

简介

定时抖动是高速串行通信系统设计中普遍存在的问题。如 果您的工作涉及到抖动分析,则有时您可能需要一种有 意添加的、可控制抖动的时钟或数据源。根据您的不同 目的,在这样的抖动源中适当地关注细节可能对于获取可 信的、可重复的结果至关重要。使用可用的测量工具来验 证最终抖动源可以确保生成的准确性。

TDSJIT3 v2.0 是运行于 Tektronix 高性能实时示波器上的应用软件,它提供了一整套用于抖动和定时的分析以及可视

化的工具。与适当的抖动源结合以后,它就成为验证和分 析抖动容限和抖动传递特性的强大工具。

本文章的第1部分探讨如何生成(以及如何防止)可控制 抖动。

第2部分研究几种有可能使用抖动源的情况,例如:

- 抖动容限测试

- 抖动传递测试
- 测试设备相关性

▶ 图 1. *抖动层次*

本部分还包括在每种情况下抖动生成需要特别关注的那些 方面,并给出了有关如何使用 TDSJIT3 v2.0 来支持测试 的建议。

第1部分: 抖动生成技术和缺陷

定时抖动可分为不同类别,例如随机、数据从属或(无关联)周期性。这些类别通常形成抖动层次,如图 1 所示。您可能需要生成一种特定抖动类型,或是两种及以上类型的复合。若要成功实现,您必须要了解

- 可供使用的抖动生成工具种类;

- 每种工具的性能局限性; 以及

- 成功地配合使用这些工具以实现目标的方法。

有了这些知识,您就能够有效地创建足以满足特定任务的 测试信号。而没有这些知识,就很可能掉入粗心大意者经 常掉入的陷阱中。

1.1 复合抖动

如果您需要各种抖动类型(随机、正弦、数据相关抖动 DDJ等)复合而成的抖动信号,则任意波形发生器 (AWG)在 概念上简单并易于使用。典型的 AWG 可看作是与数字 - 模 拟转换器 ADC 相连的大型缓存,但通常认为它是允许将 波形存储器的段缝合在一起来创建复杂码型的可编程的状 态机。

AWG 有许多吸引人的属性。它可以生成多种不同的信号类型:类似时钟的信号,以及带有几乎所有可能的数据码型的数据信号。可以非常精确地控制上升时间和过冲(从而更容易创建多种数据相关抖动)。还可以包括随机抖动的近似值,而且所有这些抖动类型都可以方便地组合在一起,使得 AWG 的输出可以提供测试的一切所需。

但是,必须清楚地认识到该方法的局限性。最大的局限性 可能是可以产生的随机抖动的质量。因为大多数 AWG 的产生 的数据码型被限制为周期性重复(虽然周期可能很长), 所以抖动顶多是伪随机的,而不是真随机的。尽管这样产 生的抖动可能看起来像随机的,但概率分布则不一定适用 于任何应用需求。第 1.2 节详细描述了该主题的相关内容。

▶ 应用文章

可以使用 AWG 模拟周期性抖动 (PJ),但有一些局限性。码 型长度必须足以容纳相当于周期抖动调制周期的整数,目的 是确保当码型重复时不会发生中断。如果您希望创建带有一 个以上周期分量的周期性抖动,则每一个分量都必须满足上 述规则,以在各个分量之间形成一个特定的和谐关系。并且 如果正在调制的信号是数据信号而不是时钟信号,则要求数 据码型长度符合另外一些需求以避免不连续。

另一种完全不同的创建复合抖动的方法是先单独创建各种 抖动分量,然后将它们组合起来。第 1.5 节中单独描述了该 方法。

1.2 随机抖动

当进行串行通信试验时,随机抖动普遍被定义为带有高斯 概率密度函数的抖动。这常常被假定为表示白高斯噪声, 其中"白"的意思是当在频率域中查看噪声时,每十个中 都有相等的功率。通信链路中的高斯噪声通常在较高频 率处是白的,尽管它常常在低频率处显示出其它渐进趋势 (例如,1/f或1/f²)。请注意高斯噪声并非一定是白的,而 且白噪声也并非一定是高斯噪声。

▶ 图 2b. 与真高斯抖动的比较

生成高斯电压噪声(它稍后被转换为定时抖动)的常用方 法是使用一种被称为噪声发生器的仪器。不止一家有名的 生产商在噪声发生领域获得了成功。使用这种仪器甚至可 以用于需求应用,但工具模型必须经过仔细挑选并能提供 足够的性能。

此处主要的缺陷为高斯电压分布在理论上存在无界的振幅峰 值,但是在实际仪器中输出电压不可避免地受到电源范围的 限制。所导致的电压分布切断可能在极低的电平处发生,在 这种情况下噪声发生器将不适用于许多测试。图 2a 显示了 常用噪声发生器的电压分布直方图,它呈现了一个几分钟的 周期,并在蓝色在线性标尺上表示出来。该分布看起来很像 是高斯分布。但是,图 2b 中使用对数垂直刻度显示了相同 的数据,它上面覆盖了一条使用数学方法生成的真实高斯曲 线(红色)。在这里可以清楚地看到噪声发生器在平均值的 每一边都偏离了高斯曲线大约两个标准偏差。

要避免这个问题,必须检查的关键规格是噪声发生器的波峰因数,它被定义为峰值电压与 RMS 电压在仪器输出时的比率。如果波峰因数不足,您将得到一个截顶的高斯分布,它严重地偏离了通信链路中噪声的实际统计值。

通信链路通常使用 10⁻¹² 的 BER 作为眼睛闭合的规范点。该 BER 对应 7.03 或 16.9 dB 的波峰因数。如果您的噪声发生 器没有明确地指定足够超出该标准的波峰因数(或者指定 了电压压缩可能发生时的波峰因数),则应该假定噪声还 不足以做为需求应用所需的高斯噪声。如果您有噪声源但 不确定它是否足以做为高斯噪声,则附录 A 中给出了一种 方法来评估源,在这种方法中使用了高性能的示波器和 MATLAB 脚本。

一旦您有了高斯电压波形,必须将它转换成定时抖动。第1.5 节中描述了该任务。

1.3 周期性抖动

产生 PJ(周期性抖动)的最简单的办法是使用带有内部正 弦波振荡器和 FM(或 PM)调制器的信号发生器。该方法 通常局限于仅需要单一频率周期调制的情况。如果您要生 成带有两个或多个不相关频率的 PJ,则可以使用带有外部 FM 或 PM 输出的信号源。在这种情况下,可以使用外部 电源组合器来添加几个正弦电压,然后使用其结果来将调 制输入驱动至信号源中。第 1.5 节描述了该方法的更多相关 信息。 无论您的信号源有内部调制源还是外部调制源,为谨慎起 见,都应验证频率偏差,当调制被视为 PJ 时该偏差对应 峰-峰抖动。在许多情况下,可以采用一种已应用于无线 电技术多年的非常简单并且精确的技术来实现上述目的。 这种测试通常被称为 Bessel Null 技术,它依赖于以下事 实:频率调制信号的载波振幅对于各种频率偏差都定位为 零,这些频率偏差由第一类零次 Bessel 函数预测。有关该 测试详细信息的描述可以在网络或有关调制无线电信号的 实践文本中找到。

1.4 数据相关抖动

在实际的通信链路中造成数据相关抖动 (DDJ) 的主要原因是 高频处的信号损耗和相位移位。人为将 DDJ 添加到链接中 最简单的办法是插入带宽限制元素。这种方法可以采用长 条电缆、实际底板或低通滤波器的形式。有多个供应商可 以提供各种长度和互联阻抗的高速底板。该方法的优点在 于引入的 DDJ 可能十分近似地模拟实际系统中的 DDJ。其 缺点在于对引入的 DDJ 的数量控制很少,并且非常难于单 独验证数量。

如果您通过插入低通滤波器来引入 DDJ, 就对于了解传输 通道的数学模型有了很高的信心指数。然后可以选择模拟 通信链路并准确预测给定的数据码型中能够出现的 DDJ 的 数量。用这种方法,您可以准确验证引入的 DDJ 的数量。

▶ 应用文章

▶ 图 3.

1.5 复合抖动源

对于更多复杂的系统测试,您可能希望生成带有多重损伤的信号。例如,您可能对一个数据信号添加几个无关 PJ 源、校准后的高斯随机抖动量以及已知的 DDJ 分量。

在这些情况下,通常需要创建代表预期 PJ 和 RJ 分量的 电压波形,然后使用该电压来调制数据源。遗憾的是, 在这个电压 - 相位的转换过程中很容易增加意外的损伤。

(仍然可以通过向调制数据链接中添加带宽限制元素来引入 DDJ。)执行电压 - 相位转换过程最简单的方法是使用带有 FM 输出的数据发生器。在发生器内部, 该输出通常

与 VCO 连接。此处要注意的两个问题按优先级顺序依次 分为带宽和线性度。发生器上的许多调制输入都限制为带 宽小于 100 MHz,所以不能使用该方法增加宽带随机噪声。 线性度也可能成为一个问题,因为许多 VCO 有固有的非线 性电压 - 频率特性。

一个将电压噪声转换为定时抖动的特别的宽带方法是仅仅 使用电源组合器向数据波形(其数据边沿的斜率适当)添 加噪声电压。图 3 中显示了该方法,其中已使用低通滤波 器来确保时钟或数据波形中的边沿不至于变化过快。

▶ 应用文章

▶ 图 4.

▶ 图 5. 抖动容限测试的典型设置

当噪声波形在边沿检测阈值区域中升高或降低数据波形 时,它在时间上向前或向后偏离阈值交叉点。例如,如果 数据波形有升至 10 V/ns 的边沿,则波形中 50 mV 的向上 偏移将导致阈值被提前 5 ps 跨越。因此,信号的斜率有效 地设置了电压 - 定时转换的增益。图 4 中有相关描述。完 成电压 - 定时转换之后,可以使用任意限制振幅来存储快 速边沿。

该方法对于添加少量抖动会很有用,但您会发现当波形过 渡为线性时,电压-定时抖动转换只能是线性的。当波形达 到其最大值或最小值时,斜率的改变将使得转换变得高度 非线性。因为随机噪声有如此高的"峰-平均"比率,所以 该方法应限于在需要极少量随机抖动的情况下使用。

第2部分:抖动测试方案

2.1 抖动容限

抖动容限指的是测量一个设备在保持额定性能级别的同时 可以容许的定时抖动量。测试通常需要一个带有可控制抖 动的数据源、一种验证抖动输入信号特性的方法以及一种 检测被测接收机是否满足其性能需求的方法。图 5 中显示 了一种典型的方块图。

▶ 应用文章

根据不同的标准,输入信号上的抖动可以采取不同的形 式。例如,SONET 测试需要以正弦相位调制形式的抖动或 PJ,它扫过或穿过规定的频带,同时振幅根据一致性测试 模板调整。该信号不需要有任何特定级别的随机抖动,实 际上,假定它为具有可以忽略的 RJ。第 1.3 节中提到的方 法可以容易地满足这类测试的需要。

相对于 SONET 测试来说, SATA 规格则需要测试信号能够 容许各种随机和确定性抖动的存在。如果不注意细节, 这 类测试信号将无法正确产生。特别是, 使用具有截短直方 图的 RJ 源可以使您通过设备, 而该设备在随机抖动噪声更 接近于高斯分布的情况下会失败。因为需要真正超过 10⁻¹² BER 级的高斯分布, 所以许多 AWG 任意波形发生器不会表 现地足够好。

2.2 抖动传递

抖动传递是一个测量值,它是设备或系统某一输出中的抖动量相对于特定输入中的抖动量。该比率通常在频率域中 指定,并且可以与表示成波特 (Bode) 图的一致性测试模板 进行比较。

2.2.1 线性系统理论回顾

现有输入为 x(t)、输出为 y(t) 和脉冲响应为 h(t) 的线性时不 变系统的方块图,如图 6 所示。

根据经典的线性系统理论,该系统的传递函数为:

$$H(s) = \frac{Y(s)}{X(s)}$$

其中 X(s) 是 x(t) 的拉普拉斯变换, s = σ + j ω 是复合频率。 为了测量真实系统的响应,设σ = 0 并且拉普拉斯变换可 由傅立叶变换替代。所以实际上,传递函数为:

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$

为了让幅度响应充分描述该情形下的各种用途,我们所需的最终形式变为:

$$|H(j\omega)| = \left|\frac{Y(j\omega)}{X(j\omega)}\right| = \frac{|Y(j\omega)|}{|X(j\omega)|}$$

在图 6 中, 信号 x(t) 和 y(t) 通常指这些点的实际电压波 形。但也可以将它们指定为分别代表在设备的输入和输出 处的时间域抖动调制。在这种情况下, X(jω) 代表在设备输 入处的抖动调制, 在频率域中表示, Y(jω) 则代表在输出处 的抖动调制。据此, H(jω) 就成为了抖动传递函数。

2.2.2 在 TDSJIT3 v2.0 中设置传递函数图

使用 TDSJIT3 v2.0,在许多情况下可以直接通过设备测量 抖动传递函数的幅度。要达到这个目的,请同时探测设备 的输入和输出并在两端均设置类似的测量方法(例如,数 据周期测量方法)。执行捕获之后,选择"图">"创建" 显示各种图选项。在用户界面左侧的图表中,先选择对应 于输出抖动(图 6 中的 y(t))的测量值,然后选择"传递 函数"按钮。将出现一个对话框,选定的测量值被显示为 传递函数公式的分子。对于分母,请选择对应于输入抖动 (图 6 中的 x(t))的测量值,然后选择"确定"。

▶ 图 7.

结果图窗口显示了输出抖动的频率域幅度,它在 log-log 坐标轴上被输入抖动的幅度划分为几部分。因为所有幅度谱的 实际测量信号都会被一定量的噪声损坏,所以图中可能会显示伪波峰和伪波谷。要产生更好的图形,请将 TDSJIT3 v2.0 放在自由运行模式下并使其捕获多种测量信号。默认情况 下,该图被配置为平均后续测量的结果,并且通过平均多 个捕获可以大大减少测量噪声。

该技术并不局限于输入和输出速率相同的设备。第二个示 例中讨论了这种情况。

2.2.3 示例 1: CDR 鉴定

传递函数对于分析锁相环非常有用,例如可用于时钟数据 恢复 (CDR) 设备中。能够正常工作的 CDR 可以跟随或跟 踪其输入信号中的低频定时变化。远远超过 CDR 环路带 宽上方的定时变化(例如抖动)不会被跟踪;在这些较高 的频率处,设备输出上的抖动应该由 CDR 的 VCO 的抖动 来控制。在这两个范围之间,PLL(锁相环)可能会导致抖 动峰化。 要描绘 CDR 的抖动传递曲线,则需要由 CDR 跟踪的输入波形拥有比 CDR 自身的固有噪声多得多的抖动噪声。 该抖动应该均匀的分布在频谱上(例如"白"噪声),但 它无需是高度近似高斯分布的。所以在这种情况下,常用 的 AWG 任意波形发生器或噪声发生器可被作为数据源安 全使用。

因为 CDR 跟踪其环路带宽内部的抖动,所以传递函数在低 频处的增益应为 0 dB。如果 CDR 的固有抖动比输入信号的 固有抖动低,则抖动传递函数应该在大约 PLL 带宽点处以 20 dB/decade 的比率向下中断。(对于 2 阶 PLL,实际的 截断点将位于 PLL 带宽的下方某处。要了解出现这种情况 的原因,请参阅"使用实时示波器分析锁相环系统"应用 文章。)

2.2.4 示例 2: PLL 时钟乘法器

锁相环经常被用于乘以参考时钟以获得较高的频率,如 图 7 所示。在理论上,输出处的抖动等于参考时钟上的抖动 乘以环路带宽中的分频比(在本例中为 N/R)。如果完全位 于环路带宽之外,则抖动应该由环路 VCO 的抖动决定。 但是,如果某些其它抖动源(例如电源噪声)渗入设计, 则理论将不适用。

当在频率域中查看抖动时,可查看的最高抖动频率为时钟 速率的一半。(这是因为每个时钟周期仅能对活动时钟边沿 的相位取样一次,并且根据尼奎斯特定理,比最高抖动频 率高的抖动频率分量将被混叠到较低的频率。)

使用 TDSJIT3 v2.0, 您可以描绘 F_{out} 上的抖动相对于 F_r 上 的抖动的传递函数。为此,请在输入和输出上分别设置一 个 TIE 测量值,然后描绘 TIE_{out}/TIE_{ref}。当分子和分母的时钟 速率不同时,TDSJIT3 v2.0 将自动使用两个速率中较低的 一个来决定频率坐标轴的右向限制。

如上一示例所示,您可能希望使用有意添加的调制时钟来 探究 PLL 是如何将抖动从输入传递到输出的。并且如前面 所述,这类测试对于抖动生成并没有特别严格的要求。

2.3 测试设备验证

当今有大量的抖动测量系统可用,在价格、方便程度、灵 活性、技术能力和所声称的性能上各不相同。所有设计或 认证工程师的最富挑战的任务之一就是比较可用的解决方 案并选择最适合于他们应用的方案。这项选择的一个重要 方面就是评估仪器或系统的精确度和可重复性。

验证性能声明的一个方法是将仪器的抖动结果与可信的参 考仪器的结果进行比较,通常是 BERT。虽然这通常是一个 不错的办法,但即使是 BERT 也有错误源。因为抖动测量 的工艺和科技都已经成熟,所以将 BERT 作为最终裁判越 来越受到质疑。

另一个验证性能的方法是创建真实抖动已知的一个信号, 然后将测量结果与预期值比较。因为没有公认的抖动参考 标准,所以在这个未来的评估器领域没有多少可用的技术 指导。不幸的是,把事情搞砸的方法远比让一切正确的方 法要多得多。该任务确实是抖动生成的随机性测试,并且 您不能把任何事情想当然。如果您下决心进入这个领域, 则应该认真了解第 1 部分中关于概率分布、频率和相位偏 差的验证的所有注释。

TDSJIT3 v2.0 使用了此基本假设:抖动是许多单脉冲时间 测量的统计结果。因此,根据用于单独测量的基本仪器的 精度规格,就可以推断出复合抖动的精度。定义抖动分解 的精度或分离 RJ 和 DJ 的精度时,会遇到困难。使用频 谱分解方法可以直接查看不同的抖动分量,这种方法被认 为是最精确的可用方法,它对于所有方法的基础仪器本底 噪声和主要易错性非常灵敏。

小结

分析抖动性能时,应该或者必须拥有一个带有已知特性的 有意抖动的信号源。这个看似简单的目标却可能非常难以 达到。幸运的是,实际情况中通常不太需要计量级的抖动。 通过了解每一个应用中那些重要的抖动特性,可能的话, 您可以使用支出很少但却能满足需要的设备,而且能够在 那些容易的方法无法实现目标时避免因为错误而付出昂贵 的代价。

使用频谱分解方法可以直接查看不同的抖动分量,这种方 法被认为是最精确的可用方法。如同所有操作一样,测量 硬件的本底噪声增加了可达到性能的实际限制。

词汇表和缩写

- AM 调幅AWG 任意波形发生器
- BER 误码率
- BERT 误码仪
- CDR 时钟数据恢复
- DDJ 数据相关抖动
- **FM** 调频
- **ISI** 码间干扰
- PDF 概率密度函数
- PJ 周期抖动
- PLL 锁相环
- PM 调相
- PRBS 伪随机二进制序列
- SJ 正弦抖动
- VCO 电压控制振荡器

附录 A: 验证高斯电压波形

以下程序用于检查额定的高斯噪声源, 来验证其振幅分布与 理论上的高斯曲线的匹配程度。该程序由数据捕获和数据 分析两个步骤组成。它需要高性能示波器和访问 MATLAB* 分析应用程序的权限。

根据描述,数据捕获应该在 Tektronix TDS5000-、6000-或 7000-系列示波器上执行,但是经过适当的修改,同样的 技术也可以应用于其它可以测量和导出直方图的示波器。

数据分析是通过 MATLAB 脚本实现的。以下说明用于帮助 不熟悉 MATLAB 的人来成功地执行分析。

A.1:数据捕获

因为我们的目的是要验证噪声源的振幅分布,所以噪声源 输出应该直接连到示波器的信道 1 上。应该将示波器取样速 率设置得比噪声源的额定带宽高几倍,并且设置垂直灵敏 度,这样典型捕获上的波形峰值才不会延伸出示波器的数 字化器范围的 25% 到 35%。这样做是为了在不限幅的情 况下捕获偶尔出现的较高峰值。可以按照需要设置波形长 度,但较长的记录长度会比短的记录更快地积累统计。 可以使用下列步骤设置直方图测量:

- 按以上所述调整示波器垂直和水平灵敏度和记录长度。 打开竖线光标并用它们寻找对应于刻度最左边和最右边 的时间位置。类似地,使用横线光标寻找对应于刻度最 上边和最下边的电压。
- 2. 将示波器顶栏设置为"菜单"模式(而非"按钮"), 然后选择"测量">"波形直方图"....将波形源设置 为"Ch1",直方图模式设置为"垂直"。直方图比例 应该设置为对数,以便更清楚地看到高斯尾;请注意导 出的数据总是线性的。将"左限"和"右限"控件设置 为刻度左边和右边的时间值,如步骤一所示。类似地, 设置"顶限"和"底限"以使其匹配刻度最上边和最下 边的电压。现在直方图框包括整个可视屏幕,并且直方 图应在刻度的左边是可见的。
- 3. 让示波器在自由运行模式下运行一段时间。通常,要累积达到 7-sigma 级的统计需要一整夜或更长时间的运行。如果噪声源严重偏离高斯曲线,则可能运行时间要短得多。
- 4. 导出捕获的直方图。选择"文件">"导出设置"... 然后 转到"测量"选项卡。选择"直方图数据 (CSV)"单选按 钮,然后选择"导出"。会保存为一个具有两列的 ASCII 文本文件。第一列包含直方图的 bin 值(在本例中单位为 伏特)。第二列包含对应 bin 的样本数。

▶ 应用文章

A.2:数据分析

在 MATLAB 中,使用脚本 "check_gaussian_match.m" 分析 数据,该脚本可以在本附录的结尾处找到。使用下列程序:

- 将导出的直方图文件和 MATLAB 脚本放入方便的工作目 录中。打开 MATLAB 应用程序,然后使用位于右上角当 前目录路径旁的浏览按钮("...")导航到工作目录。
- 2. 在 MATLAB 提示符处, 键入:

>> load filename.csv -ascii

这里 >> 是 MATLAB 提示符, filename.csv 是您使用的实际文件名。这会将直方图数据加载到 MATLAB 工作区中,并使用文件名作为数据矩阵的名称。您可以通过键入:

>> whos

来确认矩阵的名称,这样将显示所有已加载数据对象 的概要。

 将直方图数据重命名为 "my_hist",因为这是分析脚本 期望使用的名称。要实现此目的,请键入:

>> my hist = filename;

这将创建名为 "my_hist" 的直方图的拷贝。

4. 在 MATLAB 提示符处, 键入:

>> check_gaussian_match

此时分析脚本将开始运行。运行结果应该是一张图,其 中实际测量的直方图为蓝色,最佳拟合的高斯曲线为红 色。垂直线显示平均值和 ±1、±2、...±7 sigma 点。 两条曲线之间的严重偏离(例如由噪声源的输出放大器 中的压缩导致)应该很明显,并且可以看到噪声源为高 斯曲线时的范围。

如果您熟悉 MATLAB 或仅仅喜欢尝试,可以使用任意文本 编辑器来探究分析脚本并考虑修改它。

A.3: 技术文章

理论上的高斯曲线是在执行函数的曲线拟合时发现的:

$$H(x) = yMax * e^{\frac{-(x-meanValue)^2}{2*sigma^2}}$$

利用已测出的直方图数据,再根据每个直方图点的样本数 对其进行加权。

为找到最佳曲线拟合, 对 yMax、sigma 和 meanValue 三个 参数都要进行调整。(为了计算出直方图和 pdf 之间的标准 化因数,用 yMax 的首项代替了 1/(sigma*sqrt(2*pi)) 的普通 项。)曲线拟合器是一种使得加权直方图点和理论高斯曲 线之间的均方差最小化的无约束非线性工具。

A.4: MATLAB 脚本

使用任意文本编辑器,将下列脚本保存到文件 "check_Gaussian_match.m" 中: % Script to verify the match between a measured histogram and the % best-fit mathematically-computed Gaussian: Measured histogram in blue. 8 Computed Gaussian in red. 90 Red vertical line at mean value 8 Green vertical lines at 1, 2, 3, ... 7 sigma points 90 % Set these to 1 or 0 as desired plot error curve = 1; % Plot error between measured and theoretical, in green plot logarithmic = 1; % Use log or linear vertical scale pp = my hist(:,2); % bin populations ii = my hist(:,1); % bin positions % Initial estimate of the peak value of the non-normalized Gaussian yMax = max(pp);% Initial estimates of the mean and sigma x temp = find(pp > 0.6065*yMax); x1 = x_temp(1); % Right one-sigma bin (approx.) x2 = x temp(end); % Left one-sigma bin (approx.) sigma = abs(ii(x1) - ii(x2))/2;meanValue = mean(ii([x1 x2]));

ibn = find(pp > 0.9); % Find indexes of all bins that are not empty
bn = ii(ibn); % Histogram bin values for non-empty bins

```
▶ 应用文章
```

```
% Find optimum curve fit
X = fminsearch(...
       inline('norm((pp-x(3)*exp(-((ii-x(2)).^2)/(2*x(1)^2))).*pp)','x','pp','ii'),...
       [ sigma; meanValue; yMax],[], pp, ii);
sigma = X(1); meanValue = X(2); yMax = X(3);
b = (-7:0.1:7)*sigma + meanValue; % Bin values where we compute ideal Gaussian
h = yMax * exp(-((b-meanValue).^2)/(2*sigma^2));
if plot error curve,
  % Find indexes of bins for which we have a confident measurement (at least 10 hits)
  % We will only plot the error curve for these bins
  ibg = find(pp > 9);
  bg = ii(ibg);
  hg = yMax * exp(-((bg-meanValue).^2)/(2*sigma^2));
  percentError = 100*((hg - pp(ibg))./hg);
end
% Now plot results
if plot logarithmic,
  % Use log vertical scale (recommended)
  if plot_error_curve,
   [haxes, hl1, hl2] = plotyy(bn, log10(pp(ibn)), bg, percentError);
    set(get(haxes(2),'ylabel'),'string','Error (%)')
    set(h12,'color',[0 0.5 0]);
  else
    plot(bn,log10(pp(ibn)),'.-') % Plot actual measurements
  end
  hold on;
  plot(b,log10(h),'r');
                          % Plot theoretical Gaussian
```

▶ 应用文章

```
% Plot vertical lines to show sigma intervals
  plot([1;1]*(-7:7)*sigma + meanValue,[0;log10(yMax)]*ones(1,15),'g');
  plot([1;1]*meanValue,[0;log10(yMax)],'r');
  ylabel('Log10 ( Hits )');
else
  % Use linear vertical scale
  if plot error curve,
   [ haxes,hl1,hl2] = plotyy(bn,pp(ibn),bg,percentError);
    set(get(haxes(2),'ylabel'),'string','Error (%)')
    set(h12,'color',[0 0.5 0]);
  else
    plot(bn,pp(ibn),'.-') % Plot actual measurements
  end
 hold on;
 plot(b,h,'r'); % Plot theoretical Gaussian
  % Plot vertical lines to show sigma intervals
  plot([1;1]*(-7:7)*sigma + meanValue,[0;yMax]*ones(1,15),'g');
  plot([1;1]*meanValue,[0;yMax],'r');
  ylabel('Number of Hits');
end
title([ 'Mean Value = ' num2str(meanValue) '; Sigma = ' num2str(sigma)])
xlabel('Noise Amplitude ( Volts )');
hold off; grid on; zoom on;
```

DPO - 数字荧光技术

眼见为实。

对于那些针对众多应用都需要最佳设计和故障排除工具的人来说, 数字荧光示波器 (DPO) 是一种理想工具,它可用于通信屏蔽测试、间 歇性信号的数字调试、重复数字设计和定时应用。Tektronix 覆盖从 100 MHz 到 7 GHz 的带宽频谱,并提供大量的 DPO 选择,向您展示了 一个独特的世界。

OpenChoice[®]

为联网和分析解决方案提供更多的选择。

OpenChoice 是一个大集合,其中包括软件库、实用工具、取样以及与 Tektronix 示波器和逻辑分析仪一起提供的行业标准协议和界面。从 60 MHz 到 15 GHz,通过 OpenChoice 您可以使用大量的连接性协议和物 理接口(例如 GPIB、Ethernet、RS-232 和 共享内存)在网络上与示波 器或逻辑分析仪进行通信。

TekConnect[®]

随时可用的超级信号保真度和无与伦比的多功能性。

无论您是测量高电压、电流、电源还是微伏级信号,TekConnect 接 口都将探头智能提高了一个层次。TekConnect 接口使用示波器输入端 的最高为 18 GHz 的有用带通来确保超级信号保真度,同时还提供无 与伦比的多功能性。利用 TekConnect 接口,就可以保持最大的信号完 整性以满足您目前和未来的带宽需求。

Oscilloscope Software

示波器软件将您的一般用途示波器变成高度专业化的分析工具。

Tektronix 提供独特的应用解决方案来为您的示波器添加特殊的技术或 专门的程序技术,大大简化了专业化设计的开发与测试。从串行数 据标准到电源测量,Tektronix 都有最广泛的示波器软件可供选择,将 您的示波器转换为高度专业化并且功能强大的分析工具。

奥地利 +41 52 675 3777 巴尔干半岛、以色列、南非及其它 ISE 国家/地区 +41 52 675 3777 巴西和南美 55 (11) 3741-8360 比利时 07 81 60166 波兰 +41 52 675 3777 丹麦 80 88 1401 德国 +49 (221) 94 77 400 东南亚国家联盟/澳大拉西亚/巴基斯坦 (65) 6356 3900 俄罗斯、独联体和波罗的海诸国 7 095 775 1064 法国和北非+33(0)1698181 芬兰 +41 52 675 3777 韩国 82 (2) 528-5299 荷兰 090 02 021797 加拿大1 (800) 661-5625 卢森堡 +44 (0) 1344 392400 美国1(800)426-2200 美国1(出口销售)1(503)627-1916 墨西哥、中美洲和加勒比海 52 (55) 56666-333 南非 +27 11 254 8360 挪威 800 16098 欧洲中东地区、乌克兰和波罗地海+41 52 675 3777 葡萄牙 80 08 12370 日本 81 (3) 6714-3010 瑞典 020 08 80371 瑞士 +41 52 675 3777 台湾 886 (2) 2722-9622 西班牙 (+34) 901 988 054 香港 (852) 2585-6688 意大利 +39 (02) 25086 1 印度 (91) 80-22275577 英国和爱尔兰 +44 (0) 1344 392400 中东、亚洲和北非+41 52 675 3777 中华人民共和国 86 (10) 6235 1230 中欧和希腊 +41 52 675 3777 其他地区请联系 Tektronix 公司 1 (503) 627-7111 最后更新日期: 2004年11月3日

与 Tektronix 联系.

了解更多信息

Tektronix 维护一个全面的和不断扩展的应用文章、技术简介和其他资源的集锦,可帮助工程师使用最新的技术。 请访问 www.tektronix.com

版权所有 © 2005, Tektronix, Inc. 保留所有权利。Tektronix 产品受美国和外国 专利权(包括已取得的和正在申请的专利权)的保护。本文中的信息将取代 所有以前出版的资料中的信息。保留更改产品规格和价格的权利。TEK-TRONIX 和 TEK 是 Tektronix, Inc. 的注册商标。引用的其他所有商标名称 均为他们各自公司的服务标志、商标或注册商标。

1/05 FLG/WOW

61C-18431-1

Ť

