Selecting Your Next Oscilloscope

Understanding Key Oscilloscope Specifications and Features

What to Look for in an Oscilloscope

- Accurately captures your signals
- Provides features that expand your capabilities and save you time
- Works how and where you work

Oscilloscope Categories

Your next oscilloscope should CAPTURE YOUR SIGNALS

Consider Your Signals

- Frequency range?
- Rise times?
- What parameters?
- Key standards or technologies?
- Quick troubleshooting? Or precision measurements? Or both?

- Provides a time-correlated view among the various inputs
- 2 or 4 analog channels
- 8 or 16 Digital Channels (Mixed Signal Oscilloscope)
- RF Channel (Mixed Domain Oscilloscope)

- Provides a time-correlated view
- 2 or 4 analog channels
- 8 or 16 Digital Channels (Mixed Signal Oscilloscope)
- RF Channel (Mixed Domain Oscilloscope)

- Provides a time-correlated view
- 2 or 4 analog channels
- 8 or 16 Digital Channels (Mixed Signal Oscilloscope)
- RF Channel (Mixed Domain Oscilloscope)

- Provides a time-correlated view
- 2 or 4 analog channels
- 8 or 16 Digital Channels (Mixed Signal Oscilloscope)
- RF Channel (Mixed Domain Oscilloscope)

RF Input Channel

Bandwidth

 Indicates the frequency range over which an oscilloscope can measure

~2% Upper limit is specified at -3 dB point amplitude Assumes a sine wave degradation 100 Amplitude error (%) 30% amplitude 85 degradation! -3 dB 70.7 0.1 0.5

Typical frequency response curve for a basic oscilloscope

Frequency (GHz)

Working with Complex Signals

- Complex signals contain many spectral components that add to form the signal
- This means frequencies much higher than the fundamental frequency are present in these signals
- Consider the highest frequency of interest
 - If you work with complex waveforms like square waves, this will be some multiple of the fundamental frequency
 - You will have to have a sense of the spectrum of your signals
 - Or, for square waves, you can think in terms of rise time

Fu**lide a collect a text leter 10 int 2 int 10 int 2 int 10 inter incension** ic

Avoiding Bandwidth Measurement Errors

- Follow the "5 Times" Rule for Choosing Bandwidth
 - For less than +/- 2% roll-off error

Scope Bandwidth $\geq 5 x$ Highest Frequency of Interest

Avoiding Bandwidth Measurement Errors

For example:

Say you work with 20 MHz sinusoidal waveforms.

A 100 MHz oscilloscope will allow you to see your signal with less than 2% attenuation due to the roll-off of the instrument.

Characteristics

Vertical System Analog Channels

Characteristic	MSO3012 DPO3012	MSO3014 DPO3014	MSO3032 DPO3032	MSO3034 DPO3034	DPO3052	MSO3054 DPO3054
Input Channels	2	4	2	4	2	4
Analog Bandwidth (-3 dB)	100 MHz	100 MHz	300 MHz	300 MHz	500 MHz	500 MHz
Calculated Rise Time 5 mV/div (typical)	3.5 ns	3.5 ns	1.17 ns	1.17 ns	700 ps	700 ps

Rise Time

- Bandwidth and rise time are directly related
 - Higher bandwidth => faster rise time
- Oscilloscope rise time will affect your measurements

Measured RT =
$$\sqrt{Oscilloscope RT^2 + Signal RT^2}$$

A signal with 1 ns rise time captured with

- 8 GHz bandwidth
- · 2 GHz bandwidth
- · 500 MHz bandwidth

"5 Times Rule" for Rise Time

$$\textit{Rise Time} \ \leq \ \frac{\textit{Signal Rise Time}}{5}$$

For example:

4 ns rise time implies a scope with faster than 800 ps rise time

Characteristics

Vertical System Analog Channels

Characteristic	MSO3012 DPO3012	MSO3014 DPO3014	MSO3032 DPO3032	MSO3034 DPO3034	DPO3052	MSO3054 DPO3054
Input Channels	2	4	2	4	2	4
Analog Bandwidth (–3 dB)	100 MHz	100 MHz	300 MHz	300 MHz	500 MHz	500 MHz
Calculated Rise Time 5 mV/div (typical)	3.5 ns	3.5 ns	1.17 ns	1.17 ns	700 ps	700 ps

Sample Rate

- Determines how frequently an oscilloscope converts the analog signal into digital samples
 - Faster sample rate, greater resolution and waveform detail
 - Resolution depends on both record length and sample rate
- Sample rate varies with horizontal scale
 - The sample rate shown in the banner specs is usually the maximum
 - Most instruments maintain some number of samples per division
 - Some instruments change sample rate as you turn on more channels. Check the footnotes
- Under-sampling can cause "aliasing"
 - Makes frequencies look much lower than expected

"5 Times Rule" for Sample Rate

Minimum to avoid aliasing (Nyquist limit)

Sample Rate > 2 x Highest Sine Frequency

For sin(x)/x interpolation

Sample Rate > 2.5 x Highest Sine Frequency

For linear interpolation

Sample Rate > 10 x Highest Sine Frequency

- Tektronix basic and bench oscilloscopes use sin(x)/x interpolation
- Sampling rate of 5 times the bandwidth is recommended to capture signal details

Horizontal System Analog Channels			
Characteristic	All MSO3000 Models All DPO3000 Models		
Maximum Sample Rate (all channels)	2.5 GS/s		
Maximum Record Length (all channels)	5 Mpoints		

Record Length

- Determines how much time and detail can be captured in a single acquisition
 - Longer record length => longer time window with high resolution

Capture Time =
$$\frac{\text{Record Length}}{\text{Sample Rate}}$$

	monitorital of stein /	that og en anners
	Characteristic	All MSO3000 Models All DPO3000 Models
	Maximum Sample Rate (all channels)	2.5 GS/s
	Maximum Record Length (all channels)	5 Mpoints
_	Maximum Duration of Time Captured at Highest Sample Rate (all channels)	2 ms

Horizontal System Analog Channels

Triggering (for a stable display)

- Triggering allow you to achieve a stable display
- Basic triggers include
 - Edge
 - Pulse width
 - Video
- All signals are referenced to a single trigger, to maintain timecorrelation

Triggered Display

Untriggered Display

Your next oscilloscope should CAPABILITIES AND SAVE YOU TIME

Advanced Triggering

- Use advanced triggers to
 - Acquire anomalies
 - Make best use of record length
- Examples of advanced triggers:
 - Runt
 - Sequence
 - Rise/fall time
 - Logic
 - Glitch (pulse width)
 - Setup/hold
 - Serial packet
 - Parallel data

Advanced Searching

- Search for:
 - Edges
 - Runts
 - Rise/fall times
 - Logic Conditions
 - Glitches (pulse width)
 - Setup/hold violations
 - Serial packets
 - Parallel data
- Search and Triggers may use similar criteria

Waveform Capture Rate and Digital Phosphor

- Waveform capture rate
 - How fast a scope can acquire and display data
 - Faster capture rate means you'll find elusive glitches and other transient events faster

- Digital phosphor display with intensity-grading
 - Shows frequency of occurrence for better characterizing failures

Bus Decode

- Serial bus information can be
 - Decoded and displayed
 - Used to trigger and search
- Analog and Bus information are time-correlated

Available buses include I²C, SPI, CAN, LIN, USB, Ethernet, RS-

232...

Analog CH1

Analog CH2

Bus

Serial Bus Decode and Support

 Refer to the scope's datasheet for details on serial bus triggering, decoding, and search capability.

Technology		Trigger	Bus Decode	Event Table	Search	Order Product
Embedded	I2C	X	X	X	Х	DP03EMBD
	SPI	Х	X	X	X	DP03EMBD
Computer	RS-232/422/485, UART	X	X	X	X	DP03COMP
Automotive	CAN	Х	X	X	X	DPO3AUTO
	LIN	Х	X	X	X	DPO3AUTO
	FlexRay	X	X	X	Х	DP03FLEX
Military and Aerospace	MIL-STD-1553	Х	X	X	X	DP03AER0
Audio	I2S	Х	X	X	X	DP03AUDI0
	LJ, RJ	X	X	X	Х	DP03AUDI0
	TDM	X	X	X	X	DPO3AUDIO

Measurements and Analysis -- Cursors

Measurements and Analysis – Waveform Math

Measurements and Analysis – Automatic Measurements

Measurements and Analysis - Limit and Mask Testing

Limit Testing Mask Testing

Fast Fourier Transform (Frequency vs. Time)

Amplitude versus Time

Amplitude Versus Frequency

Amplitude versus Frequency

Tektronix Mixed Domain Oscilloscopes

See time-correlated analog, digital, and RF in a single instrument

Application Specific Measurements and Analysis

RF Applications

 View a frequency domain representation of the signal and perform in-depth analysis, including spectrograms and spurious searches.

Power

 Automated measurements for common power parameters like power quality, switching loss, harmonics, safe operating area, modulation, ripple, slew rate and more.

Jitter

 Automation of complex measurements and analysis tasks for clock, serial and parallel data signals, including jitter and timing measurements with pass/fail parameter testing and eye diagrams for mask testing of common industry standards.

Compliance Testing

 Specialized tests for testing compliance to strict industry standards like Ethernet and USB

RF

Power

Jitter

Your next oscilloscope should YOUR ENVIRONMENT YOUR ENVIRONMENT

The "Polarizing Question"

- Scope operating system (Windows or proprietary)
- Windows offers familiar operation
 - Supports mouse, keyboard, even touchscreen
- Built-in PC gives the ability to run other applications
 - Lets you perform analysis or prepare reports
 - Requires Windows "Care and Feeding"

Interfaces, Remote Control, Data Export, Software

- Computer interfaces
 - USB
 - LAN (and LXI)
 - GPIB
 - RS-232
- Software and Drivers
 - Screen, settings, data capture
 - NI LabView
 - IVI drivers

Storing, Printing and Video Output

- Mass Storage
 - USB
 - Hard Drive
- Printer interfaces
 - PictBridge®
- Video Interfaces
 - VGA output

Probes and Accessories

Passive Probes	8	 DC to 1 GHz Most common, general purpose probe type. Designed for cost efficiency and to be mechanically robust Offer a wide dynamic range and large input resistance.
Active Probes	60	 Bandwidth up to 4 GHz Reduced probe loading – capacitance as low as 0.5 pF Single-ended, ground referenced signals Best for small geometry applications
Differential Probes		Bandwidths up to 20 GHz View complementary (differential) signal pair using a single channel. Capacitance as low as 0.3 pF High common mode rejection
Current Probes	Bandwidths from DC to 2 GHz Ranges from 1 mA to 20,000 A.	
High Voltage Probes		

- Check to see what probes are available to use with your next oscilloscope
- Check for carrying cases, shipping cases, and rackmounts if needed

Battery Power, Portability

- Handheld or bench form factors
- Same basic specs as bench instruments
- Great for isolated and floating measurements

Selecting Your Next Oscilloscope QUESTIONS?

