\* 巴爾幹半島、以色列、南非及其他 ISE 國家 +41 52 675 3777 比利時 00800 2255 4835\* 巴西 +55 (11) 37597600 加拿大 1 800 833 9200 中東歐、烏克蘭及波羅的海諸國 +41 52 675 3777 中歐與希臘 +41 52 675 3777 丹麥 +45 80 88 1401 芬蘭 +41 52 675 3777 法國 00800 2255 4835\* 德國 00800 2255 4835\* 香港 400 820 5835 印度 000 800 650 1835 義大利 00800 2255 4835\* 日本 81 (3) 67143010 盧森堡 +41 52 675 3777 墨西哥、中/南美洲與加樂比海諸國 (52) 56 04 50 90 中東、亞洲及北非 + 41 52 675 3777 荷蘭 00800 2255 4835\* 挪威 800 16098 中國 400 820 5835 波蘭 +41 52 675 3777 葡萄牙 80 08 12370 南韓 001 800 8255 2835 俄羅斯及獨立國協 +7 (495) 7484900 南非 +41 52 675 3777 西班牙 00800 2255 4835\* 瑞典 00800 2255 4835\* 瑞士 00800 2255 4835\* 台灣 886 (2) 2656 6688 英國與愛爾蘭 00800 2255 4835\* 美國 1 800 833 9200 \* 歐洲発付費電話,若沒接通,請撥:+41 52 675 3777 最後更新日 2011 年 2 月 10 日

若需進一步資訊。Tektronix維護完善的一套應用指南、技術簡介和其他資源,並不斷擴大,幫助工程師處理尖端技術。請造訪www.tektronix.com.tw

B

Copyright © Tektronix, Inc. 版權所有。Tektronix 產品受到已經簽發及正 在申請的美國和國外專利的保護。本文中的資訊代替以前出版的所有資 料。技術規格和價格如有變更, 忽不另行通知。TEKTRONIX 和 TEK 是 Tektronix, Inc 的註冊商標。本文提到的所有其他商標均為各自公司的服務 標誌、商標或註冊商標。

2009年6月

3GT-24274-0

太克科技股份有限公司

Tektronix 台灣分公司

114 臺北市內湖堤頂大道二段 89 號 3 樓

雷話:(02)2656-6688 值直:(02)2799-1158

#### 太克網站:www.tektronix.com.tw

