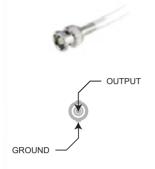
TekVPI[™]プローブ・インタフェースによる 新しいプローブ・アーキテクチャ

TekVPI(Tektronix **V**ersatile **P**robe **I**nterface) は、 ミッドレンジのデジタル・フォスファ・オシロスコープ DPO4000シリーズ・DPO7000シリーズのために開 発された、汎用性に富み、豊富な機能と使いやすさが特 長の新世代プローブ・インタフェースです。このテクニカル・ノートでは、当社のプローブ・インタフェースの進化、TekVPIの設計および新しいTekVPIプローブについて説明します。

▶ テクニカル・ノート

テクトロニクスのプローブ・インタフェースの進化

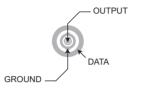
過去50年あまり、数多くのオシロスコープ用プローブ・ インタフェースが開発され、広帯域化および高性能化の 要求に応えてきました。その初期においては、バナナ・ プラグとUHFタイプのコネクタが一般的に使用されまし た。1960年代になると、小さなサイズと高周波性能か ら、BNCタイプのコネクタが一般的なプローブ・インタ フェースとなりました。BNCプローブ・インタフェース は、今日の高性能電子計測器の回路設計にも使用され、 4GHz近くまでの周波数帯域まで使用できます。


1969年、テクトロニクスは従来の簡単なBNCタイプの プローブ・インタフェースを改良した、7000シリー ズ・プローブ・インタフェースを発表しました。7000 シリーズの設計では、取り込んだアナログ信号をBNCタ イプのコネクタに通す一方、アナログ・コード化したス ケール・ファクタの検出ピンを機械的、電気的に追加し、 互換性のあるオシロスコープにおいて7000シリーズ・ プローブの減衰比設定を読み取り、オシロスコープに表 示される垂直軸減衰比を自動的に変更することを可能に しました。

1986年、TekProbe[™]プローブ・インタフェースの登場 によって、プローブの操作性はさらに向上しました。 TekProbe-BNC Level 1では、アナログ・コード化した スケール・ファクタの検出ピンを装備することにより、 7000シリーズのインタフェースで減衰比レンジの拡張 が可能になり、従来からの7000シリーズ・プローブも サポートできました。TekProbe-BNC Level 2では、プ ローブの信号ネットワーク設計にトランジスタ、IC、そ の他のアクティブ・コンポーネントが使用されるように なった「アクティブ」プローブに対して、電源が供給で きるようになりました。TekProbe-BNC Level 2では、 Level 1の機能をさらに強化し、オシロスコープとの通信 機能を追加することによりプローブ・チップでオフセッ トを校正することが可能になりました。

2001年、これまでのテクトロニクスのプローブの進化、 さらに、より広帯域、機械的、電気的な信頼性の強化、よ り使いやすくという要求からTekConnect™プローブ・イ ンタフェースが開発され、優れた信号忠実度と広帯域が実 現されました。TekProbeインタフェースではBNCコネ クタを使用しており、周波数帯域は約4GHzに制限されま す。TekConnectインタフェースでは、BMAタイプのコ ネクタ(サイズ、性能ともにSMAコネクタに類似)を採 用しており、18GHzまでの忠実度の高い信号通過性能を、 テクトロニクスの広帯域オシロスコープをサポートする形 で実現しました。TekConnectでは、いくつかの機械設 計で改良が施されており、ポジティブ・ロック機構を採用 したTekConnectプローブをオシロスコープへ接続する 場合、簡単に、かつ片手でも信頼性のある接続ができ、さ らに、プローブとオシロスコープのコミュニケーションが 読み取りだけではなく、プローブ・コントロールの書き込 みも可能になりました。このため、電気的な校正のための 調整、プローブのセットアップ・パラメータのソフト・ス イッチ、他のプローブ・アクセサリ・アダプタとのカス ケードなどの拡張機能が可能になりました。 TekConnectは現在でも、テクトロニクスの高性能オシ ロスコープのためのプロービングにおいて、最先端の設計 アーキテクチャとなっています。

テクトロニクス・プローブ・インタフェースの進化


BNC (1960年代初期)

それまでのものに比べ、小型、 高性能を実現しました。

7000シリーズ(1969年)



スプリング・ピンにより、アナログ・ コード化された電圧スケール・ファ クタの検出が可能になりました。

制御用コネクタ

TekProbe-BNC (1986年)

アクティブ・プローブ用の電源と、 オシロスコープとの通信機能を追 加しました。

TekConnect(2001年)

「CLOCK」 「CASCADE 電源および GROUND LINT DATA OFFSET -5-/ +15 V +5 CON OUTPUT

BMA信号コネクタ

BNCコネクタの帯域限界を解決し、高性 能オシロスコープのための最適なシグナル・ インテグリティと改良された通信機能を追 加しました。

TekVPI(2006年)

BULK (~12V) IRQ CLK +5 V -GND -ANALOG/SDA スコープ・パッドの配置

コストを低減したプローブ・インタフェース・ アーキテクチャを採用し、ミッドレンジ・オ シロスコープのための高信頼性と改良さ れた通信機能を実現しました。

▶ 図1. テクトロニクス・プローブ・インタフェースの進化

▶ テクニカル・ノート

新世代テクトロニクス・プローブ・インタフェース TekVPIの登場

2006年、テクトロニクスはミッドレンジ・モデルの新世代デジタル・フォスファ・オシロスコープDPO4000シリーズとDPO7000シリーズを発表しました。これには、新しいプローブ・インタフェースとしてTekVPI (Tektronix Versatile Probe Interface) が搭載され、この周波数帯域のオシロスコープに必要とされる使いやすさ、汎用性、その他の性能が実現されています。テクトロニクスの50年にわたるプローブ製品設計の経験と、TekProbe、TekConnectプローブの機能と利点を生かし、新しいTekVPIプローブ・シリーズが開発されました。

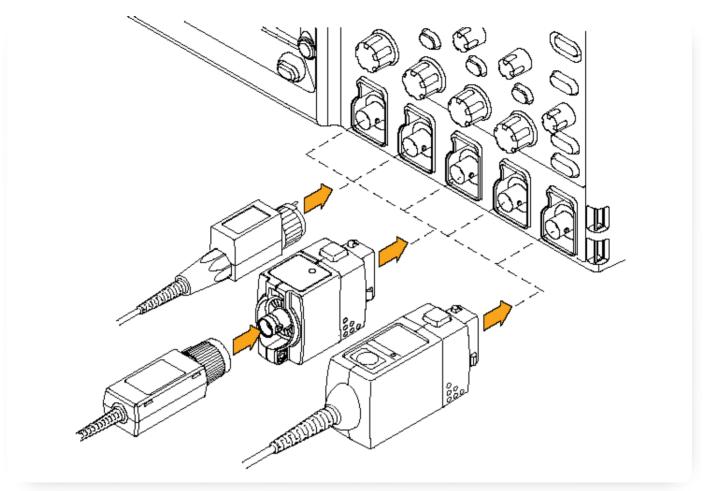
TekVPIの機能

汎用性と使いやすさはTekVPIプローブ設計の特長ですが、これはTekVPIを搭載したオシロスコープとの双方向の通信によって実現されています。TekVPIのプローブ設計は、マイクロプロセッサおよびEEROMメモリ、双方向シリアル・インタフェース通信をベースにしています。TekVPIのデザイン・アーキテクチャにより、プローブのステータスや設定情報などが表示されるので、プローブの設定がより簡単になります。プローブによる測定結果が正確に、テスト/測定がより簡単になることで、さらに測定性能が改善されます。

▶ テクニカル・ノート

TekVPIプローブの設定とユーザ・インタフェース

どのTekVPIプローブにも操作部とインジケータからなる プローブ補正ボックスが装備され、通常必要となるプ ローブの設定や動作状態などへのアクセスが簡単、容易 にできます。キーパッド・ボタンはラベル表示され、プ ローブ設定が簡単に行えます。補正ボックスには2色また は3色のLEDがあり、プローブの設定やキー操作の状態が はっきりと確認できます。


従来のプローブ操作部やインジケータ機能の他に、 TekVPIではまったく新しい「プローブ・メニュー・ボタ ン」機能を開発しました。すべてのTekVPIプローブの補 正ボックスには「メニュー・ボタン」があり、このボタ ンを押すと、TekVPIを搭載したオシロスコープにグラ フィカルなプローブ・メニューが表示されます。プロー ブ・メニューとその他のアイコンにより、プローブの型 名、プローブの製造番号、プローブが接続されている チャンネルの番号、プローブの動作状況などの情報が表 示されます。また、すべてのプローブ設定は、オシロス

コープの画面から変更、モニタすることができます。さ らに、測定のセットアップを容易にするため、TekVPIを 装備したオシロスコープにおいて、プローブのコンフィ グレーションもセットアップ・ファイルとして保存でき (Save Setup)、必要に応じて読み出す(Recall Setup) こともできます。

TekVPIプローブのリモート制御

TekVPIが持つオシロスコープ/プローブ間の双方向の通 信機能と、TekVPIを装備したオシロスコープのネット ワーキング機能(USB、GPIB、Ethernet)により、 TekVPIプローブをリモートで設定、モニタでき、ATE環 境におけるテスト・アプリケーションが簡単になります。 プローブの減衰率、DCオフセットのオートゼロまたは電 流プローブの残留磁気のデガウスなど、すべての設定が TekVPIによって簡単に変更できますので、プローブを最 良の状態、精度で使用できます。

▶ テクニカル・ノート

▶ 左から右に、BNCまたは7000シリーズまたはTekProbe-BNC Level 1、TPA-BNCアダプタによるTekProbe-BNC Level 2、新しいTekVPlプローブ・インタ

TekVPIによる従来からのプローブのサポート

これまでの50年間のテクトロニクス・プローブの進化に おいて、以下に示す4種類のBNCタイプのプローブ・イ ンタフェースが、4GHzまでの周波数帯域のアプリケー ションに対応して開発されてきました。

- · BNCコネクタ
- ・7000シリーズ
- · TekProbe-BNC Level 1
- · TekProbe-BNC Level 2

当社は、新しいTekVPIを搭載したオシロスコープにおい ても、従来からのプローブ、すでにお持ちのプローブが 引き続き使用できることが重要であると考え、従来から あるBNCタイプ、7000シリーズ、TekProbe-BNC Level 1、TekProbe-BNC Level 2のプローブも使用で きるように設計されています。

▶ テクニカル・ノート

- -BNCコネクタ・タイプ、7000シリーズ・プローブお よびTekProbe-BNC Level 1プローブ (アナログ・ コード化されたスケール・ファクタ検出ピンを持って いるタイプ)は、TekVPIを装備したオシロスコープの TekVPIプローブ・コネクタに直接接続できます。接続 されたプローブの機能や性能はすべてサポートされま す。
- -TekProbe-BNC Level 2プローブは、新たに開発され たTPA-BNC型プローブ・インタフェース・アダプタを 使用してTekVPIオシロスコープに接続します。 TekProbeインタフェースで取り込んだアナログ測定信 号は、TekVPIプローブ・チャンネル・コネクタのBNC インタフェースを経由して導かれます。さらに、接続 されたTekProbe-BNC Level 2のプローブ動作に必要 な電源も、TPA-BNC型アダプタによって変換され、供 給されます。接続されたプローブの機能や性能はすべ てサポートされます。

▶ TPA-BNC型TekProbe-BNC、TekVPIプローブ・インタフェース・アダプタ

▶ テクニカル・ノート

TekVPIプローブによる電源マネージメント

今日のアクティブ・プローブ設計では、プローブとの通 信、高速信号の正確な測定、被測定回路に与えるプロー ブ負荷を最小にするため、また、トランス・コアの磁気 飽和を避けて電流の測定レンジを拡張するためのバッキ ング電流など、どの場合でも外部からの電源供給が必要 になります。アクティブ・プローブには、トランジスタ、 IC、その他のアクティブ・コンポーネントがプローブの 信号ネットワーク設計の一部として使用されています。 従来、アクティブ・プローブの動作に必要な電源は、接 続されるオシロスコープによって供給、配分、管理され てきました。

TekVPIの設計アーキテクチャでは、プローブ・マネージ メントのための新しい技術により、いくつかの特長と使 いやすさが実現されています。TekVPIオシロスコープは、 有効なプローブ入力チャンネル間において+5VDCと+ 12VDCの電源を供給します。どのプローブ入力チャンネ ルもこのプローブ電源に対して同等の条件を持ちますの で、どのような種類のプローブが接続されても、どのよ うなプローブの組み合わせであっても制限を受けること はありません。プローブの電源マネージメント、各プ ローブに必要な電源に対する電圧変換などは、オシロス コープではなく、TekVPIプローブ内で行われます。

TekVPIのプローブ電源マネージメントの優れた特長を、 新製品TCP0030型 30A AC/DC電流プローブの例で説 明します。従来、この電流レンジを実現するには、バッ キング電流を得るため、また正確な電流測定のためのデ ガウスを実行するために外部電源が必要でした。 TCP0030型TekVPI電流プローブでは、この外部電源が 不要です。TCP0030型電流プローブを、TekVPIをサ ポートするオシロスコープに直接接続するだけでテスト 機器をセットアップする手間が省け、作業スペースが広 く使えます。

▶ テクニカル・ノート

TekVPIの機械設計

TekVPIプローブは、人間工学に基づいて設計されたプ ローブ形状と信頼性の高いメカニカル・インタフェース を実現しています。TekVPIプローブ、変換プローブ・ア ダプタは、TekVPIインタフェースを装備したオシロス コープのプローブ入力コネクタに差し込んで使用します。 オシロスコープ側コネクタのスプリング補助による信頼 性の高い信号接続が可能であり、プローブ・コネクタの ロック機構によりプローブ接続が確実に行えます。 TekVPIプローブ、変換プローブ・アダプタは簡単に取り 付け、取り外しが行え、取り外す場合はロック・リリー スのボタンを押しながら外します。確実に電気信号を接 続するため、TekVPIプローブ、変換アダプタには金メッ キされた接続ピンが、またオシロスコープのプローブ入 カコネクタ回路基板には、金メッキされたコンタクト・ パッドが装備されています。

オシロスコープに組み込まれるTekVPIプローブ特性

TekVPIプローブのマイクロプロセッサ、メモリおよび双 方向の通信機能により、接続されるオシロスコープ間に おいて、プローブ固有のゲイン・オフセットや伝播遅延 特性などを補正することができます。これにより、より 使いやすく、より正確な測定が可能になります。

正確な電力測定のためには、使用するプローブによる電 圧、電流測定の遅延時間をデスキュー(補正)することが重 要ですが、場合によっては難しい作業であったり、無視 されてしまうことすらあります。TekVPIプローブの製造 時には、プローブの伝播遅延時間を測定し、プローブの メモリに保存します。保存された遅延時間の値をオシロ スコープに送り、オシロスコープはこの値を使用して測 定された電圧、電流信号の位相を1ns以内に補正するこ とができます。(より正確なデスキューが必要な場合は、 デスキューのためのテスト・フィクスチャを使用します。)

▶ テクニカル・ノート

▶ TAP2500型 (TAP1500型も同様の形状)

新型TekVPIプローブ

TekVPIプローブの概要を示します。(詳細な仕様、アプリケーション、機能/特長については、それぞれのプローブのデータ・シートをご参照ください。)

-**TCP0030型** 30A・120MHz AC/DC電流プローブ

- TekVPIインタフェースを装備したオシロスコープに 直接接続可能

- 測定レンジ: 1mA~30A- 周波数帯域: 120MHz以上- ピーク・パルス: 50A

-**TAP1500型** 1.5GHzアクティブ・プローブ

- 立上り時間: 267ps以下

- 入力ダイナミック・レンジ: ±8V

- 入力抵抗: 1MΩ

- コンパクトなプローブ・ヘッドにより、狭い回路にも アクセス可能

-**TAP2500型** 2.5GHzアクティブ・プローブ

- 立上り時間: 140ps以下

- 入力ダイナミック・レンジ: ±4V

- 入力抵抗: 40kΩ

- コンパクトなプローブ・ヘッドにより、狭い回路にも アクセス可能

TekVPI[™]プローブ・インタフェースによる新しいプローブ・アーキテクチャ ▶ テクニカル・ノート

Tektronix お問い合わせ先:

東南アジア諸国/オーストラリア (65) 6356 3900

オーストリア +41 52 675 3777

バルカン半島/イスラエル/アフリカ南部諸国およびISE諸国

+41 52 675 3777

ベルギー 07 81 60166

ブラジルおよび南米 55 (11) 3741-8360

カナダ 1 (800) 661-5625

中東ヨーロッパ/ウクライナおよびバルト海諸国 +41 52 675 3777

中央ヨーロッパおよびギリシャ +41 52 675 3777

デンマーク +45 80 88 1401

フィンランド +41 52 675 3777

フランス +33 (0) 1 69 86 81 81

ドイツ +49 (221) 94 77 400

香港 (852) 2585-6688

インド (91) 80-22275577

イタリア +39 (02) 25086 1

日本 81 (3) 6714-3010

ルクセンブルグ +44 (0) 1344 392400

メキシコ、中米およびカリブ海諸国 52 (55) 5424700

中東アジア/北アフリカ +41 52 675 3777

オランダ 090 02 021797

ノルウェー 800 16098

中華人民共和国 86 (10) 6235 1230

ポーランド +41 52 675 3777

ポルトガル 80 08 12370

大韓民国 82 (2) 528-5299

ロシアおよびCIS諸国 +7 (495) 7484900

南アフリカ +27 11 254 8360

スペイン (+34) 901 988 054

スウェーデン 020 08 80371

スイス +41 52 675 3777

台湾 886 (2) 2722-9622 イギリスおよびアイルランド +44 (0) 1344 392400

アメリカ 1 (800) 426-2200

その他の地域からのお問い合わせ 1 (503) 627-7111

Updated 12 May 2006

詳細について

当社は、最先端テクノロジに携わるエンジニアのために、資料を 用意しています。当社ホームページ(www.tektronix.co.jp またはwww.tektronix.com)をご参照ください。

Copyright © 2006, Tektronix. All rights reserved. Tektronix製品は、米国およびその他の国の 取得済みおよび出願中の特許により保護されています。本書は過去に公開されたすべての文書に 優先します。 仕様および価格は予告なしに変更することがあります。 TEKTRONIXおよびTEKは Tektronix, Inc.の登録商標です。その他本書に記載されている商品名は、各社のサービスマーク、 商標または登録商標です。

10/05 FLG/WWW 51Z-19045-0

日本テクトロニクス株式会社

東京都港区港南2-15-2 品川インターシティ B棟6階 〒108-6106 製品についてのご質問・ご相談は、お客様コールセンターまでお問い合わせください。

TEL 03-6714-3010 FAX 0120-046-011

電話受付時間/9:00~12:00・13:00~18:00 月曜~金曜(祝日は除く)

当社ホームページをご覧ください。www.tektronix.co.jp お客様コールセンター ccc.jp@tektronix.com