
Application Note

Introduction
The typical embedded system is made up of a microcontroller and various peripheral

devices interfacing with the outside world. In an increasing number of designs the

communication between the microcontroller and the peripheral chips is accomplished

through serial communications links.

Serial buses take up less room on a PCB than parallel alternatives, and protocols

are defined by robust standards, ensuring good interoperability. Some examples of

peripheral chips that use serial links include sensors / signal conditioners, conversion

devices like ADCs and DACs, communications adapters, external memory, real-time

clocks and display subsystems.

Embedded Design Techniques for
Verifying Serial Communications

Embedded Design Techniques for Verifying Serial Communications
Application Note

2 www.tektronix.com/embedded

Before you have access to working firmware, you may want
to confirm that a peripheral chip is working as expected. This
can be done by correlating peripheral chip inputs or outputs
with serial bus data being sent between the chip and the
microcontroller. But verifying that serial buses are working and
sending the correct data can be difficult with the traditional
test solutions. This applications note describes three applica-
tions in which specific measurement techniques were used
to correlate signals on peripheral chips with serial bus data.

Application 1. Serial Communications
Controlling a Battery Charger
The charging of Lithium Ion batteries is very critical.
Overcharging can result in damage to the battery and even
a fire. Lithium Ion batteries have protection electronics
embedded in the battery pack to monitor cell voltages and
temperature as well as current and state of charge. Some
versions of the protection electronics provide a means of
communicating to the charger and/or the load to allow
access to this the information. For a charger, knowing the
battery temperature and individual cell voltages can help
prevent over charging or other unsafe conditions. The same
information can be used by the load device to indicate to

the user when the battery is nearing the point of no longer
supporting the load. The most common communications
scheme used is referred to as “SMBus” which uses the
I2C protocol. In this example, the charger will periodically
interrogate the battery temperature (and the cell voltages as
well) using the I2C bus. We will then look at the response
of the battery protection electronics and the charger to a new
analog temperature input. Figure 1.1 shows the configuration
of the battery, cell electronics and charger. This charger is
specially designed to adjust the charge current to prevent
damage to the battery if the battery temperature is below
a threshold.

The challenge in this example is to measure the response
of the charger to a change in the battery temperature.
Using the MSO4000 Series mixed signal oscilloscope,
we are interested in finding the:

Time from a change in temperature to when the data is
available via the I2C bus.

Time from when the data is available to when the current
starts to adjust.

Time and stability of the current adjustment.

Actual current values before and after the adjustment.

22

Battery

Charge Current

I2C Bus

Temperature
Sensor

Battery
Protection
Electronics

Battery
Charger

Figure 1.1. Block diagram of the battery charger system.

Embedded Design Techniques for Verifying Serial Communications
Application Note

3www.tektronix.com/embedded

Figure 1.2 shows the operation of the charger over a period
of 4 seconds to show the response to a temperature change.

The top trace labeled “TEMPERATURE” shows the
sampled analog temperature reading at the battery.

The next two analog traces labeled “SWITCH_V” and
“SWITCH_I” show the power transistor’s voltage and
current respectively, which provide the pulse width
modulated control of the charge current.

The decoded I2C communications bus is monitored by
two digital lines labeled “DATA” and “CLOCK” at the
bottom of the screen.The decoded data from the I2C bus
labeled I2C is displayed below the current trace simplifying
debug of the communications stream.

The digital signal to the gate of the power transistor
marked “DRIVE” is also captured to allow confirmation of
the power control operation.

In addition, a digital signal marked “UPDATE” is
programmed into the microcontroller to mark when the
charger makes a current control correction so that the
system response can be measured.

Thus we are simultaneously monitoring the stimulation
(Temperature), the communications (I2C), and the effect on
the charger switching power supply (Voltage and Current).
We are also using the technique of inserting an additional
monitoring line in the control loop (Update).

The first step from this trace is to determine when the change
in temperature which occurs between the positions marked
at A1 and A2 is read by the charger. The temperature is read
by the battery monitoring electronics during the short pulses
on the “Temperature” trace. The higher temperature reading is
shown at A1 (a thermistor is used so the higher temperature
is represented by a lower resistance and corresponding lower
voltage). Position A2 is where the lower temperature value is
first read. The I2C bus is read at the time of the longer pulse
on the Temperature trace; also shown as activity on the Clock
and Data digital traces.

Figure 1.3 shows the decoded temperature reading magnified
from the original capture to show the detailed operation of
the I2C bus and the decoded data. Here the two bytes after
the read (0x17) command at the position marked B1 show
the value 0x0BB8 (low byte first). This is the original tempera-
ture value. The location of the bus decode is shown at B2 in
the upper portion of the screen so the engineer can always
maintain the perspective of the total trace time. Since this
I2C reading is taken before the new value of temperature is
measured by the battery protection electronics, we would
not expect the data to have changed yet.

Figure 1.2. Operation of the charger over a period of 4 seconds. Figure 1.3. Decoded temperature reading magnified from the original capture shows
detailed operation of the I2C bus and the decoded data.

Embedded Design Techniques for Verifying Serial Communications
Application Note

Figure 1.4 shows the I2C bus and decode at the next sample
which occurs after the temperature change is measured
by the battery protection electronics. Now the temperature
value read after the (0x17) command at C1 has the value of
0x08D4 representing a change in temperature. This is the
first I2C data reading taken after the temperature reading was
taken by the battery protection electronics, so the response
is as expected. Note that the perspective on the total time
frame is maintained in the upper portion of the screen. This
magnified display is taken at position C2.

Figure 1.5 shows the period immediately after the I2C reading
taken in Figure 1.4 magnified to show the gradual current
adjustment. The markers for the current control process
are shown in the trace marked “Update”. At each “Update”
pulse, there is an incremental correction to the current until
the current reaches the new lower value that is required by
the lower temperature. The smooth adjustment from the
higher current to the lower level can be seen as well as the
very short interval (about 10 milliseconds) between the I2C
communications event near the left of the trace at D1 to
the start of the ramp down of the current. The current is
adjusted in about 200 milliseconds after the new temperature
reading is received by the charger. The value of the current
before and after the change can be measured as well as it
drops from about 2 Amps to about 0.25 Amps.

Figure 1.6 shows the benefit of deep memory in this oscillo-
scope. The same trace can be further magnified to show
the detailed current and voltage wave forms during the
operation of the switching power supply charge control.
A current probe is used to measure the current in the power
transistor. The drive signal is shown at the same time as
the analog signals so that the drive delay and the switching
times can be measured. This trace also allows measurement
of the current ripple and indicates that the power supply
inductor ripple is well controlled during the transition from
the higher current the new lower current level.

4 www.tektronix.com/embedded

Figure 1.4. The I2C bus and decode at the next sample which occurs after the
temperature change is measured by the battery protection electronics.

Figure 1.5. Magnified portion immediately after the I2C reading shows the gradual
current adjustment.

Figure 1.6. Deep memory enables the same trace to further magnified, thus showing
the detailed current and voltage wave forms during the operation of the switching
power supply charge control.

Embedded Design Techniques for Verifying Serial Communications
Application Note

5www.tektronix.com/embedded

Thus, we have observed that the battery protection electron-
ics correctly captured the change in temperature, the charger
was able to read this temperature change, and that the
charger was able to promptly and smoothly adjust the charge
current to respond to the change in temperature to reduce
the charge current. All of the information to measure the time
intervals and current response was captured in one trace
from which the events in the control system could be evaluat-
ed by the engineer as needed.

Application 2. Short Range Data Radio
Communications
In this example, we will confirm the correct packet transmis-
sion and the timing of each stage of a two-way radio commu-
nications system. Figure 2.1 shows the PC communicating
to a base station using RS-232 serial communications.
The base station then communicates to a remote unit using
a proprietary radio protocol. We will use the RS-232 decode

capability to look at the message sent from the PC to the
base station and from the base station to the PC. We will
use the analog and digital channels to look at the radio
transmitted and received signals on both the base station
and remote unit. The radio scheme used here is AM to
allow very simple circuitry on the remote side.

The packet structure consists of eight bytes as follows:

Header byte = 0x21 for commands (0x28 is used for
long data packets not used in this example)

Two serial number bytes = 0x0000 for the base station
and any other value for remotes

Command byte = 0x30 to 0x3F

Two argument or data bytes = 0x0000 to 0xFFFF with
the low byte first

Two checksum bytes = the sum of the first 6 bytes with
the low byte first

PC Base Station
Transceiver

Remote
Transceiver

Remote
Processor

Figure 2.1. Block diagram of the two way radio system.

Embedded Design Techniques for Verifying Serial Communications
Application Note

Figure 2.2 shows the entire transaction from the RS-232
signal being sent to the base station at E1 to the return
message at E2. The RS-232 signals are captured by two
digital lines labeled “Tx” and “Rx”. The corresponding
decoded information is displayed on the lines labeled
“RS-232(Tx)” and “RS-232(Rx)”. The actual decoded signals
will be shown in later figures. The yellow trace labeled
“BASE_TX_OUT” is the analog transmitted signal. The blue
trace labeled “BASE_RSSI” is the base station received
analog signal. This signal’s digital version is captured by
digital signal labeled “BASE_RX_DATA”. On the remote side,
the purple signal labeled “REMOTE_RSSI” shows the analog
version of the received signal, and the digital signal labeled
“REMOTE_RX_DATA” is the digital version of this signal.
As can be seen from this capture, the entire transaction
takes about 230 milliseconds for a full command packet and
the return data. Note that the capture is triggered by the
start bit of the return RS-232 signal to assure that the entire
transaction is captured.

In Figure 2.3 the capture is magnified to show the decoded
version of the data transmitted from the PC to the base
station. With this decode, it is easy to check the data to
confirm that the correct packet is being sent, as is the case.
Note that the gray zoom window in the upper section of
the screen shows the area being displayed in the magnified
view. The decoded data shows that the packet is correctly
formed with eight bytes. The first byte correctly reflects the
command 0x21. Since this is the base station we expect
the address to be 0x0000 which it is. The command 0x3A
is the request for the battery voltage. Since this is a request,
there is no argument so the bytes are zeros. The checksum
of 0x5B is the correct sum of the previous bytes.

6 www.tektronix.com/embedded

Figure 2.2. Full communications cycle from the PC back to the PC. Figure 2.3. Decode of the initial RS-232 from the PC.

Embedded Design Techniques for Verifying Serial Communications
Application Note

7www.tektronix.com/embedded

Figure 2.4 shows the base station transmitted waveform after
most of the wakeup preamble has been sent. The data is
represented by short and long periods of carrier signal. Note
that the receiver is showing the exact same pattern in both
the analog (REMOTE_RSSI) and digital versions
(REMOTE_RX_DATA) as we expect.

In Figure 2.5, the remote is responding. Note that the time
from receipt of the message to the transmission of the
response is only about 10 milliseconds. The return message
is shown by the base station receiver analog signal
(BASE_RSSI) and the digital version (BASE_RX_DATA). The
return RS-232 signal is also visible and only has a delay of
about 5 milliseconds after the receipt of the message from
the remote.

In Figure 2.6, the decoded RS-232 message is shown,
and can be used to confirm that the return data is what is
expected. Again the decoded data shows that the packet
is correctly formed with eight bytes. The first byte is again
the command header of 0x21. The address is 0xFFFF which
is a legitimate value. The command byte of 0x3A is echoed
so that the base station can confirm that the response is
due to the command sent and not a misread command.
The data value returned is 0x12F which corresponds to
2.5 Volts, which is what was applied. The checksum is the
correct sum of the first 6 bytes: 0x21 + 0xFF + 0xFF + 0x3A
+ 0x2F + 0x01 = 0x0289.

We have used the RS-232 data decode feature of the oscillo-
scope to confirm the correct two-way communications in
this radio system. The packets are correctly formed and the
header and command values and the checksums are correct.
We have been able to show the transmitted and received
analog and digital information in one capture and the ability to
magnify the captured data to look at the analog signal quality
and the recovered radio data. We have also confirmed that
the receiver response time is in the range we expected and
the entire two way transaction takes about 250 milliseconds
as expected.

Figure 2.4. Base station transmitted waveform and remote receiver signals.

Figure 2.5. Return transmitted and received signals.

Figure 2.6. Decode of returned message to the PC.

Embedded Design Techniques for Verifying Serial Communications
Application Note

Application 3. Evaluation of
SPI-based A/D Converter
In this example we are investigating the performance of
a 16-bit A/D converter that communicates using the SPI
type serial bus. We are using both channels of a two
channel signal generator, such as the AFG3000 Series to
create a true differential input waveform, along with the
SPI decode capability of the MSO4000 Series oscilloscope
to view the data converted from the incoming signal.
The data acquisition hardware consists of a differential
input amplifier, the A/D converter, and a microcontroller
as shown in Figure 3.1.

The objective of this measurement is to check that the
A/D converter is set up properly as the SPI master, and
that it is correctly reading the full input voltage range.
We are using an arbitrary function generator to produce
a full-scale input to the converter. The deep memory of
the oscilloscope allows capturing multiple samples in one
trace as shown in Figure 3.2. The SPI decode capability
of the oscilloscope is used to read the value converted

by the A/D. Subsequently this same acquisition can then
be magnified to show samples at different places along
the waveform and the decoded digital value produced by
the A/D converter. In Figure 3.2, the yellow and blue traces
labeled “IN+“ and “IN-” are the voltages from the signal
generator. The red trace labeled “INPUT_DIFF” is the mathe-
matical subtraction of the two input signals and represents
the total input to the differential amplifier. The purple trace
labeled “A/D_IN” is the actual input to the A/D converter
after the differential amplifier. These analog traces allow
confirming the correct operation of the analog circuits
in front of the A/D. The digital signals labeled “CLOCK”,
“DATA”, and “CONVERT” are the SPI control and data
signals. The oscilloscope also provides decode of the
data on the traces labeled “SPI(MOSI)” and “SPI(MISO)”.

In Figure 3.3, the trace is magnified at the bottom of the
input voltage waveform. The location of the magnified trace
can be seen in the original trace at the top of the screen.
The data can be seen decoded on the “SPI(MOSI) line.
The output is 0x00D8, a very low value which is in the range
to be expected.

8 www.tektronix.com/embedded

Microcontroller SPI Master
16 bit A/D

SCK
MISO

MOSI
SS

Differential
Amplifier

AFG3000 Series
Arbitrary/Function Generator

Ch1 Ch2

Figure 3.1. Block diagram of data acquisition subsystem.

Embedded Design Techniques for Verifying Serial Communications
Application Note

9www.tektronix.com/embedded

In Figure 3.4, the magnified portion of the trace is shown near
the top of the input voltage waveform. The decoded output
value is 0xFCBB, which is close to the top of the 16 bits of
A/D range, again as expected.

In Figure 3.5, the magnified portion of the trace is taken at
a middle point in the input voltage waveform. The decoded
output value is 0x7902, which is near the center of the
A/D range.

In this example we have used the decoded digital channels
to confirm that the A/D converter is correctly converting
the input voltage over its full range. At the same time, the
analog channels have been used to confirm that the input
amplifier is working as expected. The deep memory of the
oscilloscope facilitated this analysis from a single acquisition,
and additional sample points could easily be checked to
confirm that the digital output values correspond to the
analog input at various points.

Figure 3.2. Multiple acquisitions over a sine wave input.

Figure 3.4. Data taken at the top of the waveform.

Figure 3.3. Data taken at the bottom of the waveform.

Figure 3.5. Data taken in the middle of the waveform.

Embedded Design Techniques for Verifying Serial Communications
Application Note

Summary
With an increasing number of designs utilizing serial
communications links between the microcontroller and the
peripheral chips, you need a proven test solution to help
verify these serial buses are operating as expected. The spe-
cific measurement techniques highlighted in this application
note demonstrate a few of the ways in which signals on
peripheral chips can be correlated with serial bus data.

The Tektronix MSO4000 Series of oscilloscopes has deep
memory to allow you to capture enough meaningful data,
and can decode, trigger and search on serial bus data. The
AFG3000 Series arbitrary/function generator’s dual channel
capability allows a completely independent selection of
waveforms and frequencies and represents a big advantage
in versatility.

10 www.tektronix.com/embedded

For Further Information
Tektronix maintains a comprehensive, constantly expanding
collection of application notes, technical briefs and other
resources to help engineers working on the cutting edge of
technology. Please visit www.tektronix.com

Copyright © 2007, Tektronix. All rights reserved. Tektronix products are covered
by U.S. and foreign patents, issued and pending. Information in this publication
supersedes that in all previously published material. Specification and price
change privileges reserved. TEKTRONIX and TEK are registered trademarks
of Tektronix, Inc. All other trade names referenced are the service marks,
trademarks or registered trademarks of their respective companies.
11/07 DM 54W-21285-0

Contact Tektronix:
ASEAN / Australasia (65) 6356 3900

Austria +41 52 675 3777

Balkan, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium 07 81 60166

Brazil & South America (11) 40669400

Canada 1 (800) 661-5625

Central East Europe, Ukraine and the Baltics +41 52 675 3777

Central Europe & Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France +33 (0) 1 69 86 81 81

Germany +49 (221) 94 77 400

Hong Kong (852) 2585-6688

India (91) 80-22275577

Italy +39 (02) 25086 1

Japan 81 (3) 6714-3010

Luxembourg +44 (0) 1344 392400

Mexico, Central America & Caribbean 52 (55) 5424700

Middle East, Asia and North Africa +41 52 675 3777

The Netherlands 090 02 021797

Norway 800 16098

People’s Republic of China 86 (10) 6235 1230

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea 82 (2) 6917-5000

Russia & CIS +7 (495) 7484900

South Africa +27 11 206 8360

Spain (+34) 901 988 054

Sweden 020 08 80371

Switzerland +41 52 675 3777

Taiwan 886 (2) 2722-9622

United Kingdom & Eire +44 (0) 1344 392400

USA 1 (800) 426-2200

For other areas contact Tektronix, Inc. at: 1 (503) 627-7111

Updated 17 October 2007

