Next generation interface standards are pushing the limits of today’s compliance and debug tools. Electrical validation of PCIe 4.0 16 Gb/s, SAS 12 Gb/s, SuperSpeed USB 10Gb/s, and DDR4 3200 MT/s and other high-speed bus technologies require even more complex test considerations than before. Transmitter performance, for example, is best evaluated with new analysis techniques that can accurately identify jitter & noise from sources such as crosstalk or other multi-lane noise coupling. With a closed eye architecture, commonly found in long channel designs, physical layer testing requires advanced techniques such as channel de-embedding and end-to-end link simulation with reference receivers.

Design Challenges
- Smaller device geometries coupled with multi-layer PCBs incorporating buried via limit signal access
- Bus behavior with new power-saving schemes including frequency switching and clock gating
- Initiating test mode in-band through the channel, i.e., talk to the receiver’s link training and status state machine
- Validating new signal encoding and equalization capability found in high-speed signaling interfaces
- Increasing complexity and quantity for electrical validation – so many tests, so little time!

Standards
- a. PCI Express
- b. DDR4
- c. USB
- d. SAS/SATA
PCI Express is a high-speed serial computer expansion bus standard designed to replace the older PCI, PCI-X, and AGP bus standards. PCIe has a variety of improvements over the older standards, including higher maximum system bus throughput, lower pin count and smaller physical footprint. PCI Express recently released its 3rd generation specification to operate @ 8 Gb/s and work is underway to define the 4th generation specification targeted to operate @ 16 Gb/s.

PCIISIG.com

Design Challenges
- Validating all bus speeds and presets per lane, for example, 8 Gb/s requires testing at 5 Gb/s and 2.5 Gb/s with 11 de-emphasis presets on up to 16 lanes
- Placing the device into loopback to perform stressed receiver eye measurements
- Tracking link training sequences to validate speed and link width negotiation between transmitter and receiver

Tektronix Solution
- TekExpress for PCI Express automation software for in-depth compliance testing
- DPO70000SX Series Oscilloscope provides support for 8 and 16 Gb/s debug and validation
- DPOJET and SDLA advanced link analysis for host and device system modeling
- BERTScope PCIe automation simplifies calibration and receiver tolerance testing
- TLA Logic Protocol Analyzer to trace and validate link layer behavior

Observe PCI express link layer interactions using the oscilloscope's bus decode capability.

Observe receiver bit error map for all of the PCI Express' preset levels to assess BER margin.

Get our Primer on PCI Express® Transmitter PLL Testing – A Comparison of Methods
DDR4 is the next generation memory standard targeted for enterprise computing. The standard enables higher capacity DIMM’s (128 GB), doubles the data rate (3200 MT/s) and operates at lower voltage (1.2V) compared to the previous generation.

JEDEC.org

Design Challenges
- Signal Access for debug and validation
- Read / Write separation for analysis
- De-embedding to remove the effects of the interposer and probe, and to view signals at the memory controller
- Triggering on error conditions such as data-dependent errors
- Protocol error checking

Tektronix Solution
- P7700 Series Probing System with lightweight, flexible interconnected tips
- Interposer solutions enable signal access for both electrical and protocol validation
- DDRA automatically separates Reads / Writes then performs the relevant measurements
- Visual Trigger can be used to define complex conditions, enabling capturing conditions of interest
- The TLA7000 Logic Analyzer and the MCA5000 Memory compliance analyzers can be used to perform Logic validation and protocol compliance

Tektronix Visual Trigger can accurately capture fast reads & writes on DDR signaling

Watch our Webinar on Memory Interface Verification and Debug
USB 3.1 extends the performance range of USB up to 1GB/s by doubling the SuperSpeed USB clock rate to 10Gbps and enhancing data encoding efficiency. Additionally, the new USB Type-C connector greatly improves the user experience through high power, high bandwidth and a flexible mechanical design.

USB.org

Design Challenges
- Higher data rate means lower margins
- Long-channel signal recovery requires complex equalization
- 128b/132b encoding requires new LTSSM
- Backwards compatibility means more tests

Tektronix Solution
- DPOJET and SDLA: Advanced jitter and link analysis for host and device system modeling
- BERTScope USB 3.1 automation simplifies calibration and receiver tolerance testing
- TekExpress USB 3.1 Transmitter test software with comprehensive support for 5/10 Gb/s
- DPO70000SX Series Oscilloscope provides signal integrity for USB 3.1 margin analysis

Quickly perform USB 3.1 transmitter eye, jitter, and timing measurements using Tektronix’ automated USB 3.1 analysis software.

Characterize your USB 3.1 receiver performance with built-in jitter tolerance margin testing with the BSAUSB31 testing software.
Next-generation storage technologies such as 12 Gb/s SAS and SATA enable a new performance class of storage hierarchy that unlocks the performance of servers and solid-state drives.

Methods of Implementation
- SAS MOI
- SATA MOI

Design Challenges
- Complex bus topology and routing requires advanced equalization such as FFE/DFE.
- New host architectures include extensive Tx emphasis capabilities which can cause interoperability issues.
- Independent clock domains require inclusion of logical idle characters between a transmitter and receiver.

Tektronix Solution
- DPO70000SX Series Oscilloscope provides 50 GHz bandwidth to capture SAS 22.5 Gb/s
- DPOJET and SDLA advanced link analysis for host and device system modeling
- BERTScope jitter tolerance search mode simplifies receiver margin testing while filtering align primitives
- TekExpress SATA/SAS Transmitter test software with comprehensive support for Tx equalization characterization

Perform timing, jitter and amplitude analysis with DPOJET software.
Contact Information:

Australia 1 800 709 465
Austria 00800 2255 4835
Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777
Belgium 00800 2255 4835
Brazil +55 (11) 3759 7627
Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777
Central Europe / Greece +41 52 675 3777
Denmark +45 80 88 1401
Finland +41 52 675 3777
France 00800 2255 4835
Germany 00800 2255 4835
Hong Kong 400 820 5835
India 020 800 650 1835
Indonesia 027 803 601 5249
Italy 00800 2255 4835
Japan 81 (3) 6714 3010
Luxembourg +41 52 675 3777
Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (05) 56 04 90 90
Middle East, Asia, and North Africa +41 52 675 3777
The Netherlands 00800 2255 4835
New Zealand 0800 800 238
Norway 800 16098
People’s Republic of China 400 820 5835
Philippines 1 800 1601 0077
Poland +41 52 675 3777
Portugal 80 08 12370
Republic of Korea +82 2 6917 5000
Russia / CIS +7 (495) 6647564
Singapore 800 601 473
South Africa +41 52 675 3777
Spain 00800 2255 4835
Sweden 00800 2255 4835
Switzerland 00800 2255 4835
Taiwan 886 (2) 2656 6688
Thailand 1 800 011 931
United Kingdom / Ireland 00800 2255 4835
USA 1 800 833 9200
Vietnam 12060128

Find more valuable resources at TEK.COM

Copyright © 2016, Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.

06/16 EA 35N-00338-1

Rev. 050916