
Application Note

Introduction
FPGA technology is advancing at an extremely fast rate. Density and performance

mean devices can truly claim to fit in to the heart of the system. The largest

Stratix III devices from Altera now have up to 340,000 logic elements, 16 Mbits

of memory and 760 18x18 multipliers. These are complemented with phase lock

loops and high-speed I/O capable of supporting the latest memory interfaces or

newest serial protocols.

Select the Correct Debug
Methodology for Your Altera
FPGA Design

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

2 www.tektronix.com/fpga

Traditionally, device debug was relatively simple as it was
possible to use a combination of simulation and board
measurements to quickly identify a potential issue. Today
however, devices are the fundamental building block of the
system; they are much more complex with up to 6 million
equivalent ASIC gates, and can take as much as a day
to compile when predominantly full or when they have
particularly arduous timing constraints.

Debug can on average take up to 50% of the development
time, particularly when looking for a difficult issue. We
therefore need to use innovative ways to speed up the
flow. Tektronix, First Silicon Solutions (FS2), and Altera
have teamed up to provide a robust solution to enable
quick identification and troubleshooting of even the most
difficult bugs.

Verification Methods
Simulation and verification are important stages of an
FPGA design and form a large portion of both the
development and debug stage of any design. They perform
an important task at the initial development, to ensure the
behavioral functionality of the design and to make certain
the design is fit for manufacture, as well as providing an
excellent way of performing timing verification.

In higher end applications, simulation also provides a good
solution in complete system verification. This enables you
to perform cycle accurate simulation of System-on-Chip
solutions, allowing the engineering team to debug both
hardware and software simultaneously. However, even the
simplest of software instructions can take days to model
and will require high-performance computing with hardware

emulators to complete. This type of requirement is necessary
for an ASIC development where at least initially there is no
target hardware, so simulation is necessary.

FPGA design is a little different. Hardware is available at an
earlier stage of the project, which means verification and
debug can be achieved on the target hardware rather then
on PC simulation. On-Chip debug provides many advantages
besides speed. It allows for cycle accurate operation on the
end unit and often shows bugs that are not always seen as
part of the simulation process.

The real difficulty lies in actually identifying and analyzing the
bug. We’ll now explore a few of the methods for doing this.

Analyzing Nodes Using Traditional
Methods
Traditionally, it has been possible to analyze a signal on a
pin simply by placing a probe on a pin. Of course things
have advanced significantly and FPGAs now have in excess
of 1000 pins. Packaging technology has also moved forward,
and most high-end solutions employ a combination of
Ball Grid Array packaging, narrow pin pitches, and surface
mount technology. This means you need to plan ahead if
you wish to probe particular signals and include breakout
connectors on a board.

A further consideration for FPGA debug is the fact that
most of the desired signals or nodes are usually buried
within the device making debug difficult. The obvious solution
is to move an internal node onto a spare signal or pin for
analysis. This was once extremely time-consuming, because
moving a node to a signal would require the device to be
completely recompiled.

22

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

3www.tektronix.com/fpga

Today, Altera offers a SignalProbe solution, which allows the
user to reserve signals or pins and then allocate the required
node to the signal when it needs to be examined. The real
advantage of this solution is the ability to use an incremental
compilation technique, which simply connects the node to
the pin without recompiling the rest of the design, saving
hours in compilation times.

SignalProbe is a valuable solution when analyzing single
nodes or narrow bus interfaces. It is quick, simple to setup
and configure, plus it does not require significant FPGA
resources. However, one of the disadvantages is that it is
more challenging to find a complex problem or system bug
using this technique.

Embedded (On-Chip) Logic Analyzer
Method
Many tools are now provided by both the FPGA vendors and
third party EDA partners to provide on-chip logic analyzers
within the target hardware. Altera for example provides the
SignalTap II logic analyzer as part of their tool suite. The
logic analyzers are built as part of the FPGA project and
use FPGA logic and memory to create the solution. Logic is
used to create the logic analyzer state machines, interface
and trigger mechanism. The memory is used to store the
captured data. The exact quantity of logic and memory is
dependant on the application.

The embedded logic analyzer uses the JTAG interface
within the FPGA to pass the captured data to an external
PC where it is displayed.

These on-chip analyzers are extremely powerful and can
allow for multiple capture levels or even multiple logic
analyzers to be developed to support different clock domains.
The use of embedded logic analyzers provide the ability to
dramatically speed up the debug process and can reduce
the time it takes to find a particularly demanding bug from
days to hours.

The embedded logic analyzer does suffer from a number of
drawbacks; because the logic analyzer function has to be
embedded into the FPGA. This can have some impact on
the system operation, for example:

You may need a larger FPGA device than desired to
accommodate the LA functionality.

Logic analyzer function can have an impact on both
FPGA fitting time and performance

Your end product may need to be recompiled to remove
the logic analyzer once the design is complete

Traditionally, there has been a further issue using the
embedded logic analyzer within an FPGA, in that it was
necessary to recompile the whole device every time a major
change was required to the analyzer. Modifications such
as advanced triggering, change of signal analysis, or trigger
depth resulted in a long recompile time.

Recently, incremental compilation techniques have significant-
ly sped up this aspect of the design, allowing you to quickly
compile the operation of the logic analyzer or even the design
fix itself, without the need to recompile the whole design.
This technique can reduce compile times by up to 70%.

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

Logic Analyzer Interface (LAI) Method
One of the more recent additions to FPGA debug techniques
has been the introduction of the Logic Analyzer Interface
(LAI) used to connect to external test equipment for logic
analysis. The LAI uses a combination of the JTAG interface,
as used in the SignalTap solution, and external signals,
which connect directly to the Tektronix TLA Series logic
analyzer or MSO Series mixed signal oscilloscope probe.
The JTAG interface is used for control of the system, while
the external test equipment probe is responsible for data
capture. Figure 1 provides a high-level diagram of operation,
showing how multiple LAIs can be developed for a design
to support different system blocks or clock domains.

During the FPGA development, the user selects the number
of pins they wish to set aside for the logic analysis. They then
use the FPGA development tools to define the actual signals
which they wish to look at as part of the system debug. The
signals are then multiplexed onto the reserved FPGA pins.

During analysis, the external Logic Analyzer or Mixed Signal
Oscilloscope uses FS2’s FPGAView software to control the
FPGA logic analyzer operation and to capture data. The
external test equipment is responsible for triggering, data
capture and signal de-muxing, thus reducing the overall logic,
memory and routing resources required in the FPGA. While
the LAI does require some FPGA resource; it is significantly
less than the embedded logic analyzer solution.

The LAI approach allows for more flexibility with triggering
and capture. The solution uses memory external to the
FPGA to save the trigger data, which can either be within
the test equipment itself, or in an external module, such as
one provided by FS2. The trigger capability is also enhanced
and offers both more options and levels than those provided
with the embedded logic analyzer.

The LAI is capable of supporting high speed systems and
acquiring data at speeds of over 200 MHz. In addition it
has the capability of securing timing data, which means it is
possible to look at the data on a bus and understand the
latency between channels.

4 www.tektronix.com/fpga

PC Board

FPGA

JTAG

LAI

Altera Programming Hardware

Quartus II Software

Connect
to unused
FPGA pins

Logic Analyzer or Mixed Signal Osciloscope

Figure 1. Logic Analyzer Interface and Hardware Setup.

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

5www.tektronix.com/fpga

The LAI can also be supported by incremental compilation,
allowing you to add the interface later in the design and mod-
ify it with minimal compile times. However, you will want to
plan ahead to ensure external pins are made available for the
external test equipment probes.

Using FPGAView
Using FPGAView consists of these easy steps:

Step 1. Configure and insert the appropriate test core
into your FPGA design

Step 2. Configure FPGAView to match your debug
environment

Step 3. Establish the mapping of FPGA pins to MSO or
TLA logic analyzer channels

Step 4. Make your measurement

Each of these steps is described in more detail in the
following sections.

Step 1. Insert Core

The first step is to configure the test core and insert it into
your design. In this example, you will want to use Altera’s
LAI editor to create a test core that best suits your need
(See Figure 2). With most test cores you can specify the
following parameters:

Pin Count: Signifies the number of pins you want dedicated
to your external test equipment interface.

Bank Count: Signifies the number of internal signals that
you want to map to each pin.

Output/Capture Mode: Selects the type of acquisition you
want to perform. You can select Combination/Timing or
Registered/State.

Clock: If you selected a capture mode of Registered/State,
this allows you to select the sample clock for the test core.

After selecting the appropriate parameters for your debug
requirements, you need to select which pins will be used
by the test core for output. You will also need to select
which signals are to be probed and groups those signals
into banks.

Figure 2. Example of Altera’s Logic Analyzer Interface Editor used to define and insert test core.

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

6 www.tektronix.com/fpga

Figure 3. Configuring the connection to the JTAG programming cable.

Figure 4a. Configuring the connection to the TLA.

Figure 4b. Configuring the connection to the MSO.

Step 2. Configure FPGAView to match your
debug environment

From the FPGAView window, you establish the connection
to the JTAG programming cable (See Figure 3) as well as
connecting to the external test equipment. Figures 4a and
4b show the connection to the TLA Series logic analyzer,
MSO4000 Series mixed signal oscilloscope, or PC worksta-
tion. These configurations provide you with the flexibility
needed to match your debug challenges.

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

7www.tektronix.com/fpga

Step 3. Map FPGA Pins to Logic Analyzer or
Mixed Signal Oscilloscope

The next step is to map the physical connection between
the FPGA pins and the TLA Series logic analyzer or MSO
Series mixed signal oscilloscope. This will allow FPGAView
to automatically update the signal names displayed on
the TLA or MSO to match those of the signals in the
FPGA design currently being monitored by the test core.

To do this, simply click on the Probes button to bring up a
drag-and-drop window for connecting the test core output
signal names with the correct channels on the test equipment
(See Figure 5). This assignment process is only necessary
once for a given target connection.

Figure 5. FPGAView maps pins quickly and easily.

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

Step 4. Make Your Measurement

The Bank list pull-down lets you select which Bank you
want to measure. Once the Bank is selected, FPGAView
communicates to your FPGA via the JTAG interface and
configures the test core so that the desired Bank is selected.

FPGAView also programs the TLA Series logic analyzer or
MSO Series mixed signal oscilloscope with these names

into the assigned channels making it easy to interpret your
measurement results. To measure a different set of internal
signals, you simply choose a different bank of signals (See
Figure 6). Correlating these FPGA signals with other signals
in your system is done automatically by the full-featured
TLA Series or MSO Series (See Figures 7a and 7b).

8 www.tektronix.com/fpga

Figure 6. Select desired Bank of signals to measure.

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

9www.tektronix.com/fpga

Figure 7a. TLA Series logic analyzer automates and simplifies many measurements.

Figure 7b. MSO Series mixed signal oscilloscope and FPGAView simplify FPGA system debug.

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

Summary
Thoughtful planning during the design phase, and selection
of the best debug methodology that suits your needs, will
save you time during the debug phase and simplify the
process. The various methodologies each have their own
strengths and weaknesses, but the introduction of FPGAView
makes the Logic Analyzer Interface (LAI) approach more
appealing than ever. The ability to correlate internal FPGA
signal activity to board-level signals delivers total insight
into your embedded design. The following table provides a
comparison of debug techniques available with Altera FGPA’s.

10 www.tektronix.com/fpga

Select the Correct Debug Methodology for Your Altera FPGA Design
Application Note

11www.tektronix.com/fpga

Comparison of Debug Techniques Available with Altera FPGA’s

Feature SignalProbe SignalTap II Logic Analyzer Description
Embedded Analyzer Interface (LAI)

Large Sample Depth

Ease in Debugging
Timing Issue

Minimal Effect on
Logic Design

Short Compile and
Recompile Time

Triggering Capability

I/O Usage

Acquisition Speed

No JTAG Connection
Required

External Equipment

An external logic analyzer used with the LAI has a
bigger buffer to store more captured data than
SignalTap II Logic Analyzer. No data is captured or
stored with SignalProbe.

An external logic analyzer used with the LAI provides
you with access to timing mode, enabling you to debug
combined streams of data.

The LAI adds minimal logic to a design, requiring fewer
device resources. The SignalTap II Logic Analyzer has
little effect on the design when it is set as a separate
design partition using incremental compilation.
SignalProbe incrementally routes nodes to pins, not
affecting the design at all.

The SignalTap II Logic Analyzer offers triggering
capabilities that are comparable to basic logic analyzers.

SignalProbe attaches incrementally routed signals to
previously reserved pins, requiring very little recompila-
tion time to make changes to source signal selections.
The SignalTap II Logic Analyzer and the LAI can take
advantage of incremental compilation to refit their own
design partitions to decrease recompilation time.

No additional output pins are required with the
SignalTap II Logic Analyzer. Both the LAI and
SignalProbe require I/O pin assignments.

The SignalTap II Logic Analyzer can acquire data at
speeds of over 200 MHz. The same acquisition speeds
are obtainable with an external logic analyzer used with
the LAI, but signal integrity issues may limit this.

An FPGA design with the SignalTap II Logic Analyzer or
the LAI requires an active JTAG connection to a host
running the Quartus II software. SignalProbe does not
require a host for debugging purposes.

The SignalTap II Logic Analyzer logic is completely
internal to the programmed FPGA device. No extra
equipment is required other than a JTAG connection
from a host running the Quartus II software or the
stand-alone SignalTap II software. SignalProbe and the
LAI require the use of external debugging equipment.

Suggested best tool for the feature.

Tool is available for that feature, but may not give the best results.

Feature is not applicable for the selection tool.

* When used with incremental compilation.

*

*

*

*

For Further Information
Tektronix maintains a comprehensive, constantly expanding
collection of application notes, technical briefs and other
resources to help engineers working on the cutting edge of
technology. Please visit www.tektronix.com

Copyright © 2008, Tektronix. All rights reserved. Tektronix products are covered
by U.S. and foreign patents, issued and pending. Information in this publication
supersedes that in all previously published material. Specification and price
change privileges reserved. TEKTRONIX and TEK are registered trademarks
of Tektronix, Inc. All other trade names referenced are the service marks,
trademarks or registered trademarks of their respective companies.
01/08 DM 54W-21382-0

Contact Tektronix:
ASEAN / Australasia (65) 6356 3900

Austria +41 52 675 3777

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium 07 81 60166

Brazil & South America (11) 40669400

Canada 1 (800) 661-5625

Central East Europe, Ukraine and the Baltics +41 52 675 3777

Central Europe & Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France +33 (0) 1 69 86 81 81

Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-22275577

Italy +39 (02) 25086 1

Japan 81 (3) 6714-3010

Luxembourg +44 (0) 1344 392400

Mexico, Central America & Caribbean 52 (55) 5424700

Middle East, Asia and North Africa +41 52 675 3777

The Netherlands 090 02 021797

Norway 800 16098

People’s Republic of China 86 (10) 6235 1230

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea 82 (2) 6917-5000

Russia & CIS +7 (495) 7484900

South Africa +27 11 206 8360

Spain (+34) 901 988 054

Sweden 020 08 80371

Switzerland +41 52 675 3777

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0) 1344 392400

USA 1 (800) 426-2200

For other areas contact Tektronix, Inc. at: 1 (503) 627-7111

Updated 12 November 2007

